Skip to main content

Neurotransmitter Receptors in Developing Barrel Cortex

  • Chapter
The Barrel Cortex of Rodents

Part of the book series: Cerebral Cortex ((CECO,volume 11))

Abstract

The whisker barrel cortex can serve as a useful model for examining the role of neurotransmitter receptors in brain development. Most of the synapses in neocortex of laboratory rats and mice are formed during the first 3–4 postnatal weeks (Wolff, 1978). During this period, synaptic remodeling takes place as thalamocortical, callosal, and intrinsic connections are sharpened and refined (Wise and Jones, 1978; O’Leary et al., 1981; Greenough and Chang, 1988). The developmental blueprint can be readily modified by neonatal whisker deafferentation, and the consequences can be well localized because of the one-to-one correspondence between major vibrissae and whisker barrels. Moreover, its location on the dorsal surface of the brain makes barrel cortex accessible to direct pharmacological manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhtar, N. D., and Land, P. W., 1991, Activity-dependent regulation of glutamic acid decarboxylase in the rat barrel cortex: Effects of neonatal versus adult sensory deprivation, J. Comp. Neurol. 307:200–213.

    PubMed  CAS  Google Scholar 

  • Alkondon, M., and Albuquerque, E. X., 1991, Initial characterization of the nicotinic acetylcholine receptors in rat hippocampal neurons, J. Recept. Res. 11:1001–1021.

    PubMed  CAS  Google Scholar 

  • Armstrong, R. C, and Montminy, M. R., 1993, Transsynaptic control of gene expression, Annu. Rev. Neurosci. 16:17–29.

    PubMed  CAS  Google Scholar 

  • Austin, T. A., Grady, S. M., and Fuchs, J. L., 1992, Nicotinic acetylcholine receptor alpha3 subunit mRNA in rat visual cortex: Ontogeny and effects of neonatal enucleation, Soc. Neurosci. Abstr. 18:1470.

    Google Scholar 

  • Balcar, V. J., Zetzsche, T., and Wolff, J. R., 1992, Glutamate decarboxylase in developing rat neocortex: Does it correlate with the differentiation of GABAergic neurons and synapses? Neurochem. Res. 17:253–260.

    PubMed  CAS  Google Scholar 

  • Balduini, W., Murphy, S. D., and Costa, L. G., 1987, Developmental changes in muscarinic receptorstimulated phosphoinositide metabolism in rat brain, J. Pharmacol. Exp. Ther. 241:421–427.

    PubMed  CAS  Google Scholar 

  • Bassant, M. H., Ennouri, K., and Lamour, Y., 1990, Effects of iontophoretically applied monoamines on somatosensory cortical neurons of unanesthetized rats, Neuroscience. 39:431–439.

    PubMed  CAS  Google Scholar 

  • Bear, M. F., and Singer, W., 1986, Modulation of visual cortical plasticity by acetylcholine and norepinephrine, Nature. 320:172–176.

    PubMed  CAS  Google Scholar 

  • Bennett-Clarke, C. A., Leslie, M. J., Chiaia, N. L., and Rhoades, R. W., 1993, Serotonin IB receptors in the developing somatosensory and visual cortices are located on thalamocortical axons, Proc. Natl. Acad. Sa. USA. 90:153–157.

    CAS  Google Scholar 

  • Blakemore, C, and Molnar, Z., 1990, Factors involved in the establishment of specific interconnections between thalamus and cerebral cortex, Cold Spring Harbor Symp. Quant. Biol. 55:491–504.

    PubMed  CAS  Google Scholar 

  • Blue, M. E., Erzurumlu, R. S., and Jhaveri, S., 1991, A comparison of pattern formation by thalamocortical and serotonergic afferents in the rat barrel field cortex, Cereb. Cortex. 1:380–389.

    PubMed  CAS  Google Scholar 

  • Blue, M. E., Fotuhi, M., Dawson, T. M., Snyder, S. H., and Johnston, M. V., 1992, Development of non-NMDA glutamate receptors in rat barrel field cortex, Soc. Neurosa. Abstr. 18:1542.

    Google Scholar 

  • Brené, S., Lindefors, N., and Persson, H., 1992, Midbrain dopamine neurons regulate preprotachykinin-A mRNA expression in the rat forebrain during development, Mol. Brain Res. 14:13–19.

    PubMed  Google Scholar 

  • Chiaia, N. L., Fish, S. E., Bauer, W. R., Bennett-Clarke, C. A., and Rhoades, R. W., 1992, Postnatal blockade of cortical activity by tetrodotoxin does not disrupt the formation of vibrissa-related patterns in the rat’s somatosensory cortex, Dev. Brain Res. 66: 244–250.

    CAS  Google Scholar 

  • Chmielowska, J., Stewart, M. G., and Bourne, R. C, 1988, Gamma-aminobutyric acid (GABA) immunoreactivity in mouse and rat first somatosensory (SI) cortex: Description and compari-sion, Brain Res. 439:155–168.

    PubMed  CAS  Google Scholar 

  • Chmielowska, J., Carvell, G. E., and Simons, D. J., 1989, Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex, J. Comp. Nenrol. 285:325–338.

    CAS  Google Scholar 

  • Couturier, S., Bertrand, D., Matter, J.-M., Hernandez, M.-C, Bertrand, S., Millar, N., Valera, S., Barkas, T., and Ballivet, M., 1990, A neuronal nicotinic acetylcholine receptor subunit (a7) is developmentally regulated and forms a homo-oligomeric channel blocked by a-BTX, Neuron. 5:847–856.

    PubMed  CAS  Google Scholar 

  • D’Amato, R. J., Blue, M. E., Largent, B. L., Lynch, D. R., Ledbetter, D. J., Molliver, M. E., and Snyder, S. S., 1987, Ontogeny of the serotonergic projection to rat neocortex: Transient expression of a dense innervation to primary sensory areas, Proc. Natl. Acad. Sci. USA. 84:4322–4326.

    PubMed  Google Scholar 

  • Daval, J.-L., Werck, M. C, Nehlig, A., and Pereira de Vasconcelos, A., 1991, Quantitative autoradiographic study of the postnatal development of adenosine A1 receptors and their coupling to G proteins in the rat brain, Neuroscience. 40:841–851.

    PubMed  CAS  Google Scholar 

  • de la Garza, R., McGuire, T. J., Freedman, R., and Hoffer, B. J., 1987, Selective antagonism of nicotine actions in the rat cerebellum with a-bungarotoxin, Neuroscience. 23:887–891.

    PubMed  Google Scholar 

  • Dudek, S. M., Bowen, W. D., and Bear, M. F., 1989, Postnatal changes in glutamate stimulated phosphoinositide turnover in rat neocortical synaptoneurosomes, Dev. Brain Res. 47:123–128.

    CAS  Google Scholar 

  • Durham, D., and Woolsey, T. A., 1978, Acute whisker removal reduces neuronal activity in barrels of mouse SmI cortex, J. Comp. Nenrol. 178:629–644.

    CAS  Google Scholar 

  • Dusart, I., Marty, S., and Peschanski, M., 1992, Demyelination, and remyelination by Schwann cells and oligodendrocytes after kainate-induced neuronal depletion in the central nervous system, Neuroscience. 51:137–148.

    PubMed  CAS  Google Scholar 

  • Erdö, S. L., and Wolff, J. R., 1990, Postnatal development of the excitatory amino acid system in visual cortex of the rat. Changes in ligand binding to NMDA, quisqualate and kainate receptors, hit. J. Dev. Neurosa. 8:199–204.

    Google Scholar 

  • Erzurumlu, R. S., and Jhaveri, S., 1990, Thalamic axons confer a blueprint of the sensory periphery onto the developing rat somatosensory cortex, Dev. Brain Res. 56:229–234.

    CAS  Google Scholar 

  • Forray, C, and El-Fakahany, E., 1990, On the involvement of multiple muscarinic receptor subtypes in the activation of phosphoinositide metabolism in rat cerebral cortex, Mol. Pharmacol. 37:893–902.

    PubMed  CAS  Google Scholar 

  • Freedman, R., Wetmore, C, Strömberg, I., Leonard, S., and Olson, L., 1993, a-Bungarotoxin binding to hippocampal interneurons: Immunocytochemical characterization and effects on growth factor expression, J. Neurosci. 13:1965–1975.

    PubMed  CAS  Google Scholar 

  • Fuchs, J. L., 1979, Ontogeny of patterns of [14C]2-deoxyglucose uptake in selected regions of the rat brain, in: Ontogeny of circadian rhythmicity and regional [1.4C]2-deoxyglucose uptake in the rat brain, Ph.D. dissertation, University of California, San Diego, pp. 22-60.

    Google Scholar 

  • Fuchs, J. L., 1989, [125I]a-Bungarotoxin binding marks primary sensory areas of developing rat neocortex, Brain Res. 501:223–234.

    PubMed  CAS  Google Scholar 

  • Fuchs, J. L., 1993, GABAA receptors in rat whisker barrel cortex: Ontogeny and effects of whisker trimming, Soc. Neurosci. Abstr. 19:674.

    Google Scholar 

  • Glazewski, S., Kossut, M., Siucinska, E., and Skangiel-Kramska, J., 1990, Cholinergic markers in the plasticity of murine barrel field, Ada Neurobiol. Exp. 50:163–172.

    CAS  Google Scholar 

  • Goffinet, A. M., Hemmendinger, L. M., and Caviness, V. S., Jr., 1986, Autoradiographic study of ßj-adrenergic receptor development in the mouse forebrain, Dev. Brain Res. 24:187–191.

    CAS  Google Scholar 

  • Gonzalez, B. J., Leroux, P., Bodenant, C, and Vaudry, H., 1991, Ontogeny of somatostatin receptors in the rat somatosensory cortex, J. Comp. Neural. 305:177–188.

    CAS  Google Scholar 

  • Greenough, W. T., and Chang, F.-L. F., 1988, Dendritic pattern formation involves both oriented regression and oriented growth in barrels of mouse somatosensory cortex, Dev. Brain Res. 43:148–152.

    Google Scholar 

  • Happe, H. K., and Murrin, L. C, 1990, Tritium quench in autoradiography during postnatal development of rat forebrain, Brain Res. 525:28–35.

    PubMed  CAS  Google Scholar 

  • Happe, H. K., and Murrin, L. C, 1992, Development of high-affinity choline transport sites in rat forebrain: A quantitative autoradiography study with [3H]hemicholinium-3, J. Comp. Neurol. 321:591–611.

    PubMed  CAS  Google Scholar 

  • Harden, T. K., Wolfe, B. B., Sporn, J. R., Perkins, J. P., and Molinoff, P. B., 1977, Ontogeny of ß-adrenergic receptors in rat cerebral cortex, Brain Res. 125:99–108.

    PubMed  CAS  Google Scholar 

  • Harrison, M. B., Hogan, C. J., and Lothman, E. W., 1992, Developmental changes in tritium autoabsorption, Neuroimage. 1:3–9.

    PubMed  CAS  Google Scholar 

  • Heacock, A. M., Fisher, S. K., and Agranoff, B. W., 1987, Enhanced coupling of neonatal muscarinic receptors in rat brain to phosphoinositide turnover, J. Neurochem. 48:1904–1911.

    PubMed  CAS  Google Scholar 

  • Hendry, S. H. C, Fuchs, J., DeBlas, A. L., and Jones, E. G., 1990, Distribution and plasticity of immunocytochemically localized GABAA receptors in adult monkey visual cortex, J. Neurosci. 10:2438–2450.

    PubMed  CAS  Google Scholar 

  • Herkenham, M., and McLean, S., 1986, Mismatches between receptor and transmitter localizations in the brain, in: Quantitative Receptor Autoradiography (C. A. Boast, E. W. Snowhill, and C. A. Altar, eds.), Liss, New York, pp. 137–171.

    Google Scholar 

  • Höhmann, C. F., Pert, C. C, and Ebner, F. F., 1985, Development of cholinergic markers in mouse forebrain. II. Muscarinic receptor binding in cortex, Dev. Brain Res. 23:243–253.

    Google Scholar 

  • Hwang, P. M., Bredt, D. S., and Snyder, S. H., 1990, Autoradiographic imaging of phosphoinositide turnover in the brain, Science. 249:802–804.

    PubMed  CAS  Google Scholar 

  • Insel, T. R., Battaglia, G., Fairbanks, D. W., and De Souza, E. B., 1988, The ontogeny of brain receptors for corticotropin-releasing factor and the development of their functional association with adenylate cyclase, J. Neurosci. 8:4151–4158.

    PubMed  CAS  Google Scholar 

  • Insel, T. R., Miller, L. P., and Gelhard, R. E., 1990, The ontogeny of excitatory amino acid receptors in rat forebrain. I. N-methyl-D-aspartate and quisqualate receptors, Neuroscience. 35:31–43.

    PubMed  CAS  Google Scholar 

  • Ivy, G. O., and Killackey, H. P., 1981, The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex, J. Cornp. Neurol. 195:367–389.

    CAS  Google Scholar 

  • Jirikowski, G. F., Sanna, P. P., Maciejewski-Lenoir, D., and Bloom, F. E., 1992, Reversal of diabetes insipidus in Brattleboro rats: Intrahypothalamic injection of vasopressin mRNA, Science. 255:996–998.

    PubMed  CAS  Google Scholar 

  • Johnston, M. V., 1988, Biochemistry of neurotransmitters in cortical development, in: Cerebral Cortex, Vol. 7 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 211–236.

    Google Scholar 

  • Kalb, R. G., Lidow, M. S., Halsted, M. J., and Hockfield, S., 1992, The developing spinal cord ventral horn, Proc. Natl. Acad. Sci. USA. 89:8502–8506.

    PubMed  CAS  Google Scholar 

  • Kent, J. L., Pert, C. B., and Herkenham, M., 1982, Ontogeny of opiate receptors in rat forebrain: Visualization by in vitro autoradiography, Dev. Brain Res. 2:487–504.

    Google Scholar 

  • Kiyama, H., Inagaki, S., Kito, S., and Tohyama, M., 1987, Ontogeny of [3H]neurotensin binding sites in the rat cerebral cortex: Autoradiographic study, Dev. Brain Res. 31:303–306.

    CAS  Google Scholar 

  • Kornblum, H. I., Hurlbut, D. E., and Leslie, F. M., 1987, Postnatal development of multiple opioid receptors in rat brain, Dev. Brain Res. 37:21–41.

    CAS  Google Scholar 

  • Kossut, M., 1992, Plasticity of barrel cortex neurons, Prog. Neurobiol. 39:389–422.

    PubMed  CAS  Google Scholar 

  • Kossut, M., and Hand, P., 1984, The development of the vibrissal cortical column: A 2-deoxyglucose study in the rat, Neurosci. Lett. 46:1–6.

    PubMed  CAS  Google Scholar 

  • Kossut, M., Skangiel-Kramska, J., Siucinska, E., and Glazewski, S., 1991a, Participation of GABAa receptors in the plasticity of mouse barrel cortex, Third IBRO Congr. Abstr. 310.

    Google Scholar 

  • Kossut, M., Stewart, M. G., Siucinska, E., Bourne, R. C, and Gabbott, P. L. A., 1991b, Loss of gamma-aminobutyric acid (GABA) immunoreactivity from mouse first somatosensory (SI) cortex following neonatal, but not adult, denervation. Brain Res. 538:165–170.

    PubMed  CAS  Google Scholar 

  • Kristt, D. A., 1979, Development of neocortical circuitry: Histochemical localization of acetylcholinesterase in relation to the cell layers of rat somatosensory cortex, J. Comp. Neurol. 186:1–16.

    PubMed  CAS  Google Scholar 

  • Kristt, D. A., and Molliver, M. E., 1976, Synapses in newborn rat cerebral cortex: A quantitative ultrastructural study, Brain Res. 108:180–186.

    PubMed  CAS  Google Scholar 

  • Kumar, A., and Schliebs, R., 1992, Postnatal laminar development of cholinergic receptors, protein kinase C and dihydropyridine-sensitive calcium antagonist binding in rat visual cortex: Effect of visual deprivation, Int. J. Dev. Neurosci. 10:491–504.

    PubMed  CAS  Google Scholar 

  • Lamour, Y., Dutar, P., Jobert, A., and Dykes, R. W., 1988, An iontophoretic study of single so-matosensory neurons in rat granular cortex serving the limbs: A laminar analysis of glutamate and acetylcholine effects on receptive-field properties, J. Neurophysiol. 60:725–750.

    PubMed  CAS  Google Scholar 

  • Land, P. W., and Simons, D. J., 1985, Metabolic activity in SmI cortical barrels of adult rats is dependent on patterned sensory stimulation of the mystacial vibrissae, Brain Res. 341:189–194.

    PubMed  CAS  Google Scholar 

  • Lauder, J. M., 1983, Hormonal and humoral influences on brain development, Psychoneuroendocrinology. 8:121–155.

    PubMed  CAS  Google Scholar 

  • Laurie, D. J., Wisden, W., and Seeburg, P. H., 1992, The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development, J. Neurosci. 12:4151–4172.

    PubMed  CAS  Google Scholar 

  • Lee, W., Nicklaus, K.J., Manning, D. R., and Wolfe, B. B., 1990, Ontogeny of cortical muscarinic receptor subtypes and muscarinic receptor-mediated responses in rat, J. Pharmacol. Exp. Ther. 252:482–490.

    PubMed  CAS  Google Scholar 

  • Leslie, M. J., Bennett-Clarke, C. A., and Rhoades, R. W., 1992, Serotonin IB receptors form a transient vibrissa-related pattern in the primary somatosensory cortex of the developing rat, Dev. Brain Res. 69:143–148.

    CAS  Google Scholar 

  • Levin, B. E., Craik, R. L., and Hand, P. J., 1988, The role of norepinephrine in adult rat somatosensory (SmI) cortical metabolism and plasticity, Brain Res. 443:261–271.

    PubMed  CAS  Google Scholar 

  • Levitt, P., and Moore, R. Y., 1979, Development of the noradrenergic innervation of neocortex, Brain Res. 162:243–259.

    PubMed  CAS  Google Scholar 

  • Lidow, M. S., and Rakic, P., 1992, Scheduling of monoaminergic neurotransmitter receptor expression in the primate neocortex during postnatal development, Cereb. Cortex. 2:401–416.

    PubMed  CAS  Google Scholar 

  • Lidow, M. S., Goldman-Rakic, P. S., Gallager, D. W., Geschwind, D. H., and Rakic, P., 1989, Distribution of major neurotransmitter receptors in the motor and somatosensory cortex of the rhesus monkey, Neuroscience. 32:609–627.

    PubMed  CAS  Google Scholar 

  • Loeb, E. P., Chang, F.-L. F., and Greenough, W. T., 1987, Effects of neonatal 6-hydroxydopamine treatment upon morphological organization of the posteromedial barrel subfield in mouse somatosensory cortex, Brain Res. 403:113–120.

    PubMed  CAS  Google Scholar 

  • Luetje, C. W., and Patrick, J., 1991, Both a-and ß-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors, J. Neurosci. 11:837–845.

    PubMed  CAS  Google Scholar 

  • Luhmann, H. J., and Prince, D. A., 1990, Transient expression of polysynaptic NMDA receptor-mediated activity during neocortical development, Neurosci. Lett. 111:109–115.

    PubMed  CAS  Google Scholar 

  • McCasland, J. S., Bernardo, K. L., Probst, K. L., and Woolsey, I. A., 1992, Cortical local circuit axons do not mature after early deafferentation, Proc. Natl. Acad. Sci. USA. 89:1832–1836.

    PubMed  CAS  Google Scholar 

  • McCormick, D. A., Wang, Z., and Huguenard, J., 1993, Neurotransmitter control of neocortical neuronal activity and excitability, Cereb. Cortex. 3:387–398.

    PubMed  CAS  Google Scholar 

  • Mansour, A., Meador-Woodruff, J. H., Zhou, Q., Civelli, D., Akil, H., and Watson, S. J., 1992, A comparison of D, receptor binding and mRNA in rat brain using receptor autoradiographic and in situ hybridization techniques, Neuroscience. 46:959–971.

    PubMed  CAS  Google Scholar 

  • Martin, J.-L., Feinstein, D. L., Yu, N., Sorg, C, Rossier, C, and Magistretti, P. J., 1992, VIP receptor-subtypes in mouse cerebral cortex: Evidence for a differential localization in astrocytes, microvessels and synaptosomal membranes, Brain Res. 587:1–12.

    PubMed  CAS  Google Scholar 

  • Meier, E., Hertz, L., and Schousboe, A., 1991, Neurotransmitters as developmental signals, Neurochern. Int. 19:1–15.

    CAS  Google Scholar 

  • Miller, L. P., Johnson, A. E., Gelhard, R. E., and Insel, T. R., 1990, The ontogeny of excitatory amino acid receptors in the rat forebrain. II. Kainic acid receptors, Neuroscience. 35:45–51.

    PubMed  CAS  Google Scholar 

  • Miller, M.W., 1988, Development of projection and local circuit neurons in neocortex, in: Cerebral Cortex, Vol. 7 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 133–175.

    Google Scholar 

  • Minakami, R., Hirose, E., Yoshioka, K., Yoshimura, R., Misumi, Y, Sakaki, Y., Tohyama, M., Kiyama, H., and Sugiyama, H., 1992, Postnatal development of mRNA specific for a metabotropic glutamate receptor in the rat brain, Neurosci. Res. 15:58–63.

    PubMed  CAS  Google Scholar 

  • Miyoshi, R., and Kito, S., 1990, Ontogeny of phorbol ester receptors in rat brain studied by in vitro autoradiography, J. Neural Transm. 81:41–51.

    CAS  Google Scholar 

  • Murrin, L. C, Gibbens, D. L., and Ferrer, J. R., 1985, Ontogeny of dopamine, serotonin and spirodecanone receptors in rat forebrain-An autoradiographic study, Dev. Brain Res. 23:91–109.

    CAS  Google Scholar 

  • Naeff, B., Schlumpf, M., and Lichtensteiger, W., 1992, Pre-and postnatal development of high-affinity PHJnicotine binding sites in rat brain regions: An autoradiographic study, Dev. Brain res:163-174.

    Google Scholar 

  • Naus, C. C. G., Miller, F. D., Morrison, J. H., and Bloom, F. E., 1988, Immunohistochemical and in situ hybridization analysis of the development of the rat somatostatin-containing neocortical neuronal system, J. Comp. Nenrol. 269:448–463.

    CAS  Google Scholar 

  • Nelson, D. L., Herbet, A., Adrien, J., Bockaert, J., and Hamon, M., 1980, Serotonin-sensitive adeny-late cyclase and PHjserotonin binding sites in the CNS of the rat. II. Respective regional and subcellular distributions and ontogenetic developments, Biochem. Pharmacol. 29:2455–2463.

    PubMed  CAS  Google Scholar 

  • Nicolelis, M. A. L., Chapin, J. K., and Lin, R. C. S., 1991, Neonatal whisker removal in rats stabilizes a 1 transient projection from the auditory thalamus to the primary somatosensory cortex, Brain Res. 567:133–139.

    PubMed  CAS  Google Scholar 

  • Norman, A. B., Eubanks, J. H., and Creese, I., 1989, Irreversible and quaternary muscarinic antagonists discriminate multiple muscarinic receptor binding sites in rat brain, J. Pharmacol. Exp. Ther. 248:1116–1122.

    PubMed  CAS  Google Scholar 

  • O’Leary, D. D. M., 1989, Do cortical areas emerge from a protocortex? Trends Neurosci. 12:400–406.

    PubMed  Google Scholar 

  • O’Leary, D. D. M., Stanfield, B. B., and Cowan, W. M., 1981, Evidence that the early postnatal restriction of the cells of origin of the callosal projection is due to the elimination of axonal collaterals rather than to the death of neurons, Dev. Brain Res. 1:607–617.

    Google Scholar 

  • Palacios, J. M., Pazos, A., Dietl, M. M., Schlumpf, M., and Lichtensteiger, W., 1988, The ontogeny of brain neurotensin receptors studied by autoradiography, Neuroscience. 25:307–317.

    PubMed  CAS  Google Scholar 

  • Parkinson, D., Kratz, K. E., and Daw, N. W., 1988, Evidence for a nicotinic component to the actions of acetylcholine in cat visual cortex, Exp. Brain Res. 73:553–568.

    PubMed  CAS  Google Scholar 

  • Parnavelas, J. G., Papadopoulos, G. C, and Cavanagh, M. E., 1988, Changes in neurotransmitters during development, in: Cerebral Cortex, Vol. 7 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 177–209.

    Google Scholar 

  • Parnavelas, J. G., Jeffery, G., Cope, J., and Davies, S. W., 1990, Early lesion of mystacial vibrissae in rats results in an increase of somatostatin-labelled cells in the somatosensory cortex, Exp. Brain Res. 82:658–662.

    PubMed  CAS  Google Scholar 

  • Pelaprat, D., Dusart, I., and Peschanski, M., 1988, Postnatal development of cholecystokinin (CCK) binding sites in the rat forebrain and midbrain: An autoradiographic study, Dev. Brain Res. 44:119–132.

    CAS  Google Scholar 

  • Prusky, G. T., Arbuckle, J. M., and Cynader, M. S., 1988, Transient concordant distributions of nicotinic receptors and acetylcholinesterase activity in infant rat visual cortex, Dev. Brain Res. 39:154–159.

    CAS  Google Scholar 

  • Rhoades, R. W., Bennett-Clarke, C. A., Chiaia, N. L., White, F. A., MacDonald, G. J., Haring, J. H., and Jacquin, M. F., 1990, Development and lesion induced reorganization of the cortical representation of the rat’s body surface as revealed by immunocytochemistry for serotonin, J. Comp. Neurol. 293:190–207.

    PubMed  CAS  Google Scholar 

  • Rice, F. L., Gomez, G, Barstow, G, Burnet, A., and Sands, P., 1985, A comparative analysis of the development of the primary somatosensory cortex: Interspecies similarities during barrel and laminar development, J. Comp. Neurol. 236:477–495.

    PubMed  CAS  Google Scholar 

  • Robertson, R. T, Tijerina, A. A., and Gallivan, M. E., 1985, Transient patterns of acetylcholinesterase activity in visual cortex of the rat: Normal development and the effects of neonatal monocular enucleation, Dev. Brain Res. 21:203–214.

    CAS  Google Scholar 

  • Robinson, M. L., Hartgraves, M. D., and Fuchs, J. L., 1993, Autoradiographic localization of carbachol-induced phosphoinositide turnover in developing rat neocortex, Soc. Neurosci. Abstr. 19:1389.

    Google Scholar 

  • Ryugo, D. K., Ryugo, R., and Killackey, H. P., 1975, Changes in pyramidal cell density consequent to vibrissae removal in the newborn rat, Brain Res. 96:82–87.

    PubMed  CAS  Google Scholar 

  • Sahin, M., Bowen, W. D., and Donoghue, J. P., 1992, Location of nicotinic and muscarinic cholinergic and (u-opiate receptors in rat cerebral neocortex: Evidence from thalamic and cortical lesions, Brain Res. 579:135–147.

    PubMed  CAS  Google Scholar 

  • Sales, N., Martres, M. P., Bouthenet, M. L., and Schwartz, J. C, 1989, Ontogeny of dopoaminergic D-2 receptors in the rat nervous system: Characterization and detailed autoradiographic mapping with [125I]iodosulpride, Neuroscience. 28:673–700.

    PubMed  CAS  Google Scholar 

  • Sargent Jones, L., Ganger, L. L., Davis, J. N., Slotkin, T. A., and Bartolome, J. V., 1985, Postnatal development of brain alpha,-adrenergic receptors: In vitro autoradiography with [125I]HEAT in normal rats and rats treated with alpha-difluoromethylornithine, a specific irreversible inhibitor of ornithine decarboxylase, Neuroscience. 15:1195–1202.

    Google Scholar 

  • Sato, M., Kiyama, H., and Tohyama, M., 1992, Different postnatal development of cells expressing mRNA encoding neurotensin receptor, Neuroscience. 48:137–149.

    PubMed  CAS  Google Scholar 

  • Schlaggar, B. L., and O’Leary, D. D. M., 1992, An activity-dependent component of plasticity in the developing rat neocortex, Soc. Neurosci. Abstr. 18:57.

    Google Scholar 

  • Shaw, C, and Scarth, B. A., 1992, Age-dependent regulation of GABAA receptors in neocortex, Mol. BrainRes. 14:207–212.

    CAS  Google Scholar 

  • Shaw, C, Wilkinson, M., Cynader, M., Needier, M. C, Aoki, C, and Hall, S. E., 1986, The laminar distributions and postnatal development of neurotransmitter and neuromodulator receptors in cat visual cortex. Brain Res. Bull. 16:661–671.

    PubMed  CAS  Google Scholar 

  • Shaw, C, Prusky, G., Van Huizen, F., and Cynader, M., 1989, Differential effects of quinolinic acid lesions on muscarinic acetylcholine receptors in cat visual cortex during postnatal development, Brain Res. Bull, 22:771–776.

    PubMed  CAS  Google Scholar 

  • Shigemoto, R., Nakanishi, S., and Mizuno, N., 1992, Distribution of the mRNA for a metabotropic glutamate receptor (mGluRl) in the central nervous system: An in situ hybridization study in adult and developing rat, J. Cornp. Neural. 322:121–135.

    CAS  Google Scholar 

  • Sikich, L., Hickok, J. M., and Todd., R. D., 1990, 5-HT, A receptors control neurite branching during development, Dev. Brain Res. 56:269–274.

    CAS  Google Scholar 

  • Simons, D. J., and Land, P. W., 1987, Early experience of tactile stimulation influences organization of somatic sensory cortex, Nature. 326:693–696.

    Google Scholar 

  • Smith, T. D., Annis, S. J., Ehlert, F. j., and Leslie, F. M., 1991, N-piIJmethylscopolamine labeling of non-Mj, non-M2 muscarinic receptor binding sites in rat brain, J. Pharmacol, Exp. Ther. 256:1173–1181.

    CAS  Google Scholar 

  • Snow, P. J., and Wilson, P., 1991, Plasticity and the mystacial vibrissae of rodents, in: Progress in Sensory Phyiology, Vol. 11 (H. Autrum, D. Ottoson, E. R. Perl, H. Shimazu, and W. D. Willis, eds.), Springer-Verlag, Berlin, pp. 58–116.

    Google Scholar 

  • Van der Zee, E. A., Streefland, C, Strosberg, A. D., Schröder, IL, and Luken, P. G. M., 1992, Visualization of cholinoceptive neurons in the rat neocortex: Colocalization of muscarinic and nicotinic acetylcholine receptors, Mol, Brain Res. 14:326–336.

    Google Scholar 

  • Van Huizen, F., Strosberg, A. D., and Cynader, M. S., 1988, Cellular and subcellular localisation of muscarinic acetylcholine receptors during postnatal development of cat visual cortex using immunocytochemical procedures, Dev. Brain Res. 44:296–301.

    Google Scholar 

  • Verley, R., and Axelrad, H., 1977, Organisation en “barils” des cellules de la couche IV du cortex SI chez la souris: Effets des lesions ou de la privation des vibrisses mystaciales, C. R. Acad, Sci. 284:1183–1185.

    CAS  Google Scholar 

  • Vizi, E. S., and Lábos, E., 1991, Non-synaptic interactions at presynaptic level, Prog. Neurobiol. 37:145–163.

    PubMed  CAS  Google Scholar 

  • Vos, P., Kaufmann, D., Hand, P. J, and Wolfe, B. B., 1990, a2,-Adienergie receptors are colocalized and coregulated with “whisker barrels” in rat somatosensory cortex, Proc. Natl, Acad. Sci. USA. 87:5114–5118.

    CAS  Google Scholar 

  • Wada, E., Wada, K., Boulter, J., Deneris, E., Heinemann, S., Patrick, J., and Swanson, L. W., 1989, Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: A hybridization histochemical study in the rat, J. Cornp. Nenrol. 284:314–335.

    CAS  Google Scholar 

  • Wamsley, J. K., 1984, Autoradiographic localization of receptor sites in the cerebral cortex, in: Cerebral Cortex, Vol. 2 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 173–202.

    Google Scholar 

  • Waterhouse, B. D., and Woodward, D. J., 1980, Interaction of norepinephrine with cerebro-cortical activity evoked by stimulation of somatosensory afferent pathways, Exp. Neurol, 67:11–34.

    PubMed  CAS  Google Scholar 

  • Waterhouse, B. D., Moises, H. C, and Woodward, D. J., 1980, Noradrenergic modulation of somatosensory cortical neuronal responses to iontophoretically applied putative neurotransmitters, Exp. Neurol, 69:30–49.

    PubMed  CAS  Google Scholar 

  • Welker, E., Soriano, E., Dörfl, J., and Van der Loos, H., (1989a), Plasticity in the barrel cortex of the adult mouse: Transient increase of GAD-immunoreactivity following sensory stimulation, Exp. Brain Res. 78:659–664.

    PubMed  CAS  Google Scholar 

  • Welker, E., Soriano, E., and Van der Loos, H., (1989b), Plasticity in the barrel cortex of the adult mouse: Effects of peripheral deprivation on GAD-immunoreactivity, Exp. Brain Res. 74:441–452.

    PubMed  CAS  Google Scholar 

  • Weiler, W. L., and Johnson, J. I., 1975, Barrels in cerebral cortex altered by receptor disruption in newborn but not in five-day-old mice (Cricetidae and Muridae), Brain Res. 83:504–508.

    Google Scholar 

  • Welsh, F. A., Vannucci, R. C, and Brierley, J. B., 1982, Columnar alterations of NADH fluorescence during hypoxia-ischemia in immature rat brain, J.Cereb. Blood Flow Metab. 2:221–228.

    PubMed  CAS  Google Scholar 

  • White, E. L., 1979, Thalamocortical synaptic relations: A review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex, Brain Res. Rev. 1:275–311.

    Google Scholar 

  • Williams, K., Hanna, J. L., and Molinoff, P. B., 1991, Developmental changes in the sensitivity of the jV-methyl-D-aspartate receptor to polyamines, Mol. Pharmacol. 40:774–782.

    PubMed  CAS  Google Scholar 

  • Wise, S. P., and Jones, E. G., 1978, Developmental studies of thalamocortical and commissural connections in the rat somatic sensory cortex, J. Comp. Neurol. 178:187–208.

    PubMed  CAS  Google Scholar 

  • Wolff, J. R., 1978, Ontogenetic aspects of cortical architecture: Lamination, in: Architectonics of the Cerebral Cortex (M. A. B. Brazier and H. Petsche, eds.), Raven Press, New York, pp. 159–172.

    Google Scholar 

  • Wong-Riley, M. T. T., and Welt, C, 1980, Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice, Proc. Natl. Acad. Sci. USA. 77:2333–2337.

    PubMed  CAS  Google Scholar 

  • Woolsey, T. A., and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region (SI) of the mouse cerebral cortex, Brain Res. 17:205–242.

    PubMed  CAS  Google Scholar 

  • Zifa, E., Hernandez, J., Fayolle, C, and Fillion, G., 1988, Postnatal development of 5-HT1 receptors: [3H]5-HT binding sites and 5-HT induced adenylate cyclase activations in rat brain cortex, Dev. Brain Res. 44:133–140.

    CAS  Google Scholar 

  • Zilles, K., zur Nieden, K., Schleicher, A., and Traber, J., 1990, A new method for quenching correction leads to revisions of data in receptor autoradiography, Histochemistry. 94:569–578.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fuchs, J.L. (1995). Neurotransmitter Receptors in Developing Barrel Cortex. In: Jones, E.G., Diamond, I.T. (eds) The Barrel Cortex of Rodents. Cerebral Cortex, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9616-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9616-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9618-6

  • Online ISBN: 978-1-4757-9616-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics