Skip to main content

Synaptic Organization of the Barrel Cortex

  • Chapter
The Barrel Cortex of Rodents

Part of the book series: Cerebral Cortex ((CECO,volume 11))

Abstract

The inception of the burgeoning field of barrel cortex neurobiology can be traced to the influential publication by Woolsey and Van der Loos (1970). Although barrel-like structures were previously described in the somatosensory cortices of rodents (e.g., Droogleever Fortuyn, 1914; Lorente de Nó, 1938; Woolsey, 1967), Woolsey and Van der Loos were the first to present a detailed description of these structures, and to offer a comprehensive theory for their role in processing somatosensory inputs from the mystacial vibrissae, or whiskers. Furthermore, they predicted that this cortical area would become a particularly suitable model for various neurobiological studies, such as information processing in the cerebral cortex, development of cortical circuitry, and plasticity in cortical function. The works in this volume, synthesizing data collected in numerous laboratories in the past quarter of a century, attest to the perspicacity of these predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agmon, A., and Connors, B. W., 1989, Repetitive burst-firing neurons in the deep layers of the mouse somatosensory cortex, Neurosci. Lett. 99:137–141.

    PubMed  CAS  Google Scholar 

  • Agmon, A., and Connors, B. W., 1991, Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro, Neuroscience. 41:365–379.

    PubMed  CAS  Google Scholar 

  • Agmon, A., and Connors, B. W., 1992, Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex, J. Neurosci. 12:319–329.

    PubMed  CAS  Google Scholar 

  • Agmon, A., O’Dowd, D. K., and Jones, E. G., 1990, Development of thalamocortical responses in barrel cortex of early postnatal mice, Soc. Neurosci. Abstr. 16:631.

    Google Scholar 

  • Akers, R. M., and Killackey, H. P., 1978, Organization of corticocortical connections in the parietal cortex of the rat, J. Comp. Neurol. 181:513–538.

    PubMed  CAS  Google Scholar 

  • Andressen, C, Blumcke, I., and Celio, M. R., 1993, Calcium-binding proteins-Selective markers of nerve cells, Cell Tissue Res. 271:181–208.

    PubMed  CAS  Google Scholar 

  • Angel, A., 1983, The functional interrelations between the somatosensory cortex and the thalamic reticular nucleus: Their role in the control of information transfer across the specific somatosensory relay nucleus, in: Somatosensory Integration in the Thalamus (G. Macchi, A. Rustioni, and R. Spreafico, eds.), Elsevier, Amsterdam, pp. 221–239.

    Google Scholar 

  • Armstrong-James, M., 1975, The functional status and columnar organization of single cells responding to cutaneous stimulation in neonatal rat somatosensory cortex SI, J.Physiol. (London). 246:501–538.

    CAS  Google Scholar 

  • Armstrong-James, M., and Callahan, C. A., 1991, Thalamo-cortical processing of vibrissal information in the rat. IL Spatiotemporal convergence in the thalamic ventroposterior medial nucleus (VPm) and its relevance to generation of receptive fields of SI cortical “barrel” neurones, J. Comp. Neurol. 303:211–224.

    PubMed  CAS  Google Scholar 

  • Armstrong-James, M., and Fox, K., 1987, Spatiotemporal convergence and divergence in the rat SI barrel cortex, J. Comp. Neurol. 263:265–281.

    PubMed  CAS  Google Scholar 

  • Armstrong-James, M., Callahan, C. A., and Friedman, M. A., 1991, Thalamo-cortical processing of vibrissal information in the rat. I. Intracortical origins of surround but centre-receptive fields of layer IV neurones in the SI barrel field cortex, J. Comp. Neurol. 303:193–210.

    PubMed  CAS  Google Scholar 

  • Armstrong-James, M., Fox, K., and Dasgupta, A., 1992, Flow of excitation within rat barrel cortex on striking a single vibrissa, J. Neurophysiol. 68:1345–1358.

    PubMed  CAS  Google Scholar 

  • Baughman, R. W., and Gilbert, C. D., 1981, Aspartate and glutamate as possible neurotransmitters in the visual cortex, J. Neurosci. 1:427–439.

    PubMed  CAS  Google Scholar 

  • Belford, G. R., and Killackey, H. P., 1979, Vibrissae representation in the subcortical trigeminal centers of the neonatal rat, J. Comp. Neurol. 183:305–322.

    PubMed  CAS  Google Scholar 

  • Benshalom, G., and White, E. L., 1986, Quantification of thalmocortical synapses with spiny stellate neurons in layer IV of mouse somatosensory cortex, J. Comp. Neurol. 253:303–314.

    PubMed  CAS  Google Scholar 

  • Bernardo, K. L., and Woolsey, T. A., 1987, Axonal trajectories between mouse somatosensory thalamus and cortex, J. Comp. Neurol. 258:542–564.

    PubMed  CAS  Google Scholar 

  • Bernardo, K. L., McCasland, J. S., and Woolsey, T. A., (1990a), Local axonal trajectories in mouse barrel cortex, Exp. Brain Res. 82:247–253.

    PubMed  CAS  Google Scholar 

  • Bernardo, K. L., McCasland, J. S., Woolsey, T. A., and Strominger, R. N., (1990b), Local intra-and interlaminar connections in mouse barrel cortex, J. Comp. Neurol. 291:231–255.

    PubMed  CAS  Google Scholar 

  • Blasdel, G. G., and Lunc, J. S., 1983, Termination of afferent axons in macaque striate cortex, J. Neurosci. 3:1389–1413.

    PubMed  CAS  Google Scholar 

  • Braitenberg, V, and Schüz, S., 1991, Aniatolny of the Cortex: Statistics and Geometry, Springer-Verlag, Berlin.

    Google Scholar 

  • Carvell, G. E., and Simons, D. J., 1987, Thalamic and corticocortical connections of the second somatic sensory area of the mouse, J. Comp. Neurol. 265:409–427.

    PubMed  CAS  Google Scholar 

  • Carvell, G. E., and Simons, D. J., 1988, Membrane potential changes in rat SmI cortical neurons evoked by controlled stimulation of mystacial vibrissae, Brain Res. 448:186–191.

    PubMed  CAS  Google Scholar 

  • Carvell, G., and Simons, D. J., 1990, Biometrie analyses of vibrissal tactile discrimination in the rat, J. Neurosci. 10:2638–2648.

    PubMed  CAS  Google Scholar 

  • Caviness, V. S., Jr., 1975, Architectonic map of neocortex of the normal mouse, J.Comp. Neurol. 164:247–264.

    PubMed  Google Scholar 

  • Celio, M. R., 1990, Calbindin D-28k and parvalbumin in the rat nervous system, Neuroscience. 35:375–475.

    PubMed  CAS  Google Scholar 

  • Chagnac-Amitai, Y., and Connors, B. W., 1989, Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex, J. Neurophysiol. 62:1149–1162.

    PubMed  CAS  Google Scholar 

  • Chagnac-Amitai, Y., Luhmann, H. J., and Prince, D. A., 1990, Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features, J. Comp. Neurol. 196:598–613.

    Google Scholar 

  • Chapin, J. K., 1986, Laminar differences in sizes, shapes, and response profiles of cutaneous receptive fields in the rat SI cortex, Exp. Brain Res. 62:549–559.

    PubMed  CAS  Google Scholar 

  • Chapin, J. K., and Chia-Sheng, L.,1984, Mapping the body representation in the SI cortex of anesthetized and awake rats, J. Comp. Neurol. 229:199–213.

    PubMed  CAS  Google Scholar 

  • Chapin, J. K., Sadeq, M., and Guise, J. L. U., 1987, Corticocortical connections within the primary somatosensory cortex of the rat, J. Comp. Neurol. 263:326–346.

    PubMed  CAS  Google Scholar 

  • Chiaia, N. L., Rhoades, R. W., Bennett-Clarke, C. A., Fish, S. E., and Killackey, H. P., (1991a), Thalamic processing of vibrissal information in the rat. I. Afferent input to the medial ventral posterior and posterior nuclei, J. Comp. Neurol. 314:201–216.

    PubMed  CAS  Google Scholar 

  • Chiaia, N. L., Rhoades, R. W., Fish, S. E., and Killackey, II. P., (1991b), Thalamic processing of vibrissal information in the rat. II. Morphological and functional properties of medial ventral posterior nucleus and posterior nucleus neurons, J. Comp. Neurol. 314:217–236.

    PubMed  CAS  Google Scholar 

  • Chmielowska, J., Kossut, M., and Chmielowski, M., (1986a), Single vibrissal cortical column in the mouse labeled with 2-deoxyglucose, Exp. Brain Res. 63:607–619.

    PubMed  CAS  Google Scholar 

  • Chmielowska, J., Stewart, M. G., Bourne, R. C, and Hámori, J., (1986b), Gamma-aminobutyric acid immunoreactivity in mouse barrel field: A light microscopical study, Brain Res. 368:371–374.

    PubMed  CAS  Google Scholar 

  • Chmielowska, J., Carvell, G. E., and Simons, D. J., 1988a, Spatial organization of corticothalamic cells in the rat SmI vibrissa/barrel cortex, Soc. Neurosci. Abstr. 14:222.

    Google Scholar 

  • Chmielowska, J., Stewart, M. G., and Bourne, R. G, (1988b), 7-Aminobutyric acid (GABA) immunoreactivity in mouse and rat first somatosensory (SI) cortex: Description and comparison, Brain Res. 439:155–168.

    PubMed  CAS  Google Scholar 

  • Chmielowska, J., Carvell, G. E., and Simons, D. J., 1989, Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex, J. Comp. Neurol. 285:325–338.

    PubMed  CAS  Google Scholar 

  • Cobas, A., and Fairén, A., 1988, GABAergic neurons of different morphological classes are cogene-rated in the mouse barrel cortex, J. Neurocytol. 17:511–519.

    PubMed  CAS  Google Scholar 

  • Cobas, A., Welker, E., Fairén, A., Krafstik, R., and Van der Loos, IL, 1987, GABAergic neurons in the barrel cortex of the mouse: An analysis using neuronal archetypes, J. Neurocytol. 16:843–871.

    PubMed  CAS  Google Scholar 

  • Cohen, M. H., Zatezalo, R., and Land, P. W., 1993, Parvalbumin and calbindin immunoreactivity in the somatosensory barrel cortex and the effect of tactile experience, Soc. Neurosci. Abstr. 19:1568.

    Google Scholar 

  • Colonnier, M., 1964, Experimental degeneration in the cerebral cortex, J. Anat. 98:47–53.

    PubMed  CAS  Google Scholar 

  • Colonnier, M., 1968, Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study, Brain Res. 9:268–287.

    PubMed  CAS  Google Scholar 

  • Connors, B. W., and Gutnick, M. J., 1990, Intrinsic firing patterns of diverse neocortical neurons, Trends Neurosci. 13:99–104.

    PubMed  CAS  Google Scholar 

  • Conti, F., Fabri, M., and Manzoni, T, 1988, Glutamate-positive corticocortical neurons in the somatic sensory areas I and II of cats, J. Neurosci. 8:2948–2960.

    PubMed  CAS  Google Scholar 

  • Cox, S. B., Woolsey, T. A., and Rovainen, C. M., 1993, Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels, J. Cereb. Blood Flow Metab. 13:899–913.

    PubMed  CAS  Google Scholar 

  • Crandall, J. E., Korde, M., and Caviness, V. S., Jr., 1986, Somata of layer V projection neurons in the mouse barrelfleld cortex are in preferential register with the sides and septa of barrels, Neurosci. Lett. 67:19–24.

    PubMed  CAS  Google Scholar 

  • Czeiger, D., and White, E. L., 1993, Synapses of extrinsic and intrinsic origin made by callosal projection neurons in mouse visual cortex, J. Comp. Neurol. 330:502–513.

    PubMed  CAS  Google Scholar 

  • DeFelipe, J., 1993, Neocortical neuronal diversity: Chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules, Cereb. Cortex. 3:273–289.

    Google Scholar 

  • Diamond, M. E., Armstrong-James, M., and Ebner, F. F., 1992, Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus, J. Comp. Neurol. 318:462–476.

    PubMed  CAS  Google Scholar 

  • Dörfl, J., 1985, The innervation of the mystacial vibrissae of the white mouse. A topographical study, J. Anat. (London). 142:173–184.

    Google Scholar 

  • Dori, I., Dinopoulos, A., Cavanagh, M. E., and Parnavelas, J. G., 1992, Proportion of glutamateimmunoreactive and aspartate-immunoreactive neurons in the efferent pathways of the rat visual cortex varies according to the target, J. Comp. Neurol. 319:191–204.

    PubMed  CAS  Google Scholar 

  • Douglas, R. J., and Martin, K. A. C, 1991, A functional microcircuit for cat visual cortex, J. Physiol. (London). 440:735–769.

    CAS  Google Scholar 

  • Droogleever Fortuyn, A. B., 1914, Cortical cell-lamination of the hemispheres of some rodents, Arch. Neurol. Psychiatry. 6:221–354.

    Google Scholar 

  • Durham, D., and Woolsey, T. A., 1984, Effect of neonatal whisker lesions on mouse central trigeminal pathways, J. Comp. Neurol. 223:424–447.

    PubMed  CAS  Google Scholar 

  • Durham, D., and Woolsey, T. A., 1985, Functional organization in cortical barrels of normal and vibrissae-damaged mice: A [3H]2-deoxyglucose study, J. Comp. Neurol. 235:97–110.

    PubMed  CAS  Google Scholar 

  • Elhanany, E., and White, E. L., 1990, Intrinsic circuitry: Synapses involving the local axon collaterals of corticocortical projection neurons in the mouse primary somatosensory cortex, J. Comp. Neurol. 291:43–54.

    PubMed  CAS  Google Scholar 

  • Erzurumlu, R. S., and Jhaveri, S., 1992, Emergence of connectivity in the embryonic rat parietal cortex, Cereb. Cortex. 2:336–352.

    PubMed  CAS  Google Scholar 

  • Fabri, M., and Burton, H., 1991, Ipsilateral cortical connections of primary somatic sensory cortex in rats, J. Comp. Neurol. 311:405–424.

    PubMed  CAS  Google Scholar 

  • Fairén, A., Peters, A., and Saldanha, J., 1977, A new procedure for examining Golgi impregnated neurons by light and electron microscopy, J. Neurocytol. 6:311–337.

    PubMed  Google Scholar 

  • Fairén, A., DeFelipe, J., and Regidor, J., 1984, Nonpyramidal neurons: General account, in: Cerebral Cortex, Vol. 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 201–253.

    Google Scholar 

  • Feldman, M. L., 1984, Morphology of the neocortical pyramidal neuron, in: Cerebral Cortex, Vol. 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 123–200.

    Google Scholar 

  • Feldman, M. L., and Peters, A., 1974, A study of barrels and pyramidal dendritic clusters in the cerebral cortex, Brain Res. 77:55–76.

    PubMed  CAS  Google Scholar 

  • Ferrington, D. G., and Rowe, M. J., 1980, Differential contributions to coding of cutaneous vibratory information by cortical somatosensory areas I and 11, J. Neurophysiol. 43:310–331.

    PubMed  CAS  Google Scholar 

  • Ferster, D., and LeVay, S., 1978, The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat, J. Comp. Neurol. 182:923–944.

    PubMed  CAS  Google Scholar 

  • Fetz, E. E., Toyama, K., and Smith, W., 1992, Synaptic interactions between cortical neurons, in: Cerebral Cortex, Vol. 9 (A. Peters and E. G. Jones, eds.), Plenum Press, New York.

    Google Scholar 

  • Fifková, E., 1970, The effect of monocular deprivation on the synaptic contacts of the visual cortex, J. Neurobiol, 1:285–294.

    Google Scholar 

  • Fitzpatrick, D., and Raczkowski, D., 1990, Innervation patterns of single physiologically identified geniculocortical axons in the striate cortex of the tree shrew, Proc. Natl. Acad. Sci. USA. 87:449–453.

    PubMed  CAS  Google Scholar 

  • Fonesca, M., DeFelipe, J., and Fairén, A., 1988, Local connections in transplanted and normal cerebral cortex of rats, Exp. Brain Res. 69:387–398.

    Google Scholar 

  • Friede, R. L., 1960, A comparative study of the cytoarchitectonics and chemoarchitectonics of the cerebral cortex of the guinea pig, Z. Zellforsch. 52:482–493.

    PubMed  CAS  Google Scholar 

  • Gardner, E. P., and Constanzo, R. M., 1980, Temporal integration of multiple-point stimuli in primary somatosensory cortical receptive fields of alert monkeys, J. Neurophysiol. 43:444–468.

    PubMed  CAS  Google Scholar 

  • Gilbert, C. D., 1992, Horizontal integration and cortical dynamics, Neuron. 9:1–13.

    PubMed  CAS  Google Scholar 

  • Gilbert, C. D., and Wiesel, T. N., 1979, Morphology and intracortical projections of functionally characterized neurons in the cat visual cortex, Nature. 280:120–125.

    PubMed  CAS  Google Scholar 

  • Gilbert, C. D., and Wiesel, T. N., 1983, Clustered intrinsic connections in cat visual cortex, J. Neurosci. 3:1116–1133.

    PubMed  CAS  Google Scholar 

  • Giuffrida, R., and Rustioni, A., 1989, Glutamate and aspartate immunoreactivity in corticocortical neurons of the sensorimotor cortex of rats, Exp. Brain Res. 74:41–46.

    PubMed  CAS  Google Scholar 

  • Goodman, C. S., and Shatz, C. J., 1993, Developmental mechanisms that generate precise patterns of neuronal connectivity, Cell. 72:77–98.

    PubMed  Google Scholar 

  • Greenough, W. T, and Chang, F.-L. F., 1988, Dendritic pattern formation involves both oriented regression and oriented growth in the barrels of mouse somatosensory cortex, Dev. Brain Res. 43:148–152.

    Google Scholar 

  • Gruner, J. W., Hisch, J. C, and Sotelo, C, 1974, Ultrastructural features of the insulated suprasylvan gyrus in the cat, J. Camp. Neural. 154:1–27.

    CAS  Google Scholar 

  • Grunwerg, B. S., and Krauthamer, G. M., 1990, Vibrissa-responsive neurons of the superior colliculus that project to the interlaminar thalamus in the rat, Neurosci. Lett. 111:23–27.

    PubMed  CAS  Google Scholar 

  • Harris, R. M., 1986, Morphology of physiologically identified thalamocortical relay neurons in the rat ventrobasal thalamus, J. Comp. Neural. 251:491–505.

    CAS  Google Scholar 

  • Harris, R. M., and Woolsey, T. A., 1983, Computer-assisted analyses of barrel neuron axons and their putative synaptic contacts, J. Camp. Neural. 220:63–79.

    CAS  Google Scholar 

  • Hellweg, F. C., Schutz, W., and Creutzfeldt, O. D., 1977, Extracellular and intracellular recordings from cat’s cortical whisker projection area: Thalamocortical response transformation, J. Neuro-physiol. 40:463–479.

    CAS  Google Scholar 

  • Hendry, S. H. C, Jones, E. G., Emson, P. C, Lawson, D., Heizmann, C. W., and Streit, P., 1989, Two classes of cortical GAB A neurons defined by differential calcium binding protein immunoreac-tivities, Exp. Brain Res. 76:467–472.

    PubMed  CAS  Google Scholar 

  • Herkenham, M., 1980, Laminar organization of thalamic projections to the rat neocortex, Science. 207:532–535.

    PubMed  CAS  Google Scholar 

  • Hersch, S. M., and White, E. L., (1981a), Quantification of synapses formed with apical dendrites of Golgi impregnated pyramidal cells: Variability in thalamocortical inputs and consistency in the ratios of asymmetrical to symmetrical synapses, Neuroscience. 6:1043–1051.

    PubMed  CAS  Google Scholar 

  • Hersch, S. M., and White, E. L., (1981b), Thalamocortical synapses involving identified neurons in mouse primary somatosensory cortex: A terminal degeneration and Golgi/EM study, J.Comp. Neural. 195:252–263.

    Google Scholar 

  • Hersch, S. M., and White, E. L., (1981c), Thalmocortical synapses with corticothalamic projection neurons in mouse SmI cortex: Electron microscopic demonstration of amonosynaptic feedback loop, Neurosci. Lett. 24:207–210.

    PubMed  CAS  Google Scholar 

  • Hersch, S. M., and White, E. L., 1982, A quantitative study of the thalamocortical and other synapses in layer IV of pyramidal cells projecting from mouse SmI cortex to the caudate-putamen nucleus, J. Camp. Neural. 211:217–255.

    CAS  Google Scholar 

  • Hofman, M. A., 1985, Neuronal correlates of corticalization in mammals: A theory, J. Thear. Biol. 112:77–95.

    CAS  Google Scholar 

  • Holmes, W. R., Segev, I., and Rail, W., 1992, Interpretation of time constant and electrotonic length estimates in multicylinder or branched neuronal structures, J. Neurophysiol. 68:1401–1420.

    PubMed  CAS  Google Scholar 

  • Hoogland, P. V., Welker, E., and Van der Loos, H., 1987, Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgraris-leucoagglutinin and HRP, Exp. Brain Res. 68:73–87.

    PubMed  CAS  Google Scholar 

  • Hoogland, P. V., Wouterlood, F. G., Welker, E., and Van der Loos, H., 1991, Utrastructure of giant and small thalamic terminals of cortical origin: A study of the projections from the barrel cortex in mice using Phaseolus vulgaris leuco-agglutinin (PHA-L), Exp. Brain Res. 87:159–172.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Livingstone, M. S., 1987, Segregation of form, color, and stereopsis in primate area 18, J. Neurosci. 7:3378–3415.

    PubMed  CAS  Google Scholar 

  • Hubel, D, H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol. (London), 160:106–154.

    CAS  Google Scholar 

  • Huerta, M. F., Frankfurter, A., and Halting, J. K., 1983, Studies of the principal sensory and spinal trigeminal nuclei of the rat: Projections to the superior colliculus, inferior olive, and cerebellum, J. Comp. Neural. 220:147–167.

    CAS  Google Scholar 

  • Hughes, C. M., and Peters, A., (1992a), Symmetric synapses formed by callosal afferents in rat visual cortex, Brain Res. 583:271–278.

    PubMed  CAS  Google Scholar 

  • Hughes, C. M., and Peters, A., (1992b), Types of callosally projecting nonpyramidal neurons in rat visual cortex identified by lysosomal HRP retrograde labeling, Anat. Embryol. 186:183–193.

    PubMed  CAS  Google Scholar 

  • Humphrey, A. L., Sur, M., Uhlrich, D. J., and Sherman, S. M., 1985, Projection patterns of individual X-and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat, J. Comp. Neural. 233:159–189.

    CAS  Google Scholar 

  • Huntley, G. W., and Jones, E. G., 1991, Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: A correlative anatomic and physiological study, J. Neuraphyswl. 66:390–413.

    CAS  Google Scholar 

  • Huston, K. A., and Masterton, R.B., 1986, The sensory contribution of a single vibrissa’s cortical barrel, J. Neurophysiol. 56:1196–1223.

    Google Scholar 

  • Hyashi, H., 1980, Distribution of vibrissae afferent fiber collaterals in the trigeminal nuclei as revealed by intra-axonal injection of horseradish peroxidase, Brain Res. 183:442–446.

    Google Scholar 

  • Innocenti, G. M., and Fiore, L., 1976, Morphological correlates of visual field transformation in the corpus callosum, Neurosci. Lett. 2:245–252.

    PubMed  CAS  Google Scholar 

  • Ito, M., 1985, Processing of vibrissa sensory information within the rat neocortex, J. Neurophysiol. 54:479–490.

    PubMed  CAS  Google Scholar 

  • Ito, M., 1988, Response properties and topography of vibrissa-sensitive VPM neurons in the rat, J. Neurophysiol 60:1181–1197.

    PubMed  CAS  Google Scholar 

  • Ito, M., 1992, Simultaneous visualization of cortical barrels and horseradish peroxidase-injected layer-5b vibrissa neurones in the rat, J. Physiol. (London), 454:247–265.

    CAS  Google Scholar 

  • Jaarsma, D., Sebens, J. B., and Korf, J., 1991, Localization of NMDA and AMPA receptors in rat barrel field, Neurosci. Lett. 133:233–236.

    PubMed  CAS  Google Scholar 

  • Jensen, K. F., and Killackey, H. P., 1987, Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents, J. Neurosci. 7:3529–3543.

    PubMed  CAS  Google Scholar 

  • Jones, E. G., 1984, Laminar distribution of cortical efferent cells, in: Cerebral Cortex, Vol. 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 521–553.

    Google Scholar 

  • Jones, E. G., 1986, Connectivity of the primate sensory-motor cortex, in: Cerebral Cortex, Vol. 5 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 113–183.

    Google Scholar 

  • Jones, E. G., and Powell, T. P. S., 1968, The ipsilateral cortical connections of the somatic sensory cortex in the cat, Brain Res. 9:71–94.

    PubMed  CAS  Google Scholar 

  • Jones, E. G., and Powell, T. P. S., 1969, Connections of the somatic sensory cortex in the rhesus monkey. I. Ipsilateral cortical connections, Brain. 92:477–502.

    PubMed  CAS  Google Scholar 

  • Katz, L. C, 1987, Local circuitry of identified projection neurons in cat visual cortex brain slices, J. Neurosci. 7:1223–1249.

    PubMed  CAS  Google Scholar 

  • Kawaguchi, Y, and Kubota, Y, 1993, Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin-immunoreactive and calbindin (D28k)-immunoreactive neurons in layer V or rat frontal cortex, J. Neurophysiol. 70:387–396.

    PubMed  CAS  Google Scholar 

  • Kawaguchi, Y, Katsumaru, H., Kosaka, R., Heizmann, C. W., and Hama, K., 1987, Fast spiking cells in rat hippocampus (CA1 region) contain the calcium binding protein parvalbumin, Brain Res. 416:369.

    PubMed  CAS  Google Scholar 

  • Keller, A., 1989a, Functional properties of cortical neurons, in: Cortical Circuits: Synaptic Organization of the Cerebral Cortex-Structure, Function and Theory (E. L. White, ed.), Birkhäuser, Boston, pp. 107–131.

    Google Scholar 

  • Keller, A., 1989b, Synaptic circuitry revealed by electrophysiology, in: Cortical Circuits: Synaptic Organization of the Cerebral CortexStructure, Function and Theory (E. L. White, ed.), Birkhäuser, Boston, pp. 132–149.

    Google Scholar 

  • Keller, A., (1993a), Intrinsic synaptic organization of the motor cortex, Cereb. Cortex. 3:430–441.

    PubMed  CAS  Google Scholar 

  • Keller, A., (1993b), Patterns of intrinsic connections between motor representation zones in the cat motor cortex, NeuroReport. 4:515–518.

    PubMed  CAS  Google Scholar 

  • Keller, A., and Asanuma, H., 1993, Synaptic relationships involving local axon collaterals of pyramidal neurons in the cat motor cortex, J. Comp. Neurol. 336:229–242.

    PubMed  CAS  Google Scholar 

  • Keller, A., and White, E. L., 1986, Distribution of glutamic acid decarboxylase-immunoreactive structures in the barrel region of mouse somatosensory cortex, Neurosci. Lett. 66:245–250.

    PubMed  CAS  Google Scholar 

  • Keller, A., and White, E. L., 1987, Synaptic organization of GABAergic neurons in the mouse SmI cortex, J. Comp. Neurol. 262:1–12.

    PubMed  CAS  Google Scholar 

  • Keller, A., and White, E. L., 1989, Triads: A synaptic network component in the cerebral cortex, Brain Res. 496:105–112.

    PubMed  CAS  Google Scholar 

  • Keller, A., White, E. L., and Cipolloni, P. B., 1985, The identification of thalamocortical axon terminals in barrels of mouse SmI cortex using immunohistochemistry of aterogradely transported lectin (Phaseolus vulgaris /eucoagglutinin), Brain Res. 343:159–165.

    PubMed  CAS  Google Scholar 

  • Killackey, H. P., 1973, Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat, Brain Res. 51:326–331.

    PubMed  CAS  Google Scholar 

  • Killackey, H. P., and Leshin, S., 1975, The organization of specific thalamocortical projections to the posteromedial barrel subfield of the rat somatic sensory cortex, Brain Res. 86:469–472.

    PubMed  CAS  Google Scholar 

  • Killackey, H. P., Belford, G., Ryugo, R., and Ryugo, D. K., 1976, Anomalous organization of thalamocortical projections consequent to vibrissae removal in the newborn rat and mouse, Brain Res. 104:309–315.

    PubMed  CAS  Google Scholar 

  • Kisvárday, Z. F., and Eysel, U. T, 1992, Cellular organization of reciprocal patchy networks in layer III of cat visual cortex (area 17), Neuroscience. 46:275–286.

    PubMed  Google Scholar 

  • Kita, H., and Kitai, S. T., 1986, Electrophysiology of rat thalamo-cortical relay neurons: An in vivo intracellular recording and labeling study, Brain Res. 371:80–89.

    PubMed  CAS  Google Scholar 

  • Koch, C, Poggio, T., and Torre, V., 1982, Retinal ganglion cells: A functional interpretation of dendritic morphology, Philos. Trans. R. Soc. London B Ser. 198:227–264.

    Google Scholar 

  • Koralek, K. A., Jensen, K. F., and Killackey, H. P., 1988, Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex, Brain Res. 463:346–351.

    PubMed  CAS  Google Scholar 

  • Kossut, M., Hand, P. J., Greenberg, J., and Hand, C. L., 1988, Single vibrissal cortical column in SI cortex of rat and its alternations in neonatal and adult vibrissa-deafferented animals: A quantitative 2DG study, J. Neurophysiol. 60:829–852.

    PubMed  CAS  Google Scholar 

  • Krohn, K., Rothe, T., and Biesold, D., 1992, High-affinity uptake of GAB A and glutamate decarbox-ylase activity in rat primary somatosensory cortex after sciatic nerve injury, Mol. Chem. Neuropathol. 16:159–169.

    PubMed  CAS  Google Scholar 

  • Kuljis, R. O., 1992, Vibrissaeless mutant rats with a modular representation of innervated sinus hair follicles in the cerebral cortex, Exp. Nenrol. 115:146–150.

    CAS  Google Scholar 

  • Kyriazi, H. T., and Simons, D. J., 1993, Thalamocortical response transformations in simulated whisker barrels, J. Neurosci. 13:1601–1615.

    PubMed  CAS  Google Scholar 

  • Land, P. W., and Simons, D. J., (1985a), Cytochrome oxidase staining in the rat SmI barrel cortex, J. Comp. Neurol. 238:225–235.

    PubMed  CAS  Google Scholar 

  • Land, P. W., and Simons, D. J., (1985b), Metaboloc activity in SmI cortical barrels of adult rats is dependent on patterned sensory stimulation of the mystacial vibrissae, Brain Res. 341:189–194.

    PubMed  CAS  Google Scholar 

  • Land, P. W., and Simons, D. J., (1985c), Metabolic and structural correlates of the vibrissae representation in the thalamus of the adult rat, Neurosci. Lett. 69:319–324.

    Google Scholar 

  • Landry, P., and Deschênes, M., 1981, Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat, J. Comp. Neurol. 199:345–371.

    PubMed  CAS  Google Scholar 

  • Lapenko, T. K., and Poladchikova, O. N., 1983, Intracortical connections between neuron groups in the somatosensory cortex studied by the retrograde horseradish peroxidase transport method in rats, Neurophysiology USSR. 15:16–20.

    Google Scholar 

  • La Vail, J. H., and La Vail, M. M., 1972, Retrograde axonal transport in the central nervous system, Science 173:1416–1417.

    Google Scholar 

  • Lev-Tov, A., Miller, J. P., Burke, R. E., and Rail, W., 1983, Factors that control amplitudes of EPSPs in dendritic neurons, J. Neurophysiol. 50:399–412.

    PubMed  CAS  Google Scholar 

  • Lichtenstein, S. H., Carvell, G. E., and Simons, D. J., 1990, Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions, Somatosens. Mot. Res. 7:47–65.

    PubMed  CAS  Google Scholar 

  • Lidov, G. H., Rice, F. L., and Molliver, M. E., 1978, The organization of the catecholamine innervation of somatosensory cortex: The barrel field of the mouse, Brain Res. 153:577–584.

    PubMed  CAS  Google Scholar 

  • Lin, G.-S., Lu, S. M., and Schmechel, D. E., 1985, Glutamic acid decarboxylase immunoreactivity in layer IV of barrel cortex of rat and mouse, J. Neurosci. 5:1934–1939.

    PubMed  CAS  Google Scholar 

  • Lin, G., Lu, S. M., and Yamawaki, R. M., 1987, Laminar and synaptic organization of terminals from the ventrobasal and posterior thalamic nuclei in rat barrel cortex, Soc. Neurosci. Abstr. 13:248.

    Google Scholar 

  • Livingstone, M. S., and Hubel, D. H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4:309–356.

    PubMed  CAS  Google Scholar 

  • Lorente de No, R., 1922, La corteza cerebral del raton, Trab. Lab. Invest, Biol. (Madrid). 20:41–78.

    Google Scholar 

  • Lorente de No, R., 1938, Architectonics and structure of the cerebral cortex, in: The Physiology of the Nervous System (J. F. Fulton, ed.), Oxford University Press, London, pp. 291–327.

    Google Scholar 

  • Lu, S.-M. and Lin, R. G.-S., 1993, Thalamic afferents of the rat barrel cortex: A light and electronmicroscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer, Somatosens. Mot. Res. 10:1–16.

    PubMed  CAS  Google Scholar 

  • Lund, J. S., 1984, Spiny stellate neurons, in: Cerebral Cortex, Vol. 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 255–308.

    Google Scholar 

  • Lysakowski, A., Wainer, B. H., Bruce, G., and Hersh, L. B., 1989, An atlas of the regional and laminar distribution of choline acetyltransferase immunoreactivity in rat cerebral cortex, Neuros-cience. 28:291–336.

    CAS  Google Scholar 

  • Ma, P. M., and Woolsey, R. A., 1984, Cytoarchitectonic correlates of vibrissae in the medullary trigeminal complex of the mouse, Brain Res. 306:374–379.

    PubMed  CAS  Google Scholar 

  • McGasland, J. S., and Woolsey, T. A., 1988, High-resolution 2-deosyglucose mapping of functional cortical columns in mouse barrel cortex, J. Comp. Neurol. 278:555–569.

    Google Scholar 

  • McGasland, J. S., Bernardo, K. L., Probst, K. L., and Woolsey, T. A., 1992, Gortical local circuit axons do not mature after early deafferentation, Proc. Natl. Acad. Sci. USA. 89:1832–1836.

    Google Scholar 

  • McCormick, D. A., Connors, B. W., Lighthall, J. W., and Prince, D. A., 1985, Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex, J. Neurophysiol. 54:782–805.

    PubMed  CAS  Google Scholar 

  • McGuire, B. A., Gilbert, C. D., Rivlin, P. K., and Wiesel, T. N., 1991, Targets of horizontal connections in macaque primary visual cortex, J. Cornp. Neurol. 305:370–392.

    CAS  Google Scholar 

  • Martin, K. A. C, 1988, The Wellcome prize lecture: From single cells to simple circuits in the cerebral cortex, Q. J. Exp. Physiol. 73:637–702.

    PubMed  CAS  Google Scholar 

  • Matsubara, J. A., and Phillips, D. P., 1988, Intracortical connections and their physiological correlates in the primary auditory cortex (AI) of the cat, J. Comp. Neurol. 268:38–48.

    PubMed  CAS  Google Scholar 

  • Metherate, R., and Dykes, R. W., 1985, Simultaneous recordings from pairs of cat somatosensory cortical neurons with overlapping peripheral receptive fields, Brain Res. 341:119–129.

    PubMed  CAS  Google Scholar 

  • Mishima, K., 1992, Facilitatory and inhibitory processes in the thalamic ventrobasal nucleus of the rat, Jpn.J. Physiol. 42:193–210.

    PubMed  CAS  Google Scholar 

  • Miyashita, E., Asanuma, H., and Keller, A., 1992, Input-output organization of the rat vibrissae motor cortex, Soc. Neurosci. Abstr. 18:846.

    Google Scholar 

  • Miyashita, E., Asanuma, H., and Keller, A., 1994, Input-output organization of the rat vibrissae motor cortex, Exp. Brain Res. 99:223–232.

    PubMed  CAS  Google Scholar 

  • Mountcastle, V. B., 1978, An organizing principle for cerebral function: The unit module and the distributed system, in: The Mindful Brain (G. M. Edelman and V. B. Mountcastle, eds.), MIT Press, Cambridge, MA, pp. 7–50.

    Google Scholar 

  • Mountcastle, V. B., and Powell, T. P. S., 1959, Neural mechanisms subserving cutaneous sensibility, with special reference to the role of inhibition in sensory perception and discrimination, Bull. Johns Hopkins Hosp. 105:201–232.

    PubMed  CAS  Google Scholar 

  • Mountcastle, V. B., Talbot, W. H., Sakata, H., and Hyvarinen, J., 1969, Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination, J. Neurophysiol. 32:452–484.

    PubMed  CAS  Google Scholar 

  • Muly, E. C, and Fitzpatrick, D., 1992, The morphological basis for binocular and ON/OFF convergence in tree shrew striate cortex, J. Neurosci. 12:319–1334.

    Google Scholar 

  • Olavarria, J., van Sluyters, R. C, and Killackey, H. P., 1984, Evidence for the complementary organization of callosal and thalamic connections within rat somatosensory cortex, Brain Res. 291:364–368.

    PubMed  CAS  Google Scholar 

  • Pasternak, J. F., and Woolsey, T. A., 1975, The number, size and spatial distribution of neurons in lamina IV of the mouse SmI neocortex, J. Comp. Neurol. 160:291–306.

    PubMed  CAS  Google Scholar 

  • Patel, U., 1983, Non-random distribution of blood vessels in the posterior regions of the rat somatosensory cortex, Brain Res. 289:65–70.

    PubMed  CAS  Google Scholar 

  • Patel-Vaidya, U., 1985, Ultrastructural organization of posterior and anterior barrels in the somatosensory cortex of rat, J. Neurosci. Res. 14:357–371.

    PubMed  CAS  Google Scholar 

  • Peters, A., 1987, Number of neurons and synapses in primary visual cortex, in: Cerebral Cortex, Vol. 6 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 267–294.

    Google Scholar 

  • Peters, A., 1993, Pyramidal cell modules in rat visual cortex. Their structure and development, in: Formation and Regeneration of Nerve Connections (S. C. Sharma and J. W. Fawcett, eds.), Birkhäuser, Boston, pp. 102–120.

    Google Scholar 

  • Peters, A., and Feldman, M. L., 1977, The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. IV. Terminations upon spiny dendrites, J. Neurocytol. 6:669–689.

    PubMed  CAS  Google Scholar 

  • Peters, A., and Sethares, C, 1991, Organization of pyramidal neurons in area 17 of monkey visual cortex, J. Comp. Neurol. 306:1–23.

    PubMed  CAS  Google Scholar 

  • Peters, A., and Walsh, M. T, 1972, A study of the organization of apical dendrites in the somatic sensory cortex of the rat, J. Comp. Neurol. 144:253–268.

    PubMed  CAS  Google Scholar 

  • Peters, A., and Yilmax, E., 1993, Neuronal organization in area 17 of cat visual cortex, Cereb. Cortex 3;49–68.

    PubMed  CAS  Google Scholar 

  • Peters, A., White, E. L., and Fairén, A., 1977, Synapses between identified neuronal elements. An electron microscopic demonstration of degenerating axon terminals synapsing with Golgi impregnated neurons, Neurosci. Lett. 6:171–175.

    PubMed  CAS  Google Scholar 

  • Peters, A., Palay, S. L., and Webster, H. D., 1991, The Fine Structure of the Nervous System: Neurons and Their Supporting Cells, 3rd ed., Oxford University Press, London.

    Google Scholar 

  • Porter, L. L., and Izraeli, R., 1992, Connections of vibrissal regions in rat sensory-motor cortex, Soc. Neurosci. Abstr. 18:846.

    Google Scholar 

  • Porter, L., and White, E. L., 1983, Afferent and efferent pathways of the vibrissal region of primary motor cortex in the mouse, J. Comp. Neurol. 214:279–289.

    PubMed  CAS  Google Scholar 

  • Rail, W., 1970, Cable properties of dendrites and effects of synaptic location, in: Excitatory Synaptic Mechanisms. Proceedings of the 5th International Meeting of Neurobiologists (P. Anderson and J. K. S. Jansen, eds.), Univeritets-forlag, Oslo, pp. 175–187.

    Google Scholar 

  • Rail, W, Burke, R. E., Smith, T G., Nelson, P. G., and Frank, K., 1967, Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons, J. Neurophysiol. 30:1169–1193.

    Google Scholar 

  • Ralston, H. J., 1983, The synaptic organization of the ventrobasal thalamus in the rat, cat and monkey, in: Somatosensory Integration in the Thalamus (G. Macchi, A. Rustioni, and R. Spreafico, eds.), Elsevier, Amsterdam, pp. 241–250.

    Google Scholar 

  • Schiller, P. H., Finlay, B. L., and Volman, S. F., 1976, Quantitative studies of single-cell properties in monkey striate cortex, J. Neurophysiol. 39:1288–1374.

    PubMed  CAS  Google Scholar 

  • Schwark, H. D., and Jones, E. G., 1989, The distribution of intrinsic cortical axons in area 3b of cat primary somatosensory cortex, Exp. Brain Res. 78:501–513.

    PubMed  CAS  Google Scholar 

  • Simons, D. J., 1978, Response properties of vibrissa units in rat SI somatosensory neocortex, J. Neurophysiol. 41:798–820.

    PubMed  CAS  Google Scholar 

  • Simons, D. J., 1985, Temporal and spatial integration in the rat SI vibrissa cortex, J. Neurophysiol. 54:615.

    PubMed  CAS  Google Scholar 

  • Simons, D. J., and Carvell, G. E., 1989, Thalamocortical response transformation in rat vibrissa/barrel system, J. Neurophysiol. 61:311–330.

    PubMed  CAS  Google Scholar 

  • Simons, D. J., and Woolsey, T. A., 1979, Functional organization in mouse barrel cortex, Brain Res. 165:327–332.

    PubMed  CAS  Google Scholar 

  • Simons, D. J., and Woolsey, T. A., 1984, Morphology of Golgi-Cox-impregnated barrel neurons in rat SmI cortex, J. Comp. Neural. 230:119–132.

    CAS  Google Scholar 

  • Simons, D. J., Carvell, G. E., and Land, P. W., 1989, The vibrissa/barrel cortex as a model of sensory information processing, in: Sensory Processing in Mammalian Brain: Neuronal Substrate and Experimental Strategies (J. S. Lund, ed.), Oxford University Press, London, pp. 67–83.

    Google Scholar 

  • Simons, D. J., Carvell, G. E., Hersher, A. E., and Bryant, D. P., 1992, Responses of barrel cortex neurons in awake rats and effects of urethane anesthesia, Exp. Brain Res. 91:259–272.

    PubMed  CAS  Google Scholar 

  • Slotnick, B. M., and Leonard, C. M., 1975, A Stereotaxic Atlas of the Albino Mouse Forebrain, U.S. Department of Health, Education, and Welfare, Rockville, Ml).

    Google Scholar 

  • Sloviter, R. S., 1987, Calcium binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: Localization in the rat hippocampus and with specific reference to the selective vulnerability of hippocampal neurons to seizure activity, J. Comp. Nenrol. 280:183–196.

    Google Scholar 

  • Smith, R. L., 1980, The ascending fiber projections from the principal sensory trigeminal nucleus in the rat, J. Comp. Neurol. 148:423–446.

    Google Scholar 

  • Soreide, A. J., and Fonnum, F., 1980, High affinity uptake of n-aspartate in the barrel subfield of the mouse somatic sensory cortex, Brain Res. 201:427–430.

    PubMed  CAS  Google Scholar 

  • Steffen, H., 1976, Golgi-stained barrel neurons in the somatosensory region of the mouse cerebral cortex, Neurosci. Lett. 2:57–59.

    PubMed  CAS  Google Scholar 

  • Stewart, M. G., Siucinska, E., JKossut, M., and Davies, H., 1993, Loss of glutamate immunoreactivity from mouse first somatosensory (SI) cortex following neonatal vibrissal lesion, Brain Res. 621:331–338.

    PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J., and Ottersen, O. P., 1988, Anatomy of putative glutaminergic neurons, in: Neurotransmitters and Cortical Function (M. Avoli, T. A. Reader, R. W. Dykes, and P. Gloor, eds.), Plenum Press, New York, pp. 39–70.

    Google Scholar 

  • Streit, P., 1984, Glutamate and aspartate as transmitter candidates for systems of the cerebral cortex, in: Cerebral Cortex, Vol. 2 (E. G. Jones and A. Peters, eds.). Plenum Press, New York, pp. 119–143.

    Google Scholar 

  • Sugitani, M., Yano, J., Sugai, T, and Oyama, H., 1990, Somatotopic organization and columnar structure of vibrissae representation in the rat ventrobasal complex, Exp. Brain Res. 81:346–352.

    PubMed  CAS  Google Scholar 

  • Toyama, K., Kimura, M., and Tanaka, K., 1981, Cross-correlation analysis of interneuronal connectivity in cat visual cortex, J. Neurophysiol. 46:191–201.

    PubMed  CAS  Google Scholar 

  • Ts’o, D. Y., Gilbert, C. D., and Wiesel, T. N., 1986, Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis, J.Neurosci. 6:1160–1170.

    CAS  Google Scholar 

  • Tsumoto, T., 1990, Excitatory amino acid transmitters and their receptors in neural circuits of the cerebral neocortex, Neurosci. Res. 9:79–102.

    PubMed  CAS  Google Scholar 

  • Tsumoto, T., Masui, H., and Sato, H., 1986, Excitatory amino acid transmitters in neuronal circuits of the cat visual cortex, J. Neurophysiol. 55:469–483.

    PubMed  CAS  Google Scholar 

  • Uhr, J. L., Chapin, J. K., and Woodward, D. J., 1982, Variation in receptive field size across layer IV in rat barrelfield cortex, Soc. Neurosci. Abstr. 91:724–744.

    Google Scholar 

  • van Brederode, J. F. M., and Helliesen, M. K., 1991, Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat, Neuroscience. 44:157–171.

    PubMed  Google Scholar 

  • Van der Loos, H., 1976, Barreloids in mouse somatosensory thalamus, Neurosci. Lett. 2:1–6.

    Google Scholar 

  • Vercelli, A., Assal, F., and Innocenti, G. M., 1992, Emergence of callosally projecting neurons with stellate morphology in the visual cortex of the kitten, Exp. Brain Res. 90:346–358.

    PubMed  CAS  Google Scholar 

  • Vincent, S. B., 1912, The function of the vibrissae in the behavior of the white rat, Behav. Monogr. 1:7–86.

    Google Scholar 

  • von Bonim, G., and Mehler, W. R., 1971, On columnar arrangement of nerve cells in cerebral cortex, Brain Res. 27:1–10.

    Google Scholar 

  • Waite, P. M. E., 1973, Somatotopic organization of vibrissal responses in the ventrobasal complex of the rat thalamus, J. Physiol. (London). 228:527–540.

    CAS  Google Scholar 

  • Wallace, M. N., Kitzes, L. M., and Jones, E. G., 1991, Intrinsic interlaminar and intralaminar connections and their relationship to the tonotopic map in cat primary auditory cortex, Exp. Brain Res. 86:527–544.

    PubMed  CAS  Google Scholar 

  • Weiss, D. S., and Keller, A., 1994, Specific patterns of intrinsic connections between representation zones in the rat motor cortex, Cereb. Cortex. 4:295–214.

    Google Scholar 

  • Welker, C, 1971, Microelectrode delineation of fine grain somatopic organization of SmI cerebral neocortex in albino rat, Brain Res. 26:259–275.

    PubMed  CAS  Google Scholar 

  • Welker, C, 1976, Receptive fields of barrels in the somatosensory neocortex of the rat, J. Comp. Neurol. 166:173–190.

    PubMed  CAS  Google Scholar 

  • Welker, C, and Woolsey, T. A., 1974, Structure of layer IV in the somatosensory neocortex of the rat: Description and comparison with the mouse, J. Comp. Neurol. 158:437–454.

    PubMed  CAS  Google Scholar 

  • Welker, E., Hoogland, P. V, and Van der Loos, H., 1988, Organization of feedback and feedforward projections of the barrel cortex: A PHA-L study in the mouse, Exp. Brain Res. 73:411–435.

    PubMed  CAS  Google Scholar 

  • Welker, W. I., 1964, Analysis of sniffing of the albino rat, Behavior. 22:223–244.

    Google Scholar 

  • Weiler, W. L., 1972, Barrels in somatic sensory neocortex of the marsupial Trichosurus vulpecula (brush-tailed possum), Brain Res. 43:11–24.

    Google Scholar 

  • Weller, W. L., 1993, SmI cortical barrels in an australian marsupial, Trichosurus vulpecula (brush-tailed possum): Structural organization, patterned distribution, and somatotopic relationships, J. Comp. Neurol. 337:471–492.

    PubMed  CAS  Google Scholar 

  • White, E. L., 1976, Ultrastructure and synaptic connections in barrels of mouse SI cortex, Brain Res. 105:229–251.

    PubMed  CAS  Google Scholar 

  • White, E. L., 1978, Identified neurons in mouse SmI cortex which are postsynaptic to thalamocortical axon terminals: A combined Golgi-electron microscopic and degeneration study, J.Comp. Neurol. 181:627–662.

    PubMed  CAS  Google Scholar 

  • White, E. L., 1979, Thalamocortical synaptic relations: A review with emphasis on the projection of specific thalamic nuclei to the primary sensory areas of the neocortex, Brain Res. Rev. 1:275–311.

    Google Scholar 

  • White, E. L., 1986, Termination of thalamic afferents in the cerebral cortex, in: Cerebral Cortex, Vol. 5 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 271–289.

    Google Scholar 

  • White, E. L. (ed.), 1989a, Cortical Circuits: Synaptic Organization of the Cerebral CortexStructure, Function and Theory, Birkhäuser, Boston.

    Google Scholar 

  • White, E. L., 1989b, General organization of the cerebral cortex, in: Cortical Circuits: Synaptic Organization of the Cerebral CortexStructure, Function and Theory (E. L. White, ed.), Birkhäuser, Boston, pp. 19–45.

    Google Scholar 

  • White, E. L., 1989c, Synaptic connections between identified elements, in: Cortical Circuits: Synaptic Organization of the Cerebral CortexStructure, Function and Theory (E. L. White, ed.), Birkhäuser, Boston, pp. 46–195.

    Google Scholar 

  • White, E. L., and Gzeiger, D., 1991, Synapses made by axons of callosal projection neurons in mouse somatosensory cortex: Emphasis on intrinsic connections, J. Comp. Neurol. 303:233–244.

    PubMed  CAS  Google Scholar 

  • White, E. L., and De Amicis, R., 1977, Afferent and efferent projections of the region in mouse SmI cortex which contains the posteromedial barrel subfield, J. Comp. Neurol. 175:455–481.

    PubMed  CAS  Google Scholar 

  • White, E. L., and Hersch, S. M., 1981, Thalamocortical synapses of pyramidal cells which project from SmI to Msl cortex in the mouse, J. Comp. Neurol. 198:167–181.

    PubMed  CAS  Google Scholar 

  • White, E. L., and Hersch, S. M., 1982, A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex, J. Neuro-cytol. 11:137–157.

    CAS  Google Scholar 

  • White, E. L., and Keller, A., 1987, Intrinsic circuitry involving the local axonal collaterals of corticothalamic projection cells in mouse SmI cortex, J. Comp. Neurol. 26:213–226.

    Google Scholar 

  • White, E. L., and Peters, A., 1993, Gortical modules in the posteromedial barrel subfield (Sml) of the mouse, J. Comp. Neurol. 334:86–96.

    PubMed  CAS  Google Scholar 

  • White, E. L., and Rock, M. P., 1979, Distribution of thalamic input to different dendrites of a spiny stellate cell, Neurosa, Lett. 15:115–119.

    CAS  Google Scholar 

  • White, E. L., and Rock, M. P., 1980, Three dimensional aspects and synaptic relationships of a Golgi impregnated spiny stellate cell reconstructed from serial thin sections, J. Neurocytol. 9:615–636.

    PubMed  CAS  Google Scholar 

  • White, E. L., and Rock, M. P., 1981, A comparison of thalmocortical and other synaptic inputs to dendrites of two non-spiny neurons in a single barrel of mouse SmI cortex, J. Comp. Neurol. 195:265–277.

    PubMed  CAS  Google Scholar 

  • White, E. L., Hersch, S. M., and Rock, M. P., 1980, Synaptic sequences in mouse SmI cortex involving pyramidal cells labeled by retrograde filling with horseradish peroxidase, Neurosci. Lett. 19:149–154.

    PubMed  CAS  Google Scholar 

  • White, E. L., Benshalom, G., and Hersch, S. M., 1984, Thalamocortical and other synapses of non-spiny multipolar cells in mouse SmI cortex, J. Comp. Neurol. 229:311–320.

    PubMed  CAS  Google Scholar 

  • White, E. L., Amitai, Y., and Gutnick, M. J., 1994, A comparison of synapses onto the somata of intrinsically bursting and regular spiking neurons in layer V of rat SmI cortex, J. Comp. Neurol. 342:1–14.

    PubMed  CAS  Google Scholar 

  • White, E. L., Czeiger, C, and Weinfield, E., 1992, A simplified approach to retrograde/anterograde axonal labeling using combined injections of horseradish peroxidase and ibotenic acid, J. Neurosci. Methods. 42:27–36.

    PubMed  CAS  Google Scholar 

  • Wiesel, T. N., Hubel, D. H., and Lam, D. M. K., 1974, Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport, Brain Res. 79:273–279.

    PubMed  CAS  Google Scholar 

  • Winguth, S. D., and Winer, J. A., 1986, Corticocortical connections of cat primary auditory cortex (AI): Laminar organization and identification of supragranular neurons projecting to area All, J. Comp. Neurol. 248:36–56.

    PubMed  CAS  Google Scholar 

  • Wise, S. P., and Jones, E. G., 1977, Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex, J. Comp. Neurol. 175:129–158.

    PubMed  CAS  Google Scholar 

  • Woolsey, T. A., 1967, Somatosensory, auditory and visual cortical areas of the mouse, Johns Hopkins Med. J. 121:91–112.

    PubMed  CAS  Google Scholar 

  • Woolsey, T. A., and Rovainen, C. M., 1991, Whisker barrels: A model for direct observation of changes in the cerebral microstimulation with neuronal activity, in: Brain Work and Mental ctivity (N. A. Lassen, D. H. Ingvar, M. E. Raichle, and L. Friberg, eds.), Munksgaard, Copenhagen, pp. 189–198.

    Google Scholar 

  • Woolsey, T. A., and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex, Brain Res. 17:205–242.

    PubMed  CAS  Google Scholar 

  • Woolsey, T. A., Dierker, M. K., and Wann, D. F., 1975a, Mouse SmI cortex: Qualitative and quantitative classification of Golgi-impregnated barrel neurons, Proc. Nail. Acad. Sci. USA 72;2165–2169.

    CAS  Google Scholar 

  • Woolsey, T. A., Welker, C, and Schwartz, R. H., (1975b), Comparative anatomical studies of the SmI face cortex with special reference to the occurrence of “barrels” in layer IV, J.Comp. Neurol. 164:79–94.

    PubMed  CAS  Google Scholar 

  • Woolston, D. C, La Londe, J. R., and Gibson, J. M., 1983, Corticofugal influences in the rat on responses of neurons in the trigeminal nucleus interpolaris to mechanical stimulation, Neurosci. Lett. 36:43–48.

    PubMed  CAS  Google Scholar 

  • Yuan, B., Morrow, T. J., and Casey, K. L., 1985, Responsiveness of ventrobasal thalamic neurons after suppression of SI cortex in the anesthetized rat, J. Neurosci. 5:2971–1978.

    PubMed  CAS  Google Scholar 

  • Yuan, B., Morrow, T. J., and Casey, K. L., 1986, Corticofugal influences of SI cortex on ventrobasal thalamic neurons in the awake rat, Neuroscience. 6:3611–3617.

    PubMed  CAS  Google Scholar 

  • Zilles, K., and Wree, A., 1985, Cortex: Areal and laminar structure, in: The Rat Nervous System, Academic Press, New York, pp. 375–415.

    Google Scholar 

  • Zucker, E., and Weiler, W. I., 1969, Coding of somatic sensory input by vibrissae in the rat’s trigeminal ganglion, Brain Res. 12:138–156.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keller, A. (1995). Synaptic Organization of the Barrel Cortex. In: Jones, E.G., Diamond, I.T. (eds) The Barrel Cortex of Rodents. Cerebral Cortex, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9616-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9616-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9618-6

  • Online ISBN: 978-1-4757-9616-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics