The Insula of Reil in Man and Monkey

Architectonics, Connectivity, and Function
  • M.-Marsel Mesulam
  • Elliott J. Mufson
Part of the Cerebral Cortex book series (CECO, volume 4)


During the fetal stages of primate development, the insula is situated on the surface of the cerebral hemisphere (Fig. 1A). However, in the more advanced primates, the adjacent neocortical areas develop much more extensively than the insula. This leads to massive frontal, parietal, and temporal opercularization and to the formation of the sylvian fissure within which the insula remains buried from the time of birth onwards. In subprimate mammalian species where the neocortex does not develop as extensively, the homolog of the insula remains exposed on the surface of the brain throughout adult life (Rose, 1928).


Rhesus Monkey Orbitofrontal Cortex Insular Cortex Anterior Insula Piriform Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbie, A. A., 1942, Cortical lamination in a polyprotodont marsupial, Perameles nasuta, J. Comp. Neurol. 76:509–535.CrossRefGoogle Scholar
  2. Aggleton, J. P., Burton, M. J., and Passingham, R. E., 1980, Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta), Brain Res. 190:347–368.PubMedCrossRefGoogle Scholar
  3. Alexander, F., 1950, Psychosomatic Mediane Its Principles and Applications, Norton, New York.Google Scholar
  4. Ax, A. F., 1953, The physiological differentiation between fear and anger in humans, Psychosom. Med. 15:433–442.PubMedGoogle Scholar
  5. Bagshaw, M. H., and Pribram, K. H., 1953, Cortical organization in gustation (Macaca mulatto), J. Neurophysiol. 16:499–508.PubMedGoogle Scholar
  6. Barbas, H., and Mesulam, M.-M., 1981, Organization of afferent input to subdivisions of area 8 in the rhesus monkey, J. Comp. Neurol. 200:407–431.PubMedCrossRefGoogle Scholar
  7. Bartholin, C., 1641, Institutiones Anatomicae ab auctoris filio Thoma Bartholino, Hack, Leiden.Google Scholar
  8. Beckstead, R. M., Morse, J. R., and Norgren, R., 1980, The nucleus of the solitary tract in the monkey: Projections to the thalamus and brain stem nuclei, J. Comp. Neurol. 190:259–282.PubMedCrossRefGoogle Scholar
  9. Benjamin, R. M., and Burton, H., 1968, Projection of taste nerve afferents to anterior opercular-insular cortex in squirrel monkey (Saimiri sciureus), Brain Res. 7:221–231.PubMedCrossRefGoogle Scholar
  10. Benson, D. F., and Geschwind, N., 1985, Aphasia and related disorders, in: Principles of Behavioral Neurology (M.-M. Mesulam, ed.), Davis, Philadelphia.Google Scholar
  11. Biemond, A., 1956, The conduction of pain above the level of the thalamus opticus, Arch. Neurol. Psychiatry 75:221–231.CrossRefGoogle Scholar
  12. Burton, H., and Jones, E. G., 1976, The posterior thalamic region and its cortical projection in New World and Old World monkeys, J. Comp. Neurol. 168:249–301.PubMedCrossRefGoogle Scholar
  13. Carpenter, M. B., 1976, Development and histogenesis of the nervous system, in: Human Neuroanatomy (M. B. Carpenter, ed.), Williams & Wilkins, Baltimore, pp. 49–70.Google Scholar
  14. Catsman-Berrevoets, C. E., and Kuypers, H. G. J. M., 1976, Cells of origin of cortical projections to dorsal column nuclei, spinal cord and bulbar medial reticular formation in the rhesus monkey, Neurosci. Lett. 3:245–252.PubMedCrossRefGoogle Scholar
  15. Chapman, W. P., Livingston, K. E., and Poppen, J. L., 1950, Effect upon blood pressure of electrical stimulation of tips of temporal lobes in man, J. Neurophysiol. 13:65–71.PubMedGoogle Scholar
  16. Clark, T. E., 1896, The comparative anatomy of the insula, J. Comp. Neurol. 6:59–100.CrossRefGoogle Scholar
  17. Clause, R. E., and Lustman, P. J., 1983, Psychiatric illness and contraction abnormalities of the esophagus, N. Engl. J. Med. 309:1337–1342.CrossRefGoogle Scholar
  18. Dejerine, J., 1895, Anatomie des Centres Nerveux, Rueff, Paris.Google Scholar
  19. Eichenbaum, H., Morton, T. H., Potter, H., and Corkin, S., 1983, Selective olfactory deficits in case H. M., Brain 106:459–472.PubMedCrossRefGoogle Scholar
  20. Fenz, W. D., and Epstein, S., 1967, Gradients of physiological arousal in parachutists as a function of an approaching jump, Psychosom. Med. 29:33–51.PubMedGoogle Scholar
  21. Filimonoff, I. N., 1947, A rational subdivision of the cerebral cortex, Arch. Neurol. Psychiatry 58:296–311.PubMedCrossRefGoogle Scholar
  22. Franzen, E. A., and Myers, R. E., 1981, Neural control of social behavior: Prefrontal and anterior temporal cortex, Neuropsychologia 11:141–157.CrossRefGoogle Scholar
  23. Gloor, P., Oliver, A., Quesney, L. F., Andermann, F., and Horowitz, S., 1982, The role of the limbic system in experiential phenomena of the temporal pole, Ann. Neurol. 12:131–144.CrossRefGoogle Scholar
  24. Gower, E. C., 1981, Architectonic and Thalamic Connections of Macaque Temporal Polar Cortex, Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
  25. Gower, E. C., and Mesulam, M.-M., 1982, Cytoarchitecture correlated with distribution of AChE in monkey temporopolar cortex, Anat. Rec. 202:67–68 (abstr.).Google Scholar
  26. Hall, R. E., and Cornish, K., 1977, Role of the orbital cortex in cardiac dysfunction in unanesthetized rhesus monkey, Exp. Neurol. 56:289–297.PubMedCrossRefGoogle Scholar
  27. Herkenham, M. A., 1978, The connections of the nucleus reuniens thalami: Evidence for a direct thalamo-hippocampal pathway in the rat, J. Comp. Neurol. 177:589–610.PubMedCrossRefGoogle Scholar
  28. Herzog, A. G., and Van Hoesen, G. W., 1976, Temporal neocortical afferent connections to the amygdala in the rhesus monkey, Brain Res. 115:57–69.PubMedCrossRefGoogle Scholar
  29. Hoffman, B. L., and Rasmussen, T., 1953, Stimulation studies of insular cortex of Macaca mulatta, J. Neurophysiol. 16:343–351.PubMedGoogle Scholar
  30. Iversen, S. D., and Mishkin, M., 1970, Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity, Exp. Brain Res. 11:376–386.PubMedCrossRefGoogle Scholar
  31. Johnson, T. N., Rosvold, H. E., and Mishkin, M., 1968, Projections from behaviorally-defined sectors of the prefrontal cortex to the basal ganglia, septum and diencephalon of the monkey, Exp. Neurol. 12:20–34.CrossRefGoogle Scholar
  32. Jones, E. G., and Burton, H., 1976, Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates, J. Comp. Neurol. 168:197–248.PubMedCrossRefGoogle Scholar
  33. Jones, E. G., and Powell, T. P. S., 1970, An anatomical study of converging sensory pathways within the cerebral cortex of the monkey, Brain 93:793–820.PubMedCrossRefGoogle Scholar
  34. Jones, E. G., Coulter, J. D., and Hendry, S. H. C., 1978, Intracortical connectivity of architectonic fields in the somatic sensory motor and parietal cortex of monkeys, J. Comp. Neurol. 181:291–348.PubMedCrossRefGoogle Scholar
  35. Juliano, S. L., Hand, P. J., and Whitsel, B. L., 1983, Patterns of metabolic activity in cytoarchitectural area SII and surrounding cortical fields of the monkey, J. Neurophysiol. 50:961–980.PubMedGoogle Scholar
  36. Kaada, B. R., 1960, Cingulate, posterior orbital, anterior insular and temporal pole cortex, in: Neurophysiology (H. W. Magoun, ed.), Waverly Press, Baltimore, pp. 1345–1372.Google Scholar
  37. Kaada, B. R., Pribram, K. H., and Epstein, J. A., 1949, Respiratory and vascular responses in monkeys from temporal pole, insula, orbital surface and cingulate gyrus, J. Neurophysiol. 12:348–356.Google Scholar
  38. Kahneman, D. B., Tursky, B., Shapiro, D., and Crider, A., 1969, Pupillary, heart rate, and skin resistance changes during a mental task, J. Exp. Psychol. 79:164–167.PubMedCrossRefGoogle Scholar
  39. Kling, A., and Steklis, H. D., 1976, A neural substrate for affiliative behavior in nonhuman primates, Brain Behav. Evol. 13:216–238.PubMedCrossRefGoogle Scholar
  40. Krayniak, P. F., Weiner, S., and Siegel, A., 1980, An analysis of the efferent connections of the septal area in the cat, Brain Res. 189:15–29.PubMedCrossRefGoogle Scholar
  41. Lacey, J. I., 1967, Somatic response patterning and stress: Some revisions of activations theory, in: Psychological Stress (M. H. Appley and R. Trumbull, eds.), Appleton-Century-Crofts, New York, pp. 14–37.Google Scholar
  42. Lewis, M. E., Mishkin, M., Bragin, E., Brown, R. M., Pert, C. B., and Pert, A., 1981, Opiate receptor gradients in monkey cerebral cortex: Correspondence with sensory processing hierarchies, Science 211:1166–1169.PubMedCrossRefGoogle Scholar
  43. Lorente de Nó, R., 1949, Cerebral cortex: Architecture, intracortical connections, motor projections, in: Physiology of the Nervus System (J. F. Fulton, ed.), Oxford University Press, London, pp. 288–330.Google Scholar
  44. Lown, B., Temte, J. V., Reich, P., Gaughan, C., Regestein, Q., and Hai, H., 1976, Basis for recurring ventricular fibrillation in the absence of coronary heart disease and its management, N. Engl. J. Med. 294:628–629.CrossRefGoogle Scholar
  45. McGuiness, E., Sivertsen, D., and Allman, J. M., 1980, Organization of the face representation in macaque motor cortex, J. Comp. Neurol. 193:591–608.CrossRefGoogle Scholar
  46. MacLean, P. D., 1949, Psychosomatic disease and the “visceral brain”: Recent developments bearing on the Papez theory of emotion, Psychosom. Med. 11:338–353.PubMedGoogle Scholar
  47. Mesulam, M.-M., 1981a, A cortical network for directed attention and unilateral neglect, Ann. Neurol. 10:309–325.PubMedCrossRefGoogle Scholar
  48. Mesulam, M.-M., 1981b, Dissociative states with abnormal temporal lobe EEC, Arch. Neurol. 38:176–181.PubMedCrossRefGoogle Scholar
  49. Mesulam, M.-M., 1985, Patterns in behavioral neuroanatomy: Association areas, the limbic system and hemispheric specialization, in: Principles of Behavioral Neurology (M.-M. Mesulam, ed.), Davis, Philadelphia.Google Scholar
  50. Mesulam, M.-M., and Mufson, E.D., 1982a, Insula of the Old World monkey. I. Architectonics in the insulo-orbito-temporal component of the paralimbic brain, J. Comp. Neurol. 212:1–22.PubMedCrossRefGoogle Scholar
  51. Mesulam, M.-M., and Mufson, E. J., 1982b, Insula of the Old World monkey. Part III. Efferent cortical output, J. Comp. Neurol. 212:38–52.PubMedCrossRefGoogle Scholar
  52. Mesulam, M.-M., and Mufson, E. J., 1984, Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey, Brain 107:253–274.PubMedCrossRefGoogle Scholar
  53. Mesulam, M.-M., and Perry, J., 1972, The diagnosis of love sickness: Experimental psychophysiology without the polygraph, Psychophysiolgy 9:546–551.CrossRefGoogle Scholar
  54. Mesulam, M.-M., Van Hoesen, G. W., Pandya, D. N., and Geschwend, N., 1977, Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: A study with a new method for horseradish peroxidase histochemistry, Brain Res. 136:393–414.PubMedCrossRefGoogle Scholar
  55. Mesulam, M.-M., Mufson, E. J., Levey, A. I., and Wainer, B. H., 1983, Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata) and hypothalamus in the rhesus monkey, J. Comp. Neurol. 214:170–197.PubMedCrossRefGoogle Scholar
  56. Mesulam, M.-M., Rosen, A. D., and Mufson, E. J., 1984, Regional variations in cortical cholinergic innervation: Chemoarchitectonics of acetylcholinesterase-containing fibers in the macaque brain, Brain Res. 311:245–258.PubMedCrossRefGoogle Scholar
  57. Mesulam, M.-M., Volker, L., Marquis, J., Mufson, E. J., and Green, R., 1985, Regional variations in the cholinergic innervation of the primate cortical surface, Soc. Neurosci. Abstr. (in press).Google Scholar
  58. Mishkin, M., 1979, Analogous neural models for tactual and visual learning, Neuropsychologia 17:139–151.PubMedCrossRefGoogle Scholar
  59. Mora, F., Avrith, D. B., and Rolls, E. T., 1980, An electrophysiological and behavioral study of self-stimulation in the orbitofrontal cortex of the rhesus monkey, Brain Res. Bull. 2:111–115.CrossRefGoogle Scholar
  60. Morgane, P. J., Jacobs, M. S., and McFarland, W. L., 1980, The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus): Surface configurations of the telencephalon of the bottlenose dolphin with comparative anatomical observations in four other cetacean species, Brain Res. Bull. 5(Suppl. 5):1–107.CrossRefGoogle Scholar
  61. Mufson, E. J., and Mesulam, M.-M., 1982, Insula of the Old World monkey. Part II. Afferent cortical input, J. Comp. Neurol. 212:23–37.PubMedCrossRefGoogle Scholar
  62. Mufson, E. J., and Mesulam, M.-M., 1984, Thalamic connections of the insula in the rhesus monkey and comments on the paralimbic connectivity of the medial pulvinar nucleus, J. Comp. Neurol. 227:109–120.PubMedCrossRefGoogle Scholar
  63. Mufson, E. J., Mesulam, M.-M., and Pandya, D. N., 1981, Insular interconnections with the amygdala in the rhesus monkey, Neuroscience 6:1231–1248.PubMedCrossRefGoogle Scholar
  64. Mufson, E. J., Levey, A. I., Wainer, B. H., and Mesulam, M.-M., 1982, Cholinergic projections from the mesencephalic tegmentum to neocortex in rhesus monkey, Soc. Neurosci. Abstr. 8:202.Google Scholar
  65. Murray, E. A., Nakamura, R. K., and Mishkin, M., 1980, A possible cortical pathway for somatosensory processing in monkeys, Soc. Neurosci. Abstr. 6:654.Google Scholar
  66. Nauta, W. J. H., 1962, Neural associations of the amygdaloid complex in the monkey, Brain 85:505–520.PubMedCrossRefGoogle Scholar
  67. Pandya, D. N., and Seltzer, B., 1982, Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey, J. Comp. Neurol. 204:196–210.PubMedCrossRefGoogle Scholar
  68. Pandya, D. N., and Vignolo, L. A., 1971, Intra-and interhemispheric projections of the precentral, premotor and arcuate areas in the rhesus monkey, Brain Res. 26:217–233.PubMedGoogle Scholar
  69. Pandya, D. N., Dye, P., and Butters, N., 1971, Efferent cortico-cortical projections of the prefrontal cortex in the rhesus monkey, Brain Res. 31:31–46.CrossRefGoogle Scholar
  70. Penfield, W., and Faulk, M. E., 1955, The Insula: Further observations on its function, Brain 78:445–470.PubMedCrossRefGoogle Scholar
  71. Pribram, K. H., and MacLean, P. D., 1953, Neuronographic analysis of medial and basal cerebral cortex. II. Monkey, J. Neurophysiol. 16:324–340.PubMedGoogle Scholar
  72. Pribram, K. H., Lennox, M. A., and Dunsmore, R. H., 1950, Some connections of the orbito-frontotemporal, limbic and hippocampal areas of Macaca mulatta, J. Neurophysiol. 13:127–135.Google Scholar
  73. Raleigh, M. J., and Steklis, H. D., 1981, Effects of orbitofrontal and temporal neocortical lesions on the affiliative behavior of vervet monkeys (Cercopithecus aethiops sabaeus), Exp. Neurol. 73: 378–389.PubMedCrossRefGoogle Scholar
  74. Raleigh, M. J., Steklis, H. D., Ervin, F. R., Kling, A. S., and McGuire, M. T., 1979, The effects of orbitofrontal lesions on the aggressive behavior of vervet monkeys (Cercopithecus aethiops sabaeus), Exp. Neurol. 66:158–168.PubMedCrossRefGoogle Scholar
  75. Reil, J. C., 1809, Die sylvische Grube, Arch. Physiol. (Halle) 9:195–208.Google Scholar
  76. Roberts, T. S., and Akert, K., 1963, Insular and opercular cortex and its thalamic projection in Macaca mulatta, Schweiz. Arch. Neurol. Neurochir. Psychiat. 92:1–43.Google Scholar
  77. Robinson, C. L., and Burton, H., 1980, Somatic submodality distribution within the second somatosensory (SII), 7b, retroinsular, post-auditory and granular insular cortical areas of M. fascicularis, J. Comp. Neurol. 192:93–108.PubMedCrossRefGoogle Scholar
  78. Rose, J. E., and Woolsey, C. N., 1948, The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat, Res. Publ. Assoc. Res. Nerv. Ment. Dis. 27:210–233.PubMedGoogle Scholar
  79. Rose, M., 1928, Die Inselrinde des Menschen und der Tieren, J. Psychol. Neurol. 37:467–624.Google Scholar
  80. Sanides, F., 1968, The architecture of the cortical taste nerve areas in squirrel monkey (Saimiri sciureus) and their relationships to insular, sensorimotor and prefrontal regions, Brain Res. 8:97–124.PubMedCrossRefGoogle Scholar
  81. Sanides, F., 1970, Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution, in: The Primate Brain (C. R. Noback and W. Montagna, eds.), Appleton-Century-Crofts, New York, pp. 137–208.Google Scholar
  82. Sanides, F., 1972, Representation in the cerebral cortex and its areal lamination pattern, in: The Structure and Function of Nervous Tissue, Volume 5 (G. H. Bourne, ed.), Academic Press, New York.Google Scholar
  83. Saper, C. B., 1982, Convergence of autonomic and limbic connections in the insular cortex of the rat, J. Comp. Neurol. 210:163–173.PubMedCrossRefGoogle Scholar
  84. Schneider, R. J., Nelson, R. J., Friedman, I.D. P., O’Neill, J. B., and Mishkin, M., 1984, The granular insula in the rhesus monkey: Somatic sensory properties, Soc. Neurosci. Abstr. 10:496.Google Scholar
  85. Shipley, M. T., 1982, Insular cortex projection to the nucleus of the solitary tract and brainstem visceromotor regions in the mouse, Brain Res. Bull. 8:139–148.PubMedCrossRefGoogle Scholar
  86. Showers, M. J. C., 1958, Correlation of medial thalamic nuclear activity with cortical and subcortical neuronal arcs, J. Comp. Neurol. 109:261–315.PubMedCrossRefGoogle Scholar
  87. Showers, M. J. C., and Lauer, E. W., 1961, Somatovisceral motor patterns in the insula, J. Comp. Neurol. 117:107–116.PubMedCrossRefGoogle Scholar
  88. Spiers, P., Schomer, D., Blume, H., and Mesulam, M.-M., 1985, Temporolimbic epilepsy and behavior, in: Principles of Behavioral Neurology (M.-M. Mesulam, ed.), Davis, Philadelphia.Google Scholar
  89. Sudakov, K., MacLean, P. D., Reeves, A., and Marino, R., 1971, Unit study of exteroceptive inputs to claustrocortex in awake, sitting squirrel monkeys, Brain Res. 28:19–34.PubMedCrossRefGoogle Scholar
  90. Sugar, O., Chusid, J. G., and French, J. D., 1948, A second motor cortex in the monkey (Macaca mulatto), J. Neuropathol. Exp. Neurol. 7:182–189.PubMedCrossRefGoogle Scholar
  91. Tanabe, T., Iino, M., and Takagi, S. F., 1975a, Discrimination of odors in olfactory bulb, pyriform-amygdaloid areas, and orbitofrontal cortex of the monkey, J. Neurophysiol. 38:1284–1296.PubMedGoogle Scholar
  92. Tanabe, T., Yarita, H., Iino, M., Ooshima, Y., and Takagi, S. F., 1975b, An olfactory projection area in orbitofrontal cortex of the monkey, J. Neurophysiol. 38:1269–1283.PubMedGoogle Scholar
  93. Turner, B. H., Mishkin, M., and Knapp, M., 1980, Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey, J. Comp. Neurol. 191:515–543.PubMedCrossRefGoogle Scholar
  94. Van Hoesen, G. W., 1981, The differential distribution, diversity and sprouting of cortical projection to the amygdala in the rhesus monkey, in: The Amygdaloid Complex (Y. Ben-Ari, ed.), Elsevier, Amsterdam, pp. 77–90.Google Scholar
  95. Van Hoesen, G. W., and Pandya, D. N., 1975, Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents, Brain Res. 95:1–24.PubMedCrossRefGoogle Scholar
  96. Van Hoesen, G. W., Pandya, D. N., and Butters, N., 1975, Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents, Brain Res. 95:25–38.PubMedCrossRefGoogle Scholar
  97. von Bonin, G., and Bailey, P., 1974, The Neocortex of Macaca mulatta, University of Illinois Press, Urbana.Google Scholar
  98. Walker, A. E., 1940, A cytoarchitectural study of the prefrontal area of the macaque monkey, J. Comp. Neurol. 73:59–86.CrossRefGoogle Scholar
  99. Wall, P. D., and Davis, G. D., 1951, Three cerebral cortical systems affecting autonomic function, J. Neurophysiol. 14:508–517.Google Scholar
  100. Wirth, F. P., 1973, Insular-diencephalic connections in the macaque, J. Comp. Neurol. 150:361–392.PubMedCrossRefGoogle Scholar
  101. Woolsey, C. N., 1965, Organization of somatic sensory and motor areas of the cerebral cortex, in: Biological and Biochemical Bases of behavior (H. F. Harlow and C.N. Woolsey, eds.), University of Wisconsin Press, Madison, pp. 63–81.Google Scholar
  102. Yakovlev, P. I., 1959, Pathoarchitectonic studies of cerebral malformations. III. Arrhinencephalies (holotelencephalies), J. Neuropathol. Exp. Neurol. 18:22–55.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • M.-Marsel Mesulam
    • 1
    • 2
  • Elliott J. Mufson
    • 1
    • 2
  1. 1.Bullard and Denny-Brown Laboratories and Behavioral Neurology Section, Neurology DepartmentHarvard UniversityBostonUSA
  2. 2.Charles A. Dana Research InstituteBeth Israel HospitalBostonUSA

Personalised recommendations