Cingulate Cortex

  • Brent Alan Vogt
Part of the Cerebral Cortex book series (CECO, volume 4)


Each cortical region has unique functional properties which depend upon its cytological composition and connections. Cingulate cortex stands out as being of particular interest for a growing number of reasons. First, it has been implicated in emotion (Papez, 1937) and affective responses to pain (White and Sweet, 1969). It has also been linked directly to the pain/opiate system with receptor binding, enkephalin immunohistochemical, and connectional procedures. Second, laminar and cytological variations are present in cingulate cortex which cast light on general questions regarding the nature of cortical transition and structural equivalencies of cortical areas among different species. Third, thalamocortical connections have a unique pattern of termination and histochemistry. Fourth, cingulate cortex is a major component of the cholinergic system as early defined with an assay for acetylcholinesterase activity (Lewis and Shute, 1967) and more recently with receptor binding and choline acetyltransferase immunohistochemistry. Fifth, the medial location of cingulate cortex above the corpus callosum provides a unique opportunity for removing slices of cortex together with a single afferent for electrophysiological analyses of the properties of neurons and the synaptic activity of isolated excitatory inputs to cortical cells.


Anterior Cingulate Cortex Pyramidal Neuron Thalamic Nucleus Layer Versus Posterior Cingulate Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, W. C., Delanoy, R. L., Dunn, A. J., and Zornetzer, S. F., 1979, Locus coeruleus stimulation decreases deoxyglucose uptake in ipsilateral mouse cerebral cortex, Brain Res. 172:387–392.PubMedGoogle Scholar
  2. Aghajanian, G. K., and Vandermaelen, C. P., 1982, Intracellular identification of central noradrenergic and serotonergic neurons by a new double labeling procedure, J. Neurosci. 2:1786–1792.PubMedGoogle Scholar
  3. Aguilar, J. S., Jerusalinsky, D., Stocken, M., Medina, J. H., and DeRobertis, E., 1982, Localization of hippocampal muscarinic receptors after kainic acid lesion of CA3 and fimbria-fornix transection, Brain Res. 247:335–340.PubMedGoogle Scholar
  4. Amromin, G. D., Crue, B. L., Felsööry, A., and Todd, E. M., 1975, Bilateral stereotaxic cingulotomy following thoracic rhizotomy, cervical cordotomy and thalamotomy in a patient with intractable pain: A clinical-pathological study, in: Pain Research and Treatment (B. L. Crue, ed.), Academic Press, New York, pp. 227–241.Google Scholar
  5. Anand, B. K., and Dua, S., 1954, Circulatory and respiratory changes induced by electrical stimulation of limbic system (visceral brain), J. Neurophysiol. 19:393–400.Google Scholar
  6. Arimatsu, Y., Seto, A., and Amano, T., 1981, An atlas of α-bungarotoxin binding sites and structures containing acetylcholinesterase in the mouse central nervous system, J. Comp. Neurol. 198:603–631.PubMedGoogle Scholar
  7. Armstrong, D. M., Kress, Y., and Terry, R. D., 1983, Electron microscopic immunocytochemical characterization of cholinergic neurons in the rat brain, Soc. Neurosci. Abstr. 9:80.Google Scholar
  8. Baleydier, C., and Mauguiere, F., 1980, The duality of the cingulate gyrus in monkey: Neuroanatomical study and functional hypothesis, Brain 103:525–554.PubMedGoogle Scholar
  9. Bassett, J. L., and Berger, T. W., 1982, Associational connections between the anterior and posterior cingulate gyrus in rabbit, Brain Res. 248:371–376.PubMedGoogle Scholar
  10. Beckstead, R. M., 1976, Convergent thalamic and mesencephalic projections to the anterior medial cortex in the rat, J. Comp. Neurol. 166:403–416.PubMedGoogle Scholar
  11. Beckstead, R. M., 1979, An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal cortex) in the rat, J. Comp. Neurol. 184:43–62.PubMedGoogle Scholar
  12. Beinfeld, M. C., Meyer, D. K., Eskay, R. L., Jensen, R. T., and Brownstein, M. J., 1981, The distribution of cholecystokinin immunoreactivity in the central nervous system of the rat as determined by radioimmunoassay, Brain Res. 212:51–57.PubMedGoogle Scholar
  13. Benjamin, R. M., Jackson, J. C., and Gordon, G. T., 1978, Cortical projections of the thalamic mediodorsal nucleus in the rabbit, Brain Res. 141:251–265.PubMedGoogle Scholar
  14. Bennett-Clarke, C., Romagnano, M. A., and Joseph, S. A., 1980, Distribution of somatostatin in the rat brain: Telencephalon and diencephalon, Brain Res. 188:473–486.PubMedGoogle Scholar
  15. Berger, T. W., Milner, T. A., Swanson, G. W., Lynch, G. S., and Thompson, R. F., 1980, Reciprocal anatomical connections between anterior thalamus and cingulate-retrosplenial cortex in the rabbit, Brain Res. 201:411–417.PubMedGoogle Scholar
  16. Bigl, V., Woolf, N. J., and Butcher, L. L., 1982, Cholinergic projections from the basal forebrain to frontal, parietal, temporal occipital and cingulate cortices: A combined fluorescent tracer and acetylcholinesterase analysis, Brain Res. Bull. 8:727–749.PubMedGoogle Scholar
  17. Bobillier, P., Seguin, S., Degueurce, A., Lewis, B. D., and Phjol, J. F., 1979, The efferent connections of the nucleus raphé centralis superior in the rat revealed by radioautography, Brain Res. 166:1–8.PubMedGoogle Scholar
  18. Boivie, J., 1979, An anatomical reinvestigation of the termination of the spinothalamic tract in the monkey, J. Comp. Neurol. 186:343–370.PubMedGoogle Scholar
  19. Braak, H., 1979, Pigment architecture of the human telencephalic cortex. IV. Regio retrosplenialis, Cell Tissue Res. 204:431–440.PubMedGoogle Scholar
  20. Broca, P., 1878, Anatomie comparée circonvolutions cérébrales: Le grand lobe limbique et la scissure limbique dans la série des mammifères, Rev. Anthropol. Ser. 2 1:384–498.Google Scholar
  21. Brodmann, K., 1909, Vergleichende Lokalistionslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues, Barth, Leipzig.Google Scholar
  22. Buchanan, S. L., and Powell, D. A., 1982, Cingulate cortex: Its role in Pavlovian conditioning, J. Comp. Physiol. Psychol. 96:755–774.PubMedGoogle Scholar
  23. Bunney, B. S., and Aghajanian, G. K., 1976, Dopamine and norepinephrine innervated cells in the rat prefrontal cortex: Pharmacological differentiation using microiontophoretic techniques, Life Sci. 19:1783–1792.PubMedGoogle Scholar
  24. Casey, K. L., 1966, Unit analysis of nociceptive mechanisms in the thalamus of the awake squirrel monkey, J. Neurophysiol. 29:727–750.PubMedGoogle Scholar
  25. Caviness, V. S., 1975, Architectonic map of neocortex of the normal mouse, J. Comp. Neurol. 164:247–264.PubMedGoogle Scholar
  26. Cespuglio, R., Gomez, M. E., Faradji, H., and Jovet, M., 1982, Alterations in the sleep-waking cycle induced by cooling of the locus coeruleus area, Electroencephalogr. Clin. Neurophysiol. 54:570–578.PubMedGoogle Scholar
  27. Chow, K. L., Masland, R. H., and Stewart, D. L., 1971, Receptive field characteristics of striate cortical neurons in the rabbit, Brain Res. 33:337–352.PubMedGoogle Scholar
  28. Clark, W., and Boggon, R. H., 1933, On the connections of the anterior nucleus of the thalamus, J. Anat. 67:215–231.PubMedGoogle Scholar
  29. Clarke, P. B. S., Pert, C. B., and Pert, A., 1984, Autoradiographic distribution of nicotine receptors in rat brain, Brain Res. 323:390–395.PubMedGoogle Scholar
  30. Connors, B. W., Gutnick, M. J., and Prince, D. A., 1982, Electrophysiological properties of neocortical neurons in vitro, J. Neurophysiol. 48:1302–1320.PubMedGoogle Scholar
  31. Conrad, C. D., and Stumpf, W. E., 1975, Direct visual input to the limbic system: Crossed retinal projections to the nucleus anterodorsalis thalami in the tree shrew, Exp. Brain Res. 23:141–149.PubMedGoogle Scholar
  32. Cowan, W. M., and Powell, T. P. S., 1954, An experimental study of the relation between the medial mammillary nucleus and the cingulate cortex, Proc. R. Soc. London Ser. B 143:114–125.Google Scholar
  33. Cruce, J. A. F., 1975, An autoradiographic study of the projections of the mammillothalamic tract in the rat, Brain Res. 85:211–219.PubMedGoogle Scholar
  34. Cuénod, M., Casey, K. L., and MacLean, P. D., 1965, Unit analysis of visual input to posterior limbic cortex. I. Photic stimulation, J. Neurophysiol. 28:1101–1117.PubMedGoogle Scholar
  35. Dam, M., Wamsley, J. K., Rapoport, S. I., and London, E. D., 1982, Effects of oxotremorine on local glucose utilization in the rat cerebral cortex, J. Neurosci. 2:1072–1078.PubMedGoogle Scholar
  36. Dekker, J. J., and Kuypers, H. G. J. M., 1976a, Morphology of rat’s AV thalamic nucleus in light and electron microscopy, Brain Res. 117:387–398.PubMedGoogle Scholar
  37. Dekker, J. J., and Kuypers, H. G. J. M., 1976b, Quantitative EM study of projection terminals in the rat’s AV thalamic nucleus: Autoradiographic and degeneration techniques compared, Brain Res. 117:399–422.PubMedGoogle Scholar
  38. Diao, Y.-C., Wang, Y.-K., and Pu, M.-L., 1983, Binocular responses of cortical cells and the callosal projection in the albino rat, Exp. Brain Res. 49:410–418.PubMedGoogle Scholar
  39. Domesick, V. B., 1969, Projections from the cingulate cortex in the rat, Brain Res. 12:296–320.PubMedGoogle Scholar
  40. Domesick, V. B., 1972, Thalamic relationships of the medial cortex in the rat, Brain Behav. Evol. 6:457–483.PubMedGoogle Scholar
  41. Dong, W. K., Ryu, H., and Wagman, I. H., 1978, Nociceptive responses of neurons in medial thalamus and their relationship to spinothalamic pathways, J. Neurophysiol. 41:1592–1613.PubMedGoogle Scholar
  42. Donoghue, J. P., and Wise, S. P., 1982, The motor cortex of the rat: Cytoarchitecture and micro-stimulation mapping, J. Comp. Neurol. 212:76–88.PubMedGoogle Scholar
  43. Donovan, M. K., and Wyss, J. M., 1983, Evidence for some collateralization between cortical and diencephalic efferent axons of the rat subicular cortex, Brain Res. 259:181–192.PubMedGoogle Scholar
  44. Eckenstein, F., and Thoenen, H., 1983, Cholinergic neurons in the rat cerebral cortex demonstrated by immunohistochemical localization of choline acetyltransferase, Neurosci. Lett. 36:211–215.PubMedGoogle Scholar
  45. Espinoza, S. G., and Thomas, H. C., 1983, Retinotopic organization of striate and extrastriate visual cortex in the hooded rat, Brain Res. 272:137–144.PubMedGoogle Scholar
  46. Fibiger, H. C., 1982, The organization and some projections of cholinergic neurons of the mammalian forebrain, Brain Res. Rev. 4:327–388.Google Scholar
  47. Finch, D. M., Derian, E. L., and Babb, T. L., 1984a, Excitatory projection of the rat subicular complex to the cingulate cortex and synaptic integration with thalamic afferents, Brain Res. 301:25–37.PubMedGoogle Scholar
  48. Finch, D. M., Derian, E. L., and Babb, T. L., 1984b, Afferent fibers to rat cingulate cortex, Exp. Neurol. 83:468–485.PubMedGoogle Scholar
  49. Flynn, J. H., Vanegas, H., Foote, W., and Edwards, S., 1970, Neural mechanisms involved in a cat’s attack on a rat, in: The Neural Control of behavior (R. E. Whalen, R. F. Thompson, M. Verzeano, and N.M. Weinberger, eds.), Academic Press, New York.Google Scholar
  50. Foltz, E. L., and White, L. E., 1962, Pain “relief” by frontal cingulumotomy, J. Neurosurg. 19:89–100.PubMedGoogle Scholar
  51. Foster, K., Orona, E., Lambert, R. W., and Gabriel, M., 1980, Early and late acquisition of discriminative neuronal activity during differential conditioning in rabbits: Specificity within the laminae of cingulate cortex and the anteroventral thalamus, J. Comp. Physiol. Psychol. 94:1069–1086.PubMedGoogle Scholar
  52. Gabriel, M., Foster, K., and Orona, E., 1980a, Interaction of laminae of the cingulate cortex with the anteroventral thalamus during behavioral learning, Science 203:1050–1052.Google Scholar
  53. Gabriel, M., Foster, K., Orona, E., Stalwick, S. E., and Stanton, M., 1980b, Neuronal activity of cingulate cortex, anteroventral thalamus, and hippocampal formation in discriminative conditioning: Encoding and extraction of the significance of conditioned stimuli, in: Progress in Psychobiology and Physiological Psychology, Volume 9 (J. M. Sprague and A. N. Epstein, eds.), Academic Press, New York, pp. 125–231.Google Scholar
  54. Gabriel, M., Orona, E., Foster, K., and Lambert, R. W., 1982, Mechanism and generality of stimulus significance coding in a mammalian model system, Adv. Behav. Biol. 26:535–567.Google Scholar
  55. Gabriel, M., Lambert, R. W., Foster, K., Orona, E., Sparenborg, S., and Majorca, R. R., 1983, Anterior thalamic lesions and neuronal activity in the cingulate and retrosplenial cortices during discriminative avoidance behavior in rabbits, Behav. Neurosci. 97:675–696.PubMedGoogle Scholar
  56. Galiburda, A. M., and Pandya, D. N., 1983, The intrinsic architectonic and connectional organization of superior temporal regions of the rhesus monkey, J. Comp. Neurol. 221:169–184.Google Scholar
  57. Giesler, G. J., and Liebeskind, J. C., 1976, Inhibition of visceral pain by electrical stimulation of the periaqueductal gray matter, Pain 2:43–48.PubMedGoogle Scholar
  58. Giolli, R. A., Towns, L. C., Takahashi, T. T., Karamanlidis, A. N., and Williams, D. D., 1978, An autoradiographic study of the projections of visual cortical area 1 of the thalamus, pretectum and superior colliculus of the rabbit, J. Comp. Neurol. 180:743–752.PubMedGoogle Scholar
  59. Globus, A., and Scheibel, A. B., 1967, Pattern and field in cortical structure: The rabbit, J. Comp. Neurol. 131:155–172.PubMedGoogle Scholar
  60. Goldman-Rakic, P. S., Selemon, L. D., and Schwartz, M. L., 1984, Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey, Neuroscience 12:719–743.PubMedGoogle Scholar
  61. Hall, R. D., and Lindholm, E. P., 1974, Organization of motor and somatosensory neocortex in the albino rat, Brain Res. 66:23–38.Google Scholar
  62. Hammer, R., Berrie, C. P., Birdsall, N.J. M., Burgen, A. S. V., and Hulme, E. C., 1980, Pirenzepine distinguishes between different subclasses of muscarinic receptors, Nature 283:90–92.PubMedGoogle Scholar
  63. Hara, Y., Shiosaka, S., Senba, E., Sakanaka, M., Inagaki, S., Taagi, H., Kawai, Y., Takatsuki, K., Matsuzaki, T., and Tohyama, M., 1982, Ontogeny of the neurotensin-containing neuron system of the rat: Immunohistochemical analysis. I. Forebrain and diencephalon, J. Comp. Neurol. 208:177–195.PubMedGoogle Scholar
  64. Hardy, S. G. P., and Leichnetz, G. R., 1981, Frontal cortical projections to the periaqueductal gray in the rat: A retrograde and orthograde horseradish peroxidase study, Neurosci. Lett. 23:13–17.PubMedGoogle Scholar
  65. Hattori, T., and Fibiger, H. C., 1982, On the use of lesions of afferents to localize neurotransmitter receptor sites in the striatum, Brain Res. 238:245–250.PubMedGoogle Scholar
  66. Herkenham, M., 1978, The connections of the nucleus reuniens thalami: Evidence for a direct thalamo-hippocampal pathway in the rat, J. Comp. Neurol. 177:589–610.PubMedGoogle Scholar
  67. Herrmann, C., and Schulz, E., 1978, Quantitative Untersuchungen an Sternzellen in Bereich der cingulären Rinde der Ratte, J. Hirnforsch. 19:519–531.PubMedGoogle Scholar
  68. Hiley, C. R., and Burgen, A. S. V., 1974, The distribution of muscarinic receptor sites in the nervous system of the dog, J. Neurochem. 22:159–162.PubMedGoogle Scholar
  69. Hiller, J. M., Pearson, J., and Simon, E. J., 1973, Distribution of stereospecific binding of the potent narcotic analgesic etorphine in the human brain: Predominance in the limbic system, Res. Commun. Chem. Pathol. Pharmacol. 6:1052–1062.PubMedGoogle Scholar
  70. Hoover, D. B., and Baisden, R. H., 1980, Localization of putative cholinergic neurons innervating the anteroventral thalamus, Brain Res. Bull. 5:519–524.PubMedGoogle Scholar
  71. Hoover, D. B., Muth, E. A., and Jacobowitz, D. M., 1978, A mapping of the distribution of acetylcholine, choline acetyltransferase and acetylcholinesterase in discrete areas of rat brain, Brain Res. 153:295–306.PubMedGoogle Scholar
  72. Houser, C. R., Crawford, G. D., Salvaterra, P. M., and Vaughn, J. E., 1983, Cholinergic neurons in rat cerebral cortex indentified by immunocytochemical localization of choline acetyltransferase, Soc. Neurosci. Abstr. 9:80.Google Scholar
  73. Hunt, S., and Schmidt, J., 1978, Some observations on the binding patterns of α-bungarotoxin in the central nervous system of the rat, Brain Res. 157:213–232.PubMedGoogle Scholar
  74. Innis, R. B., Corrêa, F. M. A., Uhl, G. R., Schneider, B., and Snyder, S. H., 1979, Cholecystokinin octapeptide-like immunoreactivity: Histochemical localization in rat brain, Proc. Natl. Acad. Sci. USA 76:521–525.PubMedGoogle Scholar
  75. Itaya, S. K., Van Hoesen, G. W., and Jenq, C.-B., 1981, Direct retinal input to the limbic system of the rat, Brain Res. 226:33–42.PubMedGoogle Scholar
  76. Iwahori, N., and Mizuno, N., 1981a, A Golgi study on the neuronal organization of the interhemispheric cortex in the mouse. I. Projection neurons, Anat. Embryol. 161:465–481.PubMedGoogle Scholar
  77. Iwahori, N., and Mizuno, N., 1981b, A Golgi study on the neuronal organization of the interhemispheric cortex in the mouse. II. Intrinsic neurons, Anat. Embryol. 161:483–498.PubMedGoogle Scholar
  78. Jacobowitz, D. M., and Goldberg, A. M., 1977, Determination of acetylcholine in discrete regions of the rat brain, Brain Res. 122:575–577.PubMedGoogle Scholar
  79. Jacobson, S., 1970, Distribution of commissural axon terminals in the rat neocortex, Exp. Neurol. 28:193–205.PubMedGoogle Scholar
  80. Johnston, M. V., McKinney, M., and Coyle, J. T., 1981, Neocortical cholinergic innervation: A description of extrinsic and intrinsic components in the rat, Exp. Brain Res. 43:159–172.PubMedGoogle Scholar
  81. Jones, B. E., and Moore, R. Y., 1977, Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study, Brain Res. 127:23–53.Google Scholar
  82. Jones, E. G., and Leavitt, R. Y., 1974, Retrograde axonal transport and the demonstration of nonspecific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey, J. Comp. Neurol. 154:349–378.PubMedGoogle Scholar
  83. Jürgens, U., and Pratt, R., 1979, Role of the periaqueductal gray in vocal expression of emotion, Brain Res. 167:367–378.PubMedGoogle Scholar
  84. Kaada, B. R., 1951, Somato-motor, autonomic and electrocorticographic responses to electrical stimulation of ‘rhinencephalic’ and other structures in primates, cat and dog, Acta Physiol. Scand. 24 (Suppl. 83): 1–285.Google Scholar
  85. Kaelber, W. W., Mitchell, C. L., Yarmat, A. J., Afifi, A. K., and Lorens, S. A., 1975, Centrum medianum-parafascicularis lesions and reactivity to noxious and non-noxious stimuli, Exp. Neurol. 46:282–290.PubMedGoogle Scholar
  86. Kaitz, S. S., and Robertson, R. T., 1981, Thalamic connections with limbic cortex. II. Corticothalamic projections, J. Comp. Neurol. 195:527–545.PubMedGoogle Scholar
  87. Kamiya, H., Rotter, A., and Jacobowitz, D. M., 1981, Muscarinic receptor binding following cholinergic nerve lesions of the cingulate cortex and hippocampus of the rat, Brain Res. 209:432–439.PubMedGoogle Scholar
  88. Kandel, E. R., and Spencer, W. A., 1961, Electrophysiology of hippocampal neurons. II. Afterpotentials and repetitive firing, J. Neurophysiol. 24:243–259.PubMedGoogle Scholar
  89. Kappers, C. U. A., Huber, G. C., and Crosby, E. C., 1967, The Comparative Anatomy of the Nervous System of Vertebrates Including Man, Volume 3, Hafner, New York.Google Scholar
  90. Keefer, D. A., Chung, J.-W., and Heimer, L., 1980, Morphology and ultrastructure of anterior thalamic neurons solidly labeled with horseradish peroxidase, Brain Res. 191:301–311.PubMedGoogle Scholar
  91. Kemper, T. L., Caviness, W. F., and Yakovlev, P. I., 1973, The neuronographic and metric study of the dendritic arbours of neurons in the motor cortex of Macaca mulatta at birth and at 24 months of age, Brain 96:765–782.PubMedGoogle Scholar
  92. Kerr, F. W. L., 1975, The ventral spinothalamic tract and other ascending systems of the ventral funiculus of the spinal cord, J. Comp. Neurol. 159:335–356.PubMedGoogle Scholar
  93. Khachaturian, H., Lewis, M. E., Hollt, V., and Watson, S. J., 1983, Telencephalic enkephalinergic systems in the rat, J. Neurosci. 3:844–855.PubMedGoogle Scholar
  94. Kimura, H., McGeer, P. L., Peng, J. H., and McGeer, E. G., 1981, The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat, J. Comp. Neurol. 200:151–201.PubMedGoogle Scholar
  95. Kobayashi, R. M., Palkovits, M., Hruska, R. E., Rothschild, R., and Yamamura, H. I., 1978, Regional distribution of muscarinic cholinergic receptors in rat brain, Brain Res. 154:13–23.PubMedGoogle Scholar
  96. Köhler, C., and Schwarcz, R., 1983, Comparison of ibotenate and kainate neurotoxicity in rat brain: A histological study, Neuroscience 8:819–835.PubMedGoogle Scholar
  97. Köhler, C., Schwarcz, R., and Fuxe, H., 1979, Intrahippocampal injections of ibotenic acid provide histological evidence for a neurotoxic mechnaims different from kainic acid, Neurosci. Lett. 15:223–228.PubMedGoogle Scholar
  98. Kremer, W. F., 1947, Autonomic and somatic reactions induced by stimulation of the cingular gyrus in dogs, J. Neurophysiol. 10:371–379.PubMedGoogle Scholar
  99. Krieg, W. J. S., 1946, Connections of the cerebral cortex. I. The albino rat. B. Structure of the cortical areas, J. Comp. Neurol. 84:277–323.PubMedGoogle Scholar
  100. Kruger, L., and Albe-Fessard, D., 1960, Distribution of responses to somatic afferent stimuli in the diencephalon of the cat under choralose anesthesia, Exp. Neurol. 2:442–467.PubMedGoogle Scholar
  101. Kuhar, M. J., and Yamamura, H. I., 1976, Localization of cholinergic muscarinic receptors in rat brain by light microscopic radioautography, Brain Res. 110:229–243.PubMedGoogle Scholar
  102. Kuhar, M. J., Pert, C. B., and Snyder, S. H., 1973, Regional distribution of opiate receptor binding in monkey and human brain, Nature 245:447–450.PubMedGoogle Scholar
  103. Künzle, H., 1978, An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (area 6 and 9) in Macaca fascicularis, Brain Behav. Evol. 15:185–234.PubMedGoogle Scholar
  104. Kusicka, C., and Schulz, E., 1981, Quantitative Untersuchungen von Sternzelltypen der Regio cingularis mesoneocorticalis in Vergleich, zu den Nachbarregionen (Meso-archicortex und Neocortex) und nach Afferenzaus schaltung bei der Ratte, J. Hirnforsch. 22:591–619.PubMedGoogle Scholar
  105. Lang, W., and Henke, H., 1983, Cholinergic receptor binding and autoradiography in brains of non-neurological and senile dementia of Alzheimer-type patients, Brain Res. 267:271–280.PubMedGoogle Scholar
  106. Lent, R., 1982, The organization of subcortical projections of the hamster’s visual cortex, J. Comp. Neurol. 206:227–242.PubMedGoogle Scholar
  107. Lewis, M. E., Pert, A., Pert, C. B., and Herkenham, M., 1983, Opiate receptor localization in rat cerebral cortex, J. Comp. Neurol. 216:339–358.PubMedGoogle Scholar
  108. Lewis, M. S., Molliver, M. E., Morrison, J. H., and Lidov, H. G. W., 1979, Complementarity of dopaminergic and noradrenergic innervation in anterior cingulate cortex of the rat, Brain Res. 164:328–333.PubMedGoogle Scholar
  109. Lewis, P. R., and Shute, C. C. D., 1967, The cholinergic limbic system: Projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest, Brain 90:521–542.PubMedGoogle Scholar
  110. Lidov, H. G. W., Grzanna, R., and Molliver, M. E., 1980, The serotonin innervation of the cerebral cortex in the rat—An immunohistochemical analysis, Neuroscience 5:207–227.PubMedGoogle Scholar
  111. Lindvall, O., Björklund, A., Moore, R. Y., and Stenevi, U., 1974, Mesencephalic dopamine neurons projecting to neocortex, Brain Res. 81:325–331.PubMedGoogle Scholar
  112. Locke, S., Angevine, J. B., and Yakovlev, P. I., 1964, Limbic nuclei of thalamus and connections of limbic cortex. VI. Thalamocortical projection of lateral dorsal nucleus in cat and monkey, Arch. Neurol. 11:1–12.PubMedGoogle Scholar
  113. Lorén, I., Emson, P. C., Fahrenkrug, J., Björklund, A., Alumets, J., Håkanson, R., and Sundler, F., 1979, Distribution of vasoactive intestinal polypeptide in the rat and mouse brain, Neuroscience 4:1953–1976.PubMedGoogle Scholar
  114. Lorente de Nö, R., 1933, Studies on the structure of the cerebral cortex. I. The area entorhinalis, J. Psychol. Neurol. 45:381–438.Google Scholar
  115. Lorente de Nö, R., 1938, Cerebral cortex: Architecture, intracortical connections, motor projections, in: Physiology of the Nervous System (J. F. Fulton, ed.), Oxford University Press, London, pp. 291–325.Google Scholar
  116. Lubar, J. F., 1964, Effect of medial cortical lesions on the avoidance behavior of the cat, J. Comp. Physiol. Psychol. 58:38–46.PubMedGoogle Scholar
  117. Lubar, J. F., and Perachio, A. A., 1965, One-way and two-way learning and transfer of an active avoidance response in normal and cingulectomized cats, J. Comp. Physiol. Psychol. 60:46–52.PubMedGoogle Scholar
  118. Luthin, G. R., and Wolfe, B. B., 1984, Comparison of 3H-pirenzepine and 3H-quinuclidinylbenzilate binding to muscarinic cholinergic receptors in rat brain, J Pharmacol. Exp. Ther. 228:648–655.PubMedGoogle Scholar
  119. Lux, H. D., and Pollen, D. A., 1966, Electrical constants of neurons in the motor cortex of the cat, J. Neurophysiol. 29:207–220.PubMedGoogle Scholar
  120. Macchi, G., Bentivoglio, M., D’Atena, C., Rossini, P., and Tempesta, E., 1977, The cortical projections of the thalamic intralaminar nuclei restudied by means of the HRP retrograde axonal transport, Neurosa. Lett. 4:121–126.Google Scholar
  121. McKinney, M., and Coyle, J. T., 1982, Regulation of neocortical muscarinic receptors: Effects of drug treatment and lesions, J. Neurosci. 2:97–105.PubMedGoogle Scholar
  122. Mangini, N. J., and Pearlman, A. L., 1980, Laminar distribution of receptive field properties in the primary visual cortex of the mouse, J. Comp. Neurol. 193:203–222.PubMedGoogle Scholar
  123. Mantyh, P. W., 1982, Forebrain projections to the periaqueductal gray in the monkey, with observations in the cat and rat, J. Comp. Neurol. 206:146–158.PubMedGoogle Scholar
  124. Marin-Padilla, M., 1967, Number and distribution of the apical dendritic spines of the layer V pyramidal cells in man, J. Comp. Neurol. 131:475–490.PubMedGoogle Scholar
  125. Marin-Padilla, M., and Stibitz, G. R., 1968, Distribution of the apical dendritic spines of the layer V pyramidal cells of the hamster neocortex, Brain Res. 11:580–592.PubMedGoogle Scholar
  126. Mark, V. H., Ervin, F. R., and Yakovlev, P. I., 1963, Stereotactic thalamotomy. III. The verification of anatomical lesion sites in the human thalamus, Arch. Neurol. 8:528–538.Google Scholar
  127. Mash, D. C., Flynn, D. D., and Potter, L. T., 1985, Loss of M2 muscarinic receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation, Science 228:1115–1117.PubMedGoogle Scholar
  128. Massari, V.J., Gottesfeld, Z., and Jacobowitz, D. M., 1976, Distribution of glutamic acid decarboxylase in certain rhombencephalic and thalamic nuclei of the rat, Brain Res. 118:147–151.PubMedGoogle Scholar
  129. Mayer, D. J., and Liebeskind, J. C., 1974, Pain reduction by focal electrical stimulation of the brain: An anatomical and behavioral analysis, Brain Res. 68:73–93.PubMedGoogle Scholar
  130. Mehler, W. R., Feferman, M. E., and Nauta, W. J. H., 1960, Ascending axon degeneration following anterolateral cordotomy: An experimental study in the monkey, Brain 83:718–752.PubMedGoogle Scholar
  131. Meibach, R. C., and Siegel, A., 1977, Subicular projections to the posterior cingulate cortex in rats, Exp. Neurol. 57:264–274.PubMedGoogle Scholar
  132. Messing, R. B., and Lytle, L. D., 1977, Serotonin-containing neurons: Their possible role in pain and analgesia, Pain 4:1–21.PubMedGoogle Scholar
  133. Miller, M. W., and Vogt, B. A., 1984a, Direct connections of rat visual cortex with sensory, motor, and association cortices, J. Comp. Neurol. 226:184–202.PubMedGoogle Scholar
  134. Miller, M. W., and Vogt, B. A., 1984b, Heterotopic and homotopic callosal connections in rat visual cortex, Brain Res. 297:75–89.PubMedGoogle Scholar
  135. Montero, V. M., 1981, Comparative studies on the visual cortex, in: Cortical Sensory Organization, Volume 2 (C. N. Woolsey, ed.), Humana Press, Clifton, N. J.Google Scholar
  136. Montero, V. M., Rojas, A., and Torrealba, F., 1973, Retinotopic organization of striate and peristriate visual cortex in the albino rat, Brain Res. 53:197–201.PubMedGoogle Scholar
  137. Morley, B. J., and Kemp, G. E., 1981, Characterization of a putative nicotinic acetylcholine receptor in mammalian brain, Brain Res. Rev. 3:81–104.Google Scholar
  138. Moroni, F., Bianchi, C., Monet, G., Tanganelli, S., Spidalieri, G., Guandalini, P., and Beani, L., 1982, Release of GABA from the guniea pig neocortex induced by electrical stimulation of the locus coeruleus or by norepinephrine, Brain Res. 232:216–221.PubMedGoogle Scholar
  139. Morrell, J. I., Greenberger, L. M., and Pfaff, D. W., 1981, Hypothalamic, other diencephalic, and telencephalic neurons that project to the dorsal midbrain, J. Comp. Neurol. 201:589–620.PubMedGoogle Scholar
  140. Morrison, J. H., Grzanna, R., Molliver, M. E., and Coyle, J. T., 1978, The distribution and orientation of noradrenergic fibers in neocortex of the rat: An immunofluorescence study, J. Comp. Neurol. 181:17–40.PubMedGoogle Scholar
  141. Müller-Preuss, P., and Jürgens, U., 1976, Projections from the “angular” vocalization area in the squirrel monkey, Brain Res. 103:29–43.PubMedGoogle Scholar
  142. Murphy, E. H., and Berman, N., 1979, The rabbit and the cat: A comparison of some features of response properties of single cells in the primary visual cortex, J. Comp. Neurol. 188:401–428.PubMedGoogle Scholar
  143. Nagai, T., McGeer, P. L., and McGeer, E. G., 1983, Distribution of GABA-T-intensive neurons in the rat forebrain and midbrain, J. Comp. Neurol 218:220–238.PubMedGoogle Scholar
  144. Nakamura, S., 1977, Some electrophysiological properties of neurons of rat locus coeruleus, J. Physiol. (London) 267:641–658.Google Scholar
  145. Ogawa, T., Ito, S., and Kato, H., 1981, Membrane characteristics of visual cortical neurons in in vitro slices, Brain Res. 226:315–319.PubMedGoogle Scholar
  146. Olpe, H.-R., 1981, The cortical projection of the dorsal raphe nucleus: Some electrophysiological and pharmacological properties, Brain Res. 216:61–71.PubMedGoogle Scholar
  147. Olpe, H.-R., Glatt, A., Laszlo, J., and Schellenberg, A., 1980, Some electrophysiological and pharmacological properties of the cortical, noradrenergic projection of the locus coeruleus in the rat, Brain Res. 186:9–19.PubMedGoogle Scholar
  148. Olszewski, J., 1952, The Thalamus of Macaca mulatta, Karger, Basel.Google Scholar
  149. Palacios, J. M., Wamsley, J. K., and Kuhar, M. J., 1981, High affinity GABA receptors—Autoradiographic localization, Brain Res. 222:285–307.PubMedGoogle Scholar
  150. Pandya, D. N., Dye, P., and Butters, N., 1971, Efferent cortico-cortical projections of the prefrontal cortex in the rhesus monkey, Brain Res. 31:35–46.PubMedGoogle Scholar
  151. Pandya, D. N., Van Hoesen, G. W., and Mesulam, M.-M., 1981, Efferent connections of the cingulate gyrus in the rhesus monkey, Exp. Brain Res. 42:319–330.PubMedGoogle Scholar
  152. Papez, J. W., 1937, A proposed mechanism of emotion, Arch. Neurol. Psychiatry 38:725–744.Google Scholar
  153. Parent, A., and Butcher, L. L., 1976, Organization and morphologies of acetylcholinesterase-containing neurons in the thalamus and hypothalamus of the rat, J. Comp. Neurol. 170:205–226.PubMedGoogle Scholar
  154. Parnavelas, J. G., Globus, A., and Kaups, P., 1973, Continuous illumination from birth affects spine density of neurons in the visual cortex of the rat, Exp. Neurol. 40:742–747.PubMedGoogle Scholar
  155. Parnavelas, J. G., Burne, R. A., and Lin, C.-S., 1983, Distribution and morphology of functionally identified neurons in the visual cortex of the rat, Brain Res. 261:21–29.PubMedGoogle Scholar
  156. Penny, G. R., Fitzpatrick, D., Schmechel, D. E., and Diamond, I. T., 1983, Glutamic acid decarboxylase-immunoreactive neurons and horseradish peroxidase-labeled projection neurons in the ventral posterior nucleus of the cat and Galago senegalensis, J. Neurosci. 3:1868–1887.PubMedGoogle Scholar
  157. Peretz, E., 1960, The effects of lesions of the anterior cingulate cortex on the behavior of the rat, J. Comp. Physiol. Psychol. 53:540–548.PubMedGoogle Scholar
  158. Perl, E. R., and Whitlock, D. G., 1961, Somatic stimuli exciting spinothalamic projections to thalamic neurons in cat and monkey, Exp. Neurol. 3:256–296.PubMedGoogle Scholar
  159. Pert, A., and Yaksh, T., 1974, Sites of morphine induced analgesia in the primate brain: Relation to pain pathways, Brain Res. 80:135–140.PubMedGoogle Scholar
  160. Peters, A., and Proskauer, C. C., 1980, Synaptic relationships between a multipolar stellate cell and a pyramidal neuron in the rat visual cortex: A combined Golgi-electron microscopic study, J. Neurocytol. 9:163–183.PubMedGoogle Scholar
  161. Peters, A., Proskauer, C. C., and Ribak, C. E., 1982, Chandelier cells in rat visual cortex, J. Comp. Neurol. 206:397–416.PubMedGoogle Scholar
  162. Peters, A., Miller, M., and Kimerer, L. M., 1983, Cholecystokinin-like immunoreactive neurons in rat cerebral cortex, Neuroscience 8:431–448.PubMedGoogle Scholar
  163. Petras, J. M., 1971, Connections of the parietal lobe, J. Psychiat. Res. 8:189–201.PubMedGoogle Scholar
  164. Pool, J. L., and Ransohoff, J., 1949, Autonomic effects on stimulating rostral portions of cingulate gyri in man, J. Neurophysiol. 12:385–392.PubMedGoogle Scholar
  165. Porrino, L. J., and Goldman-Rakic, P. S., 1982, Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP, J. Comp. Neurol. 205:63–76.PubMedGoogle Scholar
  166. Powell, E. W., 1978, The cingulate bridge between allocortex, isocortex, and thalamus, Anat. Rec. 190:783–794.PubMedGoogle Scholar
  167. Price, D. D., and Dubner, R., 1977, Neurons that subserve the sensory-discriminative aspects of pain, Pain 3:307–338.PubMedGoogle Scholar
  168. Raiteri, M., Leardi, R., and Marchi, M., 1984, Heterogeneity of presynaptic muscarinic receptors regulating neurotransmitter release in the rat brain, J. Pharmacol. Exp. Ther. 228:209–214.PubMedGoogle Scholar
  169. Ramón y Cajal, S., 1911, Histologie du Système Nerveux de l’Homme et des Vertébrés, Volume II, Maloine, Paris.Google Scholar
  170. Ramón y Cajal, S., 1922, Estrudios sobre la Fina Estructura de la Corteza Regional de los Roedores. 1. Corteza suboccipital (Retrosplenial de Brodmann), Trab. Lab. Biol. Univ. Madrid 20:1–30.Google Scholar
  171. Ribak, C. E., and Peters, A., 1975, An autoradiographic study of the projections from the lateral geniculate body of the rat, Brain Res. 92:349–368.Google Scholar
  172. Richardson, D. E., and Akil, H., 1977, Pain reduction by electrical brain stimulation in man, J. Neurosurg. 47:184–194.PubMedGoogle Scholar
  173. Roberts, G. W., Woodhams, P. L., Polak, J. M., and Crow, T. J., 1984, Distribution of neuropeptides in the limbic system of the rat: The hippocampus, Neuroscience 11:35–77.PubMedGoogle Scholar
  174. Robertson, R. T., and Kaitz, S. S., 1981, Thalamic connections with limbic cortex. I. Thalamocortical projections, J. Comp. Neurol. 195:501–525.PubMedGoogle Scholar
  175. Robertson, R. T., Kaitz, S. S., and Robards, M. J., 1980, A subcortical pathway links sensory and limbic systems of the forebrain, Neurosci. Lett. 17:161–165.PubMedGoogle Scholar
  176. Robertson, R. T., Thompson, S. M., and Kaitz, S. S., 1983, Projections from the pretectal complex to the thalamic lateral dorsal nucleus of the cat, Exp. Brain Res. 51:157–171.PubMedGoogle Scholar
  177. Robinson, B. W., 1967, Vocalization evoked from forebrain in Macaca mulatta, Physiol. Behav. 2:345–354.Google Scholar
  178. Rose, J. E., and Woolsey, C. N., 1948, Structure and relations of limbic cortex and anterior thalamic nuclei in rabbit and cat, J. Comp. Neurol. 89:279–340.PubMedGoogle Scholar
  179. Rose, M., 1912, Histologische Lokalisation der Grosshirnrinde bei kleinen Saugetieren (Rodentia, Insectivora, Chiroptera), J. Psychol. Neurol. 19:125–207.Google Scholar
  180. Rose, M., 1927, Gyrus limbicus anterior und Regio retrosplenialis (Cortex holoprotoptychos quinquestratificatus) Vergleichende Architektonik bei Tier und mensch, J. Psychol. Neurol. 43:65–173.Google Scholar
  181. Rose, M., 1931, Cytoarchitektonischer Atlas der Grosshirnrinde des Kaninchens, J. Psychol. Neurol. 43:353–440.Google Scholar
  182. Rosene, D. L., and Van Hoesen, G. W., 1977, Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey, Science 198:315–317.PubMedGoogle Scholar
  183. Rosenfeld, J. P., and Holzman, B. S., 1978, Effects of morphine on medial thalamic and medial bulboreticular aversive stimulation thresholds, Brain Res. 150:436–440.PubMedGoogle Scholar
  184. Rotter, A., Birdsall, N.J. M., Burgen, A. S. V., Field, P. M., Hulme, F. C., and Raisman, G., 1979, Muscarinic receptors in the central nervous system of the rat. I. Techniques for autoradiographic localization of the binding of 3H-propylbenzilylcholine mustard and its distribution in the forebrain, Brain Res. Rev. 1:141–165.Google Scholar
  185. Royce, G. J., 1982, Laminar origin of cortical neurons which project upon the caudate nucleus: A horseradish peroxidase investigation in the cat, J. Comp. Neurol. 205:8–29.PubMedGoogle Scholar
  186. Royce, G. J., 1983, Cells of origin of corticothalamic projections upon the centromedian and parafascicular nuclei in the cat, Brain Res. 258:11–21.PubMedGoogle Scholar
  187. Sanides, F., 1970, Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution, in: The Primate Brain (C. R. Noback and W. Montagna, eds.), Appleton-Century-Crofts, New York, pp. 137–208.Google Scholar
  188. Sanides, F., and Sanides, D., 1972, The “extraverted neurons” of the mammalian cerebral cortex, Z. Anat. Entwicklungsgesch. 136:272–293.PubMedGoogle Scholar
  189. Sar, M., Stumpf, W. E., Miller, R. J., Chang, K.-J., and Cuatrecasas, P., 1978, Immunohistochemical localization of enkephalin in rat brain and spinal cord, J. Comp. Neurol. 182:17–38.PubMedGoogle Scholar
  190. Satoh, K., Armstrong, D. M., and Fibiger, H. C., 1983, A comparison of the distribution of central cholinergic neurons as demonstrated by AChE-pharmacohistochemistry and ChAT-immunohistochemistry, Soc. Neurosci. Abstr. 9:80.Google Scholar
  191. Schierhorn, H., Doedens, K., and Nagel, I., 1972, Über die laminäre Zuordnung der apikalen Dendritenspines der lamina-V-Pyramidenzellen in der sensomotorischen Hirnrinde der Albinoratte, Gegenbaurs Morph. Jahrb. 118:465–487.Google Scholar
  192. Scholneld, C. N., 1978, Electrical properties of neurons in the olfactory cortex slice in vitro, J. Physiol. (London) 275:535–546.Google Scholar
  193. Schönheit, B., and Schulz, E., 1982, Korrelation neuronaler Parameter von cingulären Lamina V-und Lamina III-Pyramidenneuronen der Ratte, J. Hirnforsch. 23:203–209.PubMedGoogle Scholar
  194. Schulz, E., and Schönheit, B., 1974, Neurohistologische Untersuchungen zur Neuronstruktur der Regio limbica anterior der Ratte, J. Hirnforsch. 15:469–490.Google Scholar
  195. Schwab, M., Agid, Y., Glowinski, J., and Thoenen, H., 1977, Retrograde axonal transport of 125I-tetanus toxin as a tool for tracing fiber connections in the central nervous system: Connections of the rostral part of the rat neostriatum, Brain Res. 126:211–224.PubMedGoogle Scholar
  196. Schwarcz, R., Hökfelt, T., Fuxe, K., Jonsson, G., Goldstein, M., and Terenius, L., 1979, Ibotenic acid-induced neuronal degeneration: A morphological and neurochemical study, Exp. Brain Res. 37:199–216.PubMedGoogle Scholar
  197. Schwartzkroin, P. A., 1975, Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation, Brain Res. 85:423–436.PubMedGoogle Scholar
  198. Schwartzkroin, P. A., and Knowles, W. D., 1984, Intracellular study of human epileptic cortex: In vitro maintenance of epileptiform activity? Science 223:709–712.PubMedGoogle Scholar
  199. Segal, M., 1981, The action of norepinephrine in the rat hippocampus: Intracellular studies in the slice preparation, Brain Res. 206:107–128.PubMedGoogle Scholar
  200. Segal, M., Dudai, Y., and Amsterdam, A., 1978, Distribution of an α-bungarotoxin-binding cholinergic nicotinic receptor in rat brain, Brain Res. 148:105–119.PubMedGoogle Scholar
  201. Sherk, H., and LeVay, S., 1983, Contribution of the corticoclaustral loop to receptive field properties in area 17 of the cat, J. Neurosci. 3:2121–2127.PubMedGoogle Scholar
  202. Showers, M. J. C., 1959, The cingulate gyrus: Additional motor areas and cortical autonomic regulator, J. Comp. Neurol. 112:231–287.PubMedGoogle Scholar
  203. Sikes, R. W., and Vogt, B. A., 1985, Anatomical and physiological characterization of the cingulate-visual border and connections between these areas in rabbits, Anal. Rec. 211:177A.Google Scholar
  204. Sikes, R. W., Chronister, R. B., and White, L. E., Jr., 1977, Origin of the direct hippocampus-anterior thalamic bundle in the rat: A combined horseradish peroxidase-Golgi analysis, Exp. Neurol. 57:379–395.PubMedGoogle Scholar
  205. Skultety, F. M., 1963, Stimulation of periaqueductal gray and hypothalamus, Arch. Neurol. 8:609–620.Google Scholar
  206. Smith, W. K., 1945, The functional significance of the rostral cingular cortex as revealed by its responses to electrical excitation, J. Neurophysiol. 8:241–255.Google Scholar
  207. Somogyi, P., 1977, A specific axon-axonal neuron in the visual cortex of the rat, Brain Res. 136:345–350.PubMedGoogle Scholar
  208. Somogyi, G., Tömböl, T., and Hajdu, F., 1973, Golgi architecture and connections of the nucleus anterodorsalis thalami, Acta Anat. 85:466–476.PubMedGoogle Scholar
  209. Somogyi, G., Hajdu, F., and Hassler, R., 1977, Electron microscopic study of terminal degeneration in the anterodorsal thalamic nucleus of the cat, Cell Tissue Res. 182:455–467.PubMedGoogle Scholar
  210. Somogyi, G., Hajdu, F., Tömböl, T., and Madarász, M., 1979, Types of thalamocortical relay neurons in the anteroventral nucleus of the cat, Cell Tissue Res. 196:175–179.PubMedGoogle Scholar
  211. Somogyi, P., Freund, T. F., Halász, N., and Kisvárday, Z. F., 1981, Selectivity of neuronal [3H] GABA accumulation in the visual cortex as revealed by Golgi staining of the labeled neurons, Brain Res. 225:431–436.PubMedGoogle Scholar
  212. Somogyi, P., Kisvárday, Z. F., Freund, T. F., and Cowey, A., 1984, Characterization by Golgi impregnation of neurons that accumulate 3H-GABA in the visual cortex of monkey, Exp. Brain Res. 53:295–303.PubMedGoogle Scholar
  213. Sørensen, K. E., 1980, Ipsilateral projection from the subiculum to the retrosplenial cortex in the guinea pig, J. Comp. Neurol. 193:893–911.PubMedGoogle Scholar
  214. Spector, I., Hassmannova, J., and Albe-Fessard, D., 1974, Sensory properties of single neurons of cat’s claustrum, Brain Res. 66:39–65.Google Scholar
  215. Stephan, H., 1975, Handbuch der mikroskopischen Anatomie des Menschen, Volume 9, Springer-Verlag, Berlin.Google Scholar
  216. Sutton, D., Larson, C., and Lindeman, R. C., 1974, Neocortical and limbic lesion effects on primate phonation, Brain Res. 71:61–75.PubMedGoogle Scholar
  217. Swanson, L. W., and Hartman, B. K:, 1975, The central adrenergic system: An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-β-hydroxylase as a marker, J. Comp. Neurol. 163:467–506.PubMedGoogle Scholar
  218. Talairach, J., Bancaud, J., Geier, S., Bordas-Ferrer, M., Bonis, A., Szikla, G., and Rusu, M., 1973, The cingulate gyrus and human behaviour, Electroencephalogr. Clin. Neurophysiol. 34:45–52.PubMedGoogle Scholar
  219. Tappaz, M. L., Brownstein, M. J., and Palkovitz, M., 1976, Distribution of glutamate decarboxylase in discrete brain nuclei, Brain Res. 108:371–379.PubMedGoogle Scholar
  220. Taylor, D. A., and Stone, T. W., 1980, The action of adenosine on noradrenergic neuronal inhibition induced by stimulation of locus coeruleus, Brain Res. 183:367–376.PubMedGoogle Scholar
  221. Thomas, G.J., and Slotnick, B. M., 1963, Impairment of avoidance responding by lesions in cingulate cortex in rats depends on food drive, J. Comp. Physiol. Psychol. 56:959–964.PubMedGoogle Scholar
  222. Thomas, G. J., Hostetter, G., and Barker, D. J., 1968, Behavioral function of the limbic system, in: Progress in Physiological Psychology, Volume 2 (E. Stellar and J. M. Sprague, eds.), Academic Press, New York.Google Scholar
  223. Towns, L. C., Burton, S. L., Kimberly, C. J., and Fetterman, M. R., 1982, Projections of the dorsal lateral geniculate and lateral posterior nuclei to visual cortex in the rabbit, J. Comp. Neurol. 210:87–98.PubMedGoogle Scholar
  224. Trojanowski, J. Q., and Jacobson, S., 1976, Areal and laminar distribution of some pulvinar cortical efferents in rhesus monkey, J. Comp. Neurol. 169:371–392.PubMedGoogle Scholar
  225. Trulson, M. E., and Trulson, V. M., 1982, Differential effects of phasic auditory and visual stimuli on serotonergic neurons in the nucleus raphe dorsalis and nucleus raphe pallidus in freely moving cats, Neurosci. Lett. 32:137–142.PubMedGoogle Scholar
  226. Tsumoto, T., and Suda, K., 1982, Effects of stimulation of the dorsocaudal claustrum on activities of striate cortex neurons in the cat, Brain Res. 240:345–349.PubMedGoogle Scholar
  227. Turnbull, I. M., 1972, Bilateral cingulumotomy combined with thalamotomy or mesencephalic tractotomy for pain, Surg. Gynecol. Obstet. 134:958–962.PubMedGoogle Scholar
  228. Uematsu, S., Konigsmark, B., and Walker, A. E., 1974, Thalamotomy for alleviation of intractable pain, Confin. Neurol. 36:88–96.PubMedGoogle Scholar
  229. U’Prichard, D. C., Greenberg, D. A., Sheehan, P., and Snyder, S. H., 1977, Regional distribution of α-noradrenergic receptor binding in calf brain, Brain Res. 138:151–158.PubMedGoogle Scholar
  230. Valverde, F., 1967, Apical dendritic spines of the visual cortex and light deprivation in the mouse, Exp. Brain Res. 3:337–352.PubMedGoogle Scholar
  231. Vastola, E. F., 1982, Electrical signs of an oligo-synaptic visual projection to rat hippocampus, Brain Behav. Evol. 20:1–18.PubMedGoogle Scholar
  232. Vilensky, J. A., and Van Hoesen, G. W., 1981, Corticopontine projections from the cingulate cortex in the rhesus monkey, Brain Res. 205:391–395.PubMedGoogle Scholar
  233. Vinogradova, O. S., 1975, Functional organization of the limbic system in the process of registration of information: Facts and hypotheses, in: The Hippocampus, Volume 2 (R. L. Isaacson and K. H. Pribram, eds.), Plenum Press, New York, pp. 3–69.Google Scholar
  234. Vogt, B. A., 1976, Retrosplenial cortex in the rhesus monkey: A cytoarchitectonic and Golgi study, J. Comp. Neurol. 169:63–98.PubMedGoogle Scholar
  235. Vogt, B. A., 1984, Afferent specific localization of muscarinic acetylcholine receptors in cingulate cortex, J. Neurosci. 9:2191–2199.Google Scholar
  236. Vogt, B. A., and Gorman, A. L. F., 1982, Responses of cortical neurons to stimulation of corpus callosum in vitro, J. Neurophysiol. 48:1257–1273.PubMedGoogle Scholar
  237. Vogt, B. A., and Miller, M., 1982, Cortical connections of cingulate area 29d: A limbic sensorimotor association cortex, Soc. Neurosci. Abstr. 8:952.Google Scholar
  238. Vogt, B. A., and Miller, M. W., 1983, Cortical connections between rat cingulate cortex and visual, motor and postsubicular cortices, J. Comp. Neurol. 216:192–210.PubMedGoogle Scholar
  239. Vogt, B. A., and Pandya, D. N., 1986, Primate cingulate cortex. II. Corticocortical connections (in preparation).Google Scholar
  240. Vogt, B. A., and Peters, A., 1981, Form and distribution of neurons in rat cingulate cortex: Areas 32, 24, and 29, J. Comp. Neurol, 195:603–625, 200:461.PubMedGoogle Scholar
  241. Vogt, B. A., Rosene, D. L., and Pandya, D. N., 1979, Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey, Science 204:205–207.PubMedGoogle Scholar
  242. Vogt, B. A., Rosene, D. L., and Peters, A., 1981, Synaptic termination of thalamic and callosal afferents in cingulate cortex of the rat, J. Comp. Neurol. 201:265–283.PubMedGoogle Scholar
  243. Vogt, B. A., Townes-Anderson, E., and Burns, D. L., 1985, Distribution of M1 and M2 muscarinic acetylcholine receptors on cortical neurons and thalamic afferents, Trends Pharmacol. Sci. (in press).Google Scholar
  244. Vogt, B. A., Sikes, R. W., Swadlow, H. A., and Weyand, T. G., 1986, Rabbit cingulate cortex: Cytoarchitecture, physiological border with visual cortex and afferent cortical connections including those of visual, motor, postsubicular, and transcingulate origin, J. Comp. Neurol. (in press).Google Scholar
  245. von Economo, C., 1929, The Cytoarchitectonics of the Human Cerebral Cortex, Oxford University Press, London.Google Scholar
  246. Waller, W. H., 1934, Topographical relations of cortical lesions to thalamic nuclei in the albino rat, J. Comp. Neurol. 60:237–269.Google Scholar
  247. Wamsley, J. K., Gehlert, D. R., Roeske, W. R., and Yamamura, H. I., 1984, Muscarinic antagonist binding site heterogeneity as evidenced by auto radiography after direct labeling with 3H-QNB and 3H-pirenzepine, Life Sci. 34:1395–1402.PubMedGoogle Scholar
  248. Watabe, K., Nakai, K., and Kasamatsu, T., 1982, Visual afferents to norepinephrine-containing neurons in cat locus coeruleus, Exp. Brain Res. 48:66–80.PubMedGoogle Scholar
  249. Ward, A. A., 1948, The cingular gyms: Area 24, J. Neurophysiol. 11:13–23.PubMedGoogle Scholar
  250. Weber, J. T., and Harting, J. K., 1980, The efferent projections of the pretectal complex: An autoradiographic and horseradish peroxidase analysis, Brain Res. 194:1–28.PubMedGoogle Scholar
  251. White, J. C., and Sweet, W. H., 1969, Pain and the Neurosurgeon, Thomas, Springfield, Ill.Google Scholar
  252. Wiesendanger, R., and Wiesendanger, M., 1982a, The corticopontine system in the rat. I. Mapping of corticopontine neurons, J. Comp. Neurol. 208:215–226.PubMedGoogle Scholar
  253. Wiesendanger, R., and Wiesendanger, M., 1982b, The corticopontine system in the rat. II. The projection pattern, J. Comp. Neurol. 208:227–238.PubMedGoogle Scholar
  254. Willis, W. D., Kenshalo, D. R., and Leonard, R. B., 1979, The cells of origin of the primate spinothalamic tract, J. Comp. Neurol. 188:543–574.PubMedGoogle Scholar
  255. Wong, R. K. S., and Prince, D. A., 1981, Afterpotential generation in hippocampal pyramidal cells, J. Neurophysiol. 45:86–97.PubMedGoogle Scholar
  256. Woodward, D. J., Moises, H. C., Waterhouse, B. D., Hoffer, B. J., and Freedman, R., 1979, Modulatory actions of norepinephrine in the central nervous system, Fed. Proc. 38:2109–2116.PubMedGoogle Scholar
  257. Wyss, J. M., and Sripanidkulchai, K., 1984, The topography of the mesencephalic and pontine projections from the cingulate cortex of the rat, Brain Res. 293:1–15.PubMedGoogle Scholar
  258. Yaksh, T. L., 1979, Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal gray. Brain Res. 160:180–185.PubMedGoogle Scholar
  259. Yamamura, H. I., Kuhar, M. J., Greenberg, D., and Snyder, S. H., 1974, Muscarinic cholinergic receptor binding: Regional distribution in monkey brain, Brain Res. 66:541–546.Google Scholar
  260. Yeterian, E. H., and Van Hoesen, G. W., 1978, Cortico-striate projections in the rhesus monkey: The organization of certain cortico-caudate connections, Brain Res. 139:43–63.PubMedGoogle Scholar
  261. Yeung, J. C., Yaksh, T. L., and Rudy, T. A., 1977, Concurrent mapping of brain sites for sensitivity to the direct application of morphine and focal electrical stimulation in the production of antinociception in the rat, Pain 4:23–40.PubMedGoogle Scholar
  262. Yorke, C. H., Jr., and Caviness, V. S., Jr., 1975, Interhemispheric neocortical connections of the corpus callosum in the normal mouse: A study based on anterograde and retrograde methods, J. Comp. Neurol. 164:233–246.PubMedGoogle Scholar
  263. Zarbin, M. A., Wamsley, J. K., and Kuhar, M. J., 1982, Axonal transport of muscarinic cholinergic receptors in rat vagus nerve: High and low affinity agonist receptors move in opposite directions and differ in nucleotide sensitivity, J. Neurosci. 2:934–941.PubMedGoogle Scholar
  264. Zarbin, M. A., Innis, R. B., Wamsley, J. K., Snyder, S. H., and Kuhar, M. J., 1983, Autoradiographic localization of cholecystokinin receptors in rodent brain, J. Neurosci. 3:877–906.PubMedGoogle Scholar
  265. Zilles, K., Zilles, B., and Schleicher, A., 1980, A quantitative approach to cytoarchitectonics, VI. The areal pattern of the cortex of the albino rat, Anat. Embryol. 159:335–360.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Brent Alan Vogt
    • 1
  1. 1.Departments of Anatomy and PhysiologyBoston University School of MedicineBostonUSA

Personalised recommendations