Synaptic Organization of the Barrel Cortex

  • Asaf Keller
Part of the Cerebral Cortex book series (CECO, volume 11)


The inception of the burgeoning field of barrel cortex neurobiology can be traced to the influential publication by Woolsey and Van der Loos (1970). Although barrel-like structures were previously described in the somatosensory cortices of rodents (e.g., Droogleever Fortuyn, 1914; Lorente de Nó, 1938; Woolsey, 1967), Woolsey and Van der Loos were the first to present a detailed description of these structures, and to offer a comprehensive theory for their role in processing somatosensory inputs from the mystacial vibrissae, or whiskers. Furthermore, they predicted that this cortical area would become a particularly suitable model for various neurobiological studies, such as information processing in the cerebral cortex, development of cortical circuitry, and plasticity in cortical function. The works in this volume, synthesizing data collected in numerous laboratories in the past quarter of a century, attest to the perspicacity of these predictions.


Receptive Field Pyramidal Neuron Somatosensory Cortex Apical Dendrite Cortex Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agmon, A., and Connors, B. W., 1989, Repetitive burst-firing neurons in the deep layers of the mouse somatosensory cortex, Neurosci. Lett. 99:137–141.PubMedGoogle Scholar
  2. Agmon, A., and Connors, B. W., 1991, Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro, Neuroscience. 41:365–379.PubMedGoogle Scholar
  3. Agmon, A., and Connors, B. W., 1992, Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex, J. Neurosci. 12:319–329.PubMedGoogle Scholar
  4. Agmon, A., O’Dowd, D. K., and Jones, E. G., 1990, Development of thalamocortical responses in barrel cortex of early postnatal mice, Soc. Neurosci. Abstr. 16:631.Google Scholar
  5. Akers, R. M., and Killackey, H. P., 1978, Organization of corticocortical connections in the parietal cortex of the rat, J. Comp. Neurol. 181:513–538.PubMedGoogle Scholar
  6. Andressen, C, Blumcke, I., and Celio, M. R., 1993, Calcium-binding proteins-Selective markers of nerve cells, Cell Tissue Res. 271:181–208.PubMedGoogle Scholar
  7. Angel, A., 1983, The functional interrelations between the somatosensory cortex and the thalamic reticular nucleus: Their role in the control of information transfer across the specific somatosensory relay nucleus, in: Somatosensory Integration in the Thalamus (G. Macchi, A. Rustioni, and R. Spreafico, eds.), Elsevier, Amsterdam, pp. 221–239.Google Scholar
  8. Armstrong-James, M., 1975, The functional status and columnar organization of single cells responding to cutaneous stimulation in neonatal rat somatosensory cortex SI, J.Physiol. (London). 246:501–538.Google Scholar
  9. Armstrong-James, M., and Callahan, C. A., 1991, Thalamo-cortical processing of vibrissal information in the rat. IL Spatiotemporal convergence in the thalamic ventroposterior medial nucleus (VPm) and its relevance to generation of receptive fields of SI cortical “barrel” neurones, J. Comp. Neurol. 303:211–224.PubMedGoogle Scholar
  10. Armstrong-James, M., and Fox, K., 1987, Spatiotemporal convergence and divergence in the rat SI barrel cortex, J. Comp. Neurol. 263:265–281.PubMedGoogle Scholar
  11. Armstrong-James, M., Callahan, C. A., and Friedman, M. A., 1991, Thalamo-cortical processing of vibrissal information in the rat. I. Intracortical origins of surround but centre-receptive fields of layer IV neurones in the SI barrel field cortex, J. Comp. Neurol. 303:193–210.PubMedGoogle Scholar
  12. Armstrong-James, M., Fox, K., and Dasgupta, A., 1992, Flow of excitation within rat barrel cortex on striking a single vibrissa, J. Neurophysiol. 68:1345–1358.PubMedGoogle Scholar
  13. Baughman, R. W., and Gilbert, C. D., 1981, Aspartate and glutamate as possible neurotransmitters in the visual cortex, J. Neurosci. 1:427–439.PubMedGoogle Scholar
  14. Belford, G. R., and Killackey, H. P., 1979, Vibrissae representation in the subcortical trigeminal centers of the neonatal rat, J. Comp. Neurol. 183:305–322.PubMedGoogle Scholar
  15. Benshalom, G., and White, E. L., 1986, Quantification of thalmocortical synapses with spiny stellate neurons in layer IV of mouse somatosensory cortex, J. Comp. Neurol. 253:303–314.PubMedGoogle Scholar
  16. Bernardo, K. L., and Woolsey, T. A., 1987, Axonal trajectories between mouse somatosensory thalamus and cortex, J. Comp. Neurol. 258:542–564.PubMedGoogle Scholar
  17. Bernardo, K. L., McCasland, J. S., and Woolsey, T. A., (1990a), Local axonal trajectories in mouse barrel cortex, Exp. Brain Res. 82:247–253.PubMedGoogle Scholar
  18. Bernardo, K. L., McCasland, J. S., Woolsey, T. A., and Strominger, R. N., (1990b), Local intra-and interlaminar connections in mouse barrel cortex, J. Comp. Neurol. 291:231–255.PubMedGoogle Scholar
  19. Blasdel, G. G., and Lunc, J. S., 1983, Termination of afferent axons in macaque striate cortex, J. Neurosci. 3:1389–1413.PubMedGoogle Scholar
  20. Braitenberg, V, and Schüz, S., 1991, Aniatolny of the Cortex: Statistics and Geometry, Springer-Verlag, Berlin.Google Scholar
  21. Carvell, G. E., and Simons, D. J., 1987, Thalamic and corticocortical connections of the second somatic sensory area of the mouse, J. Comp. Neurol. 265:409–427.PubMedGoogle Scholar
  22. Carvell, G. E., and Simons, D. J., 1988, Membrane potential changes in rat SmI cortical neurons evoked by controlled stimulation of mystacial vibrissae, Brain Res. 448:186–191.PubMedGoogle Scholar
  23. Carvell, G., and Simons, D. J., 1990, Biometrie analyses of vibrissal tactile discrimination in the rat, J. Neurosci. 10:2638–2648.PubMedGoogle Scholar
  24. Caviness, V. S., Jr., 1975, Architectonic map of neocortex of the normal mouse, J.Comp. Neurol. 164:247–264.PubMedGoogle Scholar
  25. Celio, M. R., 1990, Calbindin D-28k and parvalbumin in the rat nervous system, Neuroscience. 35:375–475.PubMedGoogle Scholar
  26. Chagnac-Amitai, Y., and Connors, B. W., 1989, Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex, J. Neurophysiol. 62:1149–1162.PubMedGoogle Scholar
  27. Chagnac-Amitai, Y., Luhmann, H. J., and Prince, D. A., 1990, Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features, J. Comp. Neurol. 196:598–613.Google Scholar
  28. Chapin, J. K., 1986, Laminar differences in sizes, shapes, and response profiles of cutaneous receptive fields in the rat SI cortex, Exp. Brain Res. 62:549–559.PubMedGoogle Scholar
  29. Chapin, J. K., and Chia-Sheng, L.,1984, Mapping the body representation in the SI cortex of anesthetized and awake rats, J. Comp. Neurol. 229:199–213.PubMedGoogle Scholar
  30. Chapin, J. K., Sadeq, M., and Guise, J. L. U., 1987, Corticocortical connections within the primary somatosensory cortex of the rat, J. Comp. Neurol. 263:326–346.PubMedGoogle Scholar
  31. Chiaia, N. L., Rhoades, R. W., Bennett-Clarke, C. A., Fish, S. E., and Killackey, H. P., (1991a), Thalamic processing of vibrissal information in the rat. I. Afferent input to the medial ventral posterior and posterior nuclei, J. Comp. Neurol. 314:201–216.PubMedGoogle Scholar
  32. Chiaia, N. L., Rhoades, R. W., Fish, S. E., and Killackey, II. P., (1991b), Thalamic processing of vibrissal information in the rat. II. Morphological and functional properties of medial ventral posterior nucleus and posterior nucleus neurons, J. Comp. Neurol. 314:217–236.PubMedGoogle Scholar
  33. Chmielowska, J., Kossut, M., and Chmielowski, M., (1986a), Single vibrissal cortical column in the mouse labeled with 2-deoxyglucose, Exp. Brain Res. 63:607–619.PubMedGoogle Scholar
  34. Chmielowska, J., Stewart, M. G., Bourne, R. C, and Hámori, J., (1986b), Gamma-aminobutyric acid immunoreactivity in mouse barrel field: A light microscopical study, Brain Res. 368:371–374.PubMedGoogle Scholar
  35. Chmielowska, J., Carvell, G. E., and Simons, D. J., 1988a, Spatial organization of corticothalamic cells in the rat SmI vibrissa/barrel cortex, Soc. Neurosci. Abstr. 14:222.Google Scholar
  36. Chmielowska, J., Stewart, M. G., and Bourne, R. G, (1988b), 7-Aminobutyric acid (GABA) immunoreactivity in mouse and rat first somatosensory (SI) cortex: Description and comparison, Brain Res. 439:155–168.PubMedGoogle Scholar
  37. Chmielowska, J., Carvell, G. E., and Simons, D. J., 1989, Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex, J. Comp. Neurol. 285:325–338.PubMedGoogle Scholar
  38. Cobas, A., and Fairén, A., 1988, GABAergic neurons of different morphological classes are cogene-rated in the mouse barrel cortex, J. Neurocytol. 17:511–519.PubMedGoogle Scholar
  39. Cobas, A., Welker, E., Fairén, A., Krafstik, R., and Van der Loos, IL, 1987, GABAergic neurons in the barrel cortex of the mouse: An analysis using neuronal archetypes, J. Neurocytol. 16:843–871.PubMedGoogle Scholar
  40. Cohen, M. H., Zatezalo, R., and Land, P. W., 1993, Parvalbumin and calbindin immunoreactivity in the somatosensory barrel cortex and the effect of tactile experience, Soc. Neurosci. Abstr. 19:1568.Google Scholar
  41. Colonnier, M., 1964, Experimental degeneration in the cerebral cortex, J. Anat. 98:47–53.PubMedGoogle Scholar
  42. Colonnier, M., 1968, Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study, Brain Res. 9:268–287.PubMedGoogle Scholar
  43. Connors, B. W., and Gutnick, M. J., 1990, Intrinsic firing patterns of diverse neocortical neurons, Trends Neurosci. 13:99–104.PubMedGoogle Scholar
  44. Conti, F., Fabri, M., and Manzoni, T, 1988, Glutamate-positive corticocortical neurons in the somatic sensory areas I and II of cats, J. Neurosci. 8:2948–2960.PubMedGoogle Scholar
  45. Cox, S. B., Woolsey, T. A., and Rovainen, C. M., 1993, Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels, J. Cereb. Blood Flow Metab. 13:899–913.PubMedGoogle Scholar
  46. Crandall, J. E., Korde, M., and Caviness, V. S., Jr., 1986, Somata of layer V projection neurons in the mouse barrelfleld cortex are in preferential register with the sides and septa of barrels, Neurosci. Lett. 67:19–24.PubMedGoogle Scholar
  47. Czeiger, D., and White, E. L., 1993, Synapses of extrinsic and intrinsic origin made by callosal projection neurons in mouse visual cortex, J. Comp. Neurol. 330:502–513.PubMedGoogle Scholar
  48. DeFelipe, J., 1993, Neocortical neuronal diversity: Chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules, Cereb. Cortex. 3:273–289.Google Scholar
  49. Diamond, M. E., Armstrong-James, M., and Ebner, F. F., 1992, Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus, J. Comp. Neurol. 318:462–476.PubMedGoogle Scholar
  50. Dörfl, J., 1985, The innervation of the mystacial vibrissae of the white mouse. A topographical study, J. Anat. (London). 142:173–184.Google Scholar
  51. Dori, I., Dinopoulos, A., Cavanagh, M. E., and Parnavelas, J. G., 1992, Proportion of glutamateimmunoreactive and aspartate-immunoreactive neurons in the efferent pathways of the rat visual cortex varies according to the target, J. Comp. Neurol. 319:191–204.PubMedGoogle Scholar
  52. Douglas, R. J., and Martin, K. A. C, 1991, A functional microcircuit for cat visual cortex, J. Physiol. (London). 440:735–769.Google Scholar
  53. Droogleever Fortuyn, A. B., 1914, Cortical cell-lamination of the hemispheres of some rodents, Arch. Neurol. Psychiatry. 6:221–354.Google Scholar
  54. Durham, D., and Woolsey, T. A., 1984, Effect of neonatal whisker lesions on mouse central trigeminal pathways, J. Comp. Neurol. 223:424–447.PubMedGoogle Scholar
  55. Durham, D., and Woolsey, T. A., 1985, Functional organization in cortical barrels of normal and vibrissae-damaged mice: A [3H]2-deoxyglucose study, J. Comp. Neurol. 235:97–110.PubMedGoogle Scholar
  56. Elhanany, E., and White, E. L., 1990, Intrinsic circuitry: Synapses involving the local axon collaterals of corticocortical projection neurons in the mouse primary somatosensory cortex, J. Comp. Neurol. 291:43–54.PubMedGoogle Scholar
  57. Erzurumlu, R. S., and Jhaveri, S., 1992, Emergence of connectivity in the embryonic rat parietal cortex, Cereb. Cortex. 2:336–352.PubMedGoogle Scholar
  58. Fabri, M., and Burton, H., 1991, Ipsilateral cortical connections of primary somatic sensory cortex in rats, J. Comp. Neurol. 311:405–424.PubMedGoogle Scholar
  59. Fairén, A., Peters, A., and Saldanha, J., 1977, A new procedure for examining Golgi impregnated neurons by light and electron microscopy, J. Neurocytol. 6:311–337.PubMedGoogle Scholar
  60. Fairén, A., DeFelipe, J., and Regidor, J., 1984, Nonpyramidal neurons: General account, in: Cerebral Cortex, Vol. 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 201–253.Google Scholar
  61. Feldman, M. L., 1984, Morphology of the neocortical pyramidal neuron, in: Cerebral Cortex, Vol. 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 123–200.Google Scholar
  62. Feldman, M. L., and Peters, A., 1974, A study of barrels and pyramidal dendritic clusters in the cerebral cortex, Brain Res. 77:55–76.PubMedGoogle Scholar
  63. Ferrington, D. G., and Rowe, M. J., 1980, Differential contributions to coding of cutaneous vibratory information by cortical somatosensory areas I and 11, J. Neurophysiol. 43:310–331.PubMedGoogle Scholar
  64. Ferster, D., and LeVay, S., 1978, The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat, J. Comp. Neurol. 182:923–944.PubMedGoogle Scholar
  65. Fetz, E. E., Toyama, K., and Smith, W., 1992, Synaptic interactions between cortical neurons, in: Cerebral Cortex, Vol. 9 (A. Peters and E. G. Jones, eds.), Plenum Press, New York.Google Scholar
  66. Fifková, E., 1970, The effect of monocular deprivation on the synaptic contacts of the visual cortex, J. Neurobiol, 1:285–294.Google Scholar
  67. Fitzpatrick, D., and Raczkowski, D., 1990, Innervation patterns of single physiologically identified geniculocortical axons in the striate cortex of the tree shrew, Proc. Natl. Acad. Sci. USA. 87:449–453.PubMedGoogle Scholar
  68. Fonesca, M., DeFelipe, J., and Fairén, A., 1988, Local connections in transplanted and normal cerebral cortex of rats, Exp. Brain Res. 69:387–398.Google Scholar
  69. Friede, R. L., 1960, A comparative study of the cytoarchitectonics and chemoarchitectonics of the cerebral cortex of the guinea pig, Z. Zellforsch. 52:482–493.PubMedGoogle Scholar
  70. Gardner, E. P., and Constanzo, R. M., 1980, Temporal integration of multiple-point stimuli in primary somatosensory cortical receptive fields of alert monkeys, J. Neurophysiol. 43:444–468.PubMedGoogle Scholar
  71. Gilbert, C. D., 1992, Horizontal integration and cortical dynamics, Neuron. 9:1–13.PubMedGoogle Scholar
  72. Gilbert, C. D., and Wiesel, T. N., 1979, Morphology and intracortical projections of functionally characterized neurons in the cat visual cortex, Nature. 280:120–125.PubMedGoogle Scholar
  73. Gilbert, C. D., and Wiesel, T. N., 1983, Clustered intrinsic connections in cat visual cortex, J. Neurosci. 3:1116–1133.PubMedGoogle Scholar
  74. Giuffrida, R., and Rustioni, A., 1989, Glutamate and aspartate immunoreactivity in corticocortical neurons of the sensorimotor cortex of rats, Exp. Brain Res. 74:41–46.PubMedGoogle Scholar
  75. Goodman, C. S., and Shatz, C. J., 1993, Developmental mechanisms that generate precise patterns of neuronal connectivity, Cell. 72:77–98.PubMedGoogle Scholar
  76. Greenough, W. T, and Chang, F.-L. F., 1988, Dendritic pattern formation involves both oriented regression and oriented growth in the barrels of mouse somatosensory cortex, Dev. Brain Res. 43:148–152.Google Scholar
  77. Gruner, J. W., Hisch, J. C, and Sotelo, C, 1974, Ultrastructural features of the insulated suprasylvan gyrus in the cat, J. Camp. Neural. 154:1–27.Google Scholar
  78. Grunwerg, B. S., and Krauthamer, G. M., 1990, Vibrissa-responsive neurons of the superior colliculus that project to the interlaminar thalamus in the rat, Neurosci. Lett. 111:23–27.PubMedGoogle Scholar
  79. Harris, R. M., 1986, Morphology of physiologically identified thalamocortical relay neurons in the rat ventrobasal thalamus, J. Comp. Neural. 251:491–505.Google Scholar
  80. Harris, R. M., and Woolsey, T. A., 1983, Computer-assisted analyses of barrel neuron axons and their putative synaptic contacts, J. Camp. Neural. 220:63–79.Google Scholar
  81. Hellweg, F. C., Schutz, W., and Creutzfeldt, O. D., 1977, Extracellular and intracellular recordings from cat’s cortical whisker projection area: Thalamocortical response transformation, J. Neuro-physiol. 40:463–479.Google Scholar
  82. Hendry, S. H. C, Jones, E. G., Emson, P. C, Lawson, D., Heizmann, C. W., and Streit, P., 1989, Two classes of cortical GAB A neurons defined by differential calcium binding protein immunoreac-tivities, Exp. Brain Res. 76:467–472.PubMedGoogle Scholar
  83. Herkenham, M., 1980, Laminar organization of thalamic projections to the rat neocortex, Science. 207:532–535.PubMedGoogle Scholar
  84. Hersch, S. M., and White, E. L., (1981a), Quantification of synapses formed with apical dendrites of Golgi impregnated pyramidal cells: Variability in thalamocortical inputs and consistency in the ratios of asymmetrical to symmetrical synapses, Neuroscience. 6:1043–1051.PubMedGoogle Scholar
  85. Hersch, S. M., and White, E. L., (1981b), Thalamocortical synapses involving identified neurons in mouse primary somatosensory cortex: A terminal degeneration and Golgi/EM study, J.Comp. Neural. 195:252–263.Google Scholar
  86. Hersch, S. M., and White, E. L., (1981c), Thalmocortical synapses with corticothalamic projection neurons in mouse SmI cortex: Electron microscopic demonstration of amonosynaptic feedback loop, Neurosci. Lett. 24:207–210.PubMedGoogle Scholar
  87. Hersch, S. M., and White, E. L., 1982, A quantitative study of the thalamocortical and other synapses in layer IV of pyramidal cells projecting from mouse SmI cortex to the caudate-putamen nucleus, J. Camp. Neural. 211:217–255.Google Scholar
  88. Hofman, M. A., 1985, Neuronal correlates of corticalization in mammals: A theory, J. Thear. Biol. 112:77–95.Google Scholar
  89. Holmes, W. R., Segev, I., and Rail, W., 1992, Interpretation of time constant and electrotonic length estimates in multicylinder or branched neuronal structures, J. Neurophysiol. 68:1401–1420.PubMedGoogle Scholar
  90. Hoogland, P. V., Welker, E., and Van der Loos, H., 1987, Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgraris-leucoagglutinin and HRP, Exp. Brain Res. 68:73–87.PubMedGoogle Scholar
  91. Hoogland, P. V., Wouterlood, F. G., Welker, E., and Van der Loos, H., 1991, Utrastructure of giant and small thalamic terminals of cortical origin: A study of the projections from the barrel cortex in mice using Phaseolus vulgaris leuco-agglutinin (PHA-L), Exp. Brain Res. 87:159–172.PubMedGoogle Scholar
  92. Hubel, D. H., and Livingstone, M. S., 1987, Segregation of form, color, and stereopsis in primate area 18, J. Neurosci. 7:3378–3415.PubMedGoogle Scholar
  93. Hubel, D, H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol. (London), 160:106–154.Google Scholar
  94. Huerta, M. F., Frankfurter, A., and Halting, J. K., 1983, Studies of the principal sensory and spinal trigeminal nuclei of the rat: Projections to the superior colliculus, inferior olive, and cerebellum, J. Comp. Neural. 220:147–167.Google Scholar
  95. Hughes, C. M., and Peters, A., (1992a), Symmetric synapses formed by callosal afferents in rat visual cortex, Brain Res. 583:271–278.PubMedGoogle Scholar
  96. Hughes, C. M., and Peters, A., (1992b), Types of callosally projecting nonpyramidal neurons in rat visual cortex identified by lysosomal HRP retrograde labeling, Anat. Embryol. 186:183–193.PubMedGoogle Scholar
  97. Humphrey, A. L., Sur, M., Uhlrich, D. J., and Sherman, S. M., 1985, Projection patterns of individual X-and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat, J. Comp. Neural. 233:159–189.Google Scholar
  98. Huntley, G. W., and Jones, E. G., 1991, Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: A correlative anatomic and physiological study, J. Neuraphyswl. 66:390–413.Google Scholar
  99. Huston, K. A., and Masterton, R.B., 1986, The sensory contribution of a single vibrissa’s cortical barrel, J. Neurophysiol. 56:1196–1223.Google Scholar
  100. Hyashi, H., 1980, Distribution of vibrissae afferent fiber collaterals in the trigeminal nuclei as revealed by intra-axonal injection of horseradish peroxidase, Brain Res. 183:442–446.Google Scholar
  101. Innocenti, G. M., and Fiore, L., 1976, Morphological correlates of visual field transformation in the corpus callosum, Neurosci. Lett. 2:245–252.PubMedGoogle Scholar
  102. Ito, M., 1985, Processing of vibrissa sensory information within the rat neocortex, J. Neurophysiol. 54:479–490.PubMedGoogle Scholar
  103. Ito, M., 1988, Response properties and topography of vibrissa-sensitive VPM neurons in the rat, J. Neurophysiol 60:1181–1197.PubMedGoogle Scholar
  104. Ito, M., 1992, Simultaneous visualization of cortical barrels and horseradish peroxidase-injected layer-5b vibrissa neurones in the rat, J. Physiol. (London), 454:247–265.Google Scholar
  105. Jaarsma, D., Sebens, J. B., and Korf, J., 1991, Localization of NMDA and AMPA receptors in rat barrel field, Neurosci. Lett. 133:233–236.PubMedGoogle Scholar
  106. Jensen, K. F., and Killackey, H. P., 1987, Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents, J. Neurosci. 7:3529–3543.PubMedGoogle Scholar
  107. Jones, E. G., 1984, Laminar distribution of cortical efferent cells, in: Cerebral Cortex, Vol. 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 521–553.Google Scholar
  108. Jones, E. G., 1986, Connectivity of the primate sensory-motor cortex, in: Cerebral Cortex, Vol. 5 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 113–183.Google Scholar
  109. Jones, E. G., and Powell, T. P. S., 1968, The ipsilateral cortical connections of the somatic sensory cortex in the cat, Brain Res. 9:71–94.PubMedGoogle Scholar
  110. Jones, E. G., and Powell, T. P. S., 1969, Connections of the somatic sensory cortex in the rhesus monkey. I. Ipsilateral cortical connections, Brain. 92:477–502.PubMedGoogle Scholar
  111. Katz, L. C, 1987, Local circuitry of identified projection neurons in cat visual cortex brain slices, J. Neurosci. 7:1223–1249.PubMedGoogle Scholar
  112. Kawaguchi, Y, and Kubota, Y, 1993, Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin-immunoreactive and calbindin (D28k)-immunoreactive neurons in layer V or rat frontal cortex, J. Neurophysiol. 70:387–396.PubMedGoogle Scholar
  113. Kawaguchi, Y, Katsumaru, H., Kosaka, R., Heizmann, C. W., and Hama, K., 1987, Fast spiking cells in rat hippocampus (CA1 region) contain the calcium binding protein parvalbumin, Brain Res. 416:369.PubMedGoogle Scholar
  114. Keller, A., 1989a, Functional properties of cortical neurons, in: Cortical Circuits: Synaptic Organization of the Cerebral Cortex-Structure, Function and Theory (E. L. White, ed.), Birkhäuser, Boston, pp. 107–131.Google Scholar
  115. Keller, A., 1989b, Synaptic circuitry revealed by electrophysiology, in: Cortical Circuits: Synaptic Organization of the Cerebral CortexStructure, Function and Theory (E. L. White, ed.), Birkhäuser, Boston, pp. 132–149.Google Scholar
  116. Keller, A., (1993a), Intrinsic synaptic organization of the motor cortex, Cereb. Cortex. 3:430–441.PubMedGoogle Scholar
  117. Keller, A., (1993b), Patterns of intrinsic connections between motor representation zones in the cat motor cortex, NeuroReport. 4:515–518.PubMedGoogle Scholar
  118. Keller, A., and Asanuma, H., 1993, Synaptic relationships involving local axon collaterals of pyramidal neurons in the cat motor cortex, J. Comp. Neurol. 336:229–242.PubMedGoogle Scholar
  119. Keller, A., and White, E. L., 1986, Distribution of glutamic acid decarboxylase-immunoreactive structures in the barrel region of mouse somatosensory cortex, Neurosci. Lett. 66:245–250.PubMedGoogle Scholar
  120. Keller, A., and White, E. L., 1987, Synaptic organization of GABAergic neurons in the mouse SmI cortex, J. Comp. Neurol. 262:1–12.PubMedGoogle Scholar
  121. Keller, A., and White, E. L., 1989, Triads: A synaptic network component in the cerebral cortex, Brain Res. 496:105–112.PubMedGoogle Scholar
  122. Keller, A., White, E. L., and Cipolloni, P. B., 1985, The identification of thalamocortical axon terminals in barrels of mouse SmI cortex using immunohistochemistry of aterogradely transported lectin (Phaseolus vulgaris /eucoagglutinin), Brain Res. 343:159–165.PubMedGoogle Scholar
  123. Killackey, H. P., 1973, Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat, Brain Res. 51:326–331.PubMedGoogle Scholar
  124. Killackey, H. P., and Leshin, S., 1975, The organization of specific thalamocortical projections to the posteromedial barrel subfield of the rat somatic sensory cortex, Brain Res. 86:469–472.PubMedGoogle Scholar
  125. Killackey, H. P., Belford, G., Ryugo, R., and Ryugo, D. K., 1976, Anomalous organization of thalamocortical projections consequent to vibrissae removal in the newborn rat and mouse, Brain Res. 104:309–315.PubMedGoogle Scholar
  126. Kisvárday, Z. F., and Eysel, U. T, 1992, Cellular organization of reciprocal patchy networks in layer III of cat visual cortex (area 17), Neuroscience. 46:275–286.PubMedGoogle Scholar
  127. Kita, H., and Kitai, S. T., 1986, Electrophysiology of rat thalamo-cortical relay neurons: An in vivo intracellular recording and labeling study, Brain Res. 371:80–89.PubMedGoogle Scholar
  128. Koch, C, Poggio, T., and Torre, V., 1982, Retinal ganglion cells: A functional interpretation of dendritic morphology, Philos. Trans. R. Soc. London B Ser. 198:227–264.Google Scholar
  129. Koralek, K. A., Jensen, K. F., and Killackey, H. P., 1988, Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex, Brain Res. 463:346–351.PubMedGoogle Scholar
  130. Kossut, M., Hand, P. J., Greenberg, J., and Hand, C. L., 1988, Single vibrissal cortical column in SI cortex of rat and its alternations in neonatal and adult vibrissa-deafferented animals: A quantitative 2DG study, J. Neurophysiol. 60:829–852.PubMedGoogle Scholar
  131. Krohn, K., Rothe, T., and Biesold, D., 1992, High-affinity uptake of GAB A and glutamate decarbox-ylase activity in rat primary somatosensory cortex after sciatic nerve injury, Mol. Chem. Neuropathol. 16:159–169.PubMedGoogle Scholar
  132. Kuljis, R. O., 1992, Vibrissaeless mutant rats with a modular representation of innervated sinus hair follicles in the cerebral cortex, Exp. Nenrol. 115:146–150.Google Scholar
  133. Kyriazi, H. T., and Simons, D. J., 1993, Thalamocortical response transformations in simulated whisker barrels, J. Neurosci. 13:1601–1615.PubMedGoogle Scholar
  134. Land, P. W., and Simons, D. J., (1985a), Cytochrome oxidase staining in the rat SmI barrel cortex, J. Comp. Neurol. 238:225–235.PubMedGoogle Scholar
  135. Land, P. W., and Simons, D. J., (1985b), Metaboloc activity in SmI cortical barrels of adult rats is dependent on patterned sensory stimulation of the mystacial vibrissae, Brain Res. 341:189–194.PubMedGoogle Scholar
  136. Land, P. W., and Simons, D. J., (1985c), Metabolic and structural correlates of the vibrissae representation in the thalamus of the adult rat, Neurosci. Lett. 69:319–324.Google Scholar
  137. Landry, P., and Deschênes, M., 1981, Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat, J. Comp. Neurol. 199:345–371.PubMedGoogle Scholar
  138. Lapenko, T. K., and Poladchikova, O. N., 1983, Intracortical connections between neuron groups in the somatosensory cortex studied by the retrograde horseradish peroxidase transport method in rats, Neurophysiology USSR. 15:16–20.Google Scholar
  139. La Vail, J. H., and La Vail, M. M., 1972, Retrograde axonal transport in the central nervous system, Science 173:1416–1417.Google Scholar
  140. Lev-Tov, A., Miller, J. P., Burke, R. E., and Rail, W., 1983, Factors that control amplitudes of EPSPs in dendritic neurons, J. Neurophysiol. 50:399–412.PubMedGoogle Scholar
  141. Lichtenstein, S. H., Carvell, G. E., and Simons, D. J., 1990, Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions, Somatosens. Mot. Res. 7:47–65.PubMedGoogle Scholar
  142. Lidov, G. H., Rice, F. L., and Molliver, M. E., 1978, The organization of the catecholamine innervation of somatosensory cortex: The barrel field of the mouse, Brain Res. 153:577–584.PubMedGoogle Scholar
  143. Lin, G.-S., Lu, S. M., and Schmechel, D. E., 1985, Glutamic acid decarboxylase immunoreactivity in layer IV of barrel cortex of rat and mouse, J. Neurosci. 5:1934–1939.PubMedGoogle Scholar
  144. Lin, G., Lu, S. M., and Yamawaki, R. M., 1987, Laminar and synaptic organization of terminals from the ventrobasal and posterior thalamic nuclei in rat barrel cortex, Soc. Neurosci. Abstr. 13:248.Google Scholar
  145. Livingstone, M. S., and Hubel, D. H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4:309–356.PubMedGoogle Scholar
  146. Lorente de No, R., 1922, La corteza cerebral del raton, Trab. Lab. Invest, Biol. (Madrid). 20:41–78.Google Scholar
  147. Lorente de No, R., 1938, Architectonics and structure of the cerebral cortex, in: The Physiology of the Nervous System (J. F. Fulton, ed.), Oxford University Press, London, pp. 291–327.Google Scholar
  148. Lu, S.-M. and Lin, R. G.-S., 1993, Thalamic afferents of the rat barrel cortex: A light and electronmicroscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer, Somatosens. Mot. Res. 10:1–16.PubMedGoogle Scholar
  149. Lund, J. S., 1984, Spiny stellate neurons, in: Cerebral Cortex, Vol. 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 255–308.Google Scholar
  150. Lysakowski, A., Wainer, B. H., Bruce, G., and Hersh, L. B., 1989, An atlas of the regional and laminar distribution of choline acetyltransferase immunoreactivity in rat cerebral cortex, Neuros-cience. 28:291–336.Google Scholar
  151. Ma, P. M., and Woolsey, R. A., 1984, Cytoarchitectonic correlates of vibrissae in the medullary trigeminal complex of the mouse, Brain Res. 306:374–379.PubMedGoogle Scholar
  152. McGasland, J. S., and Woolsey, T. A., 1988, High-resolution 2-deosyglucose mapping of functional cortical columns in mouse barrel cortex, J. Comp. Neurol. 278:555–569.Google Scholar
  153. McGasland, J. S., Bernardo, K. L., Probst, K. L., and Woolsey, T. A., 1992, Gortical local circuit axons do not mature after early deafferentation, Proc. Natl. Acad. Sci. USA. 89:1832–1836.Google Scholar
  154. McCormick, D. A., Connors, B. W., Lighthall, J. W., and Prince, D. A., 1985, Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex, J. Neurophysiol. 54:782–805.PubMedGoogle Scholar
  155. McGuire, B. A., Gilbert, C. D., Rivlin, P. K., and Wiesel, T. N., 1991, Targets of horizontal connections in macaque primary visual cortex, J. Cornp. Neurol. 305:370–392.Google Scholar
  156. Martin, K. A. C, 1988, The Wellcome prize lecture: From single cells to simple circuits in the cerebral cortex, Q. J. Exp. Physiol. 73:637–702.PubMedGoogle Scholar
  157. Matsubara, J. A., and Phillips, D. P., 1988, Intracortical connections and their physiological correlates in the primary auditory cortex (AI) of the cat, J. Comp. Neurol. 268:38–48.PubMedGoogle Scholar
  158. Metherate, R., and Dykes, R. W., 1985, Simultaneous recordings from pairs of cat somatosensory cortical neurons with overlapping peripheral receptive fields, Brain Res. 341:119–129.PubMedGoogle Scholar
  159. Mishima, K., 1992, Facilitatory and inhibitory processes in the thalamic ventrobasal nucleus of the rat, Jpn.J. Physiol. 42:193–210.PubMedGoogle Scholar
  160. Miyashita, E., Asanuma, H., and Keller, A., 1992, Input-output organization of the rat vibrissae motor cortex, Soc. Neurosci. Abstr. 18:846.Google Scholar
  161. Miyashita, E., Asanuma, H., and Keller, A., 1994, Input-output organization of the rat vibrissae motor cortex, Exp. Brain Res. 99:223–232.PubMedGoogle Scholar
  162. Mountcastle, V. B., 1978, An organizing principle for cerebral function: The unit module and the distributed system, in: The Mindful Brain (G. M. Edelman and V. B. Mountcastle, eds.), MIT Press, Cambridge, MA, pp. 7–50.Google Scholar
  163. Mountcastle, V. B., and Powell, T. P. S., 1959, Neural mechanisms subserving cutaneous sensibility, with special reference to the role of inhibition in sensory perception and discrimination, Bull. Johns Hopkins Hosp. 105:201–232.PubMedGoogle Scholar
  164. Mountcastle, V. B., Talbot, W. H., Sakata, H., and Hyvarinen, J., 1969, Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination, J. Neurophysiol. 32:452–484.PubMedGoogle Scholar
  165. Muly, E. C, and Fitzpatrick, D., 1992, The morphological basis for binocular and ON/OFF convergence in tree shrew striate cortex, J. Neurosci. 12:319–1334.Google Scholar
  166. Olavarria, J., van Sluyters, R. C, and Killackey, H. P., 1984, Evidence for the complementary organization of callosal and thalamic connections within rat somatosensory cortex, Brain Res. 291:364–368.PubMedGoogle Scholar
  167. Pasternak, J. F., and Woolsey, T. A., 1975, The number, size and spatial distribution of neurons in lamina IV of the mouse SmI neocortex, J. Comp. Neurol. 160:291–306.PubMedGoogle Scholar
  168. Patel, U., 1983, Non-random distribution of blood vessels in the posterior regions of the rat somatosensory cortex, Brain Res. 289:65–70.PubMedGoogle Scholar
  169. Patel-Vaidya, U., 1985, Ultrastructural organization of posterior and anterior barrels in the somatosensory cortex of rat, J. Neurosci. Res. 14:357–371.PubMedGoogle Scholar
  170. Peters, A., 1987, Number of neurons and synapses in primary visual cortex, in: Cerebral Cortex, Vol. 6 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 267–294.Google Scholar
  171. Peters, A., 1993, Pyramidal cell modules in rat visual cortex. Their structure and development, in: Formation and Regeneration of Nerve Connections (S. C. Sharma and J. W. Fawcett, eds.), Birkhäuser, Boston, pp. 102–120.Google Scholar
  172. Peters, A., and Feldman, M. L., 1977, The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. IV. Terminations upon spiny dendrites, J. Neurocytol. 6:669–689.PubMedGoogle Scholar
  173. Peters, A., and Sethares, C, 1991, Organization of pyramidal neurons in area 17 of monkey visual cortex, J. Comp. Neurol. 306:1–23.PubMedGoogle Scholar
  174. Peters, A., and Walsh, M. T, 1972, A study of the organization of apical dendrites in the somatic sensory cortex of the rat, J. Comp. Neurol. 144:253–268.PubMedGoogle Scholar
  175. Peters, A., and Yilmax, E., 1993, Neuronal organization in area 17 of cat visual cortex, Cereb. Cortex 3;49–68.PubMedGoogle Scholar
  176. Peters, A., White, E. L., and Fairén, A., 1977, Synapses between identified neuronal elements. An electron microscopic demonstration of degenerating axon terminals synapsing with Golgi impregnated neurons, Neurosci. Lett. 6:171–175.PubMedGoogle Scholar
  177. Peters, A., Palay, S. L., and Webster, H. D., 1991, The Fine Structure of the Nervous System: Neurons and Their Supporting Cells, 3rd ed., Oxford University Press, London.Google Scholar
  178. Porter, L. L., and Izraeli, R., 1992, Connections of vibrissal regions in rat sensory-motor cortex, Soc. Neurosci. Abstr. 18:846.Google Scholar
  179. Porter, L., and White, E. L., 1983, Afferent and efferent pathways of the vibrissal region of primary motor cortex in the mouse, J. Comp. Neurol. 214:279–289.PubMedGoogle Scholar
  180. Rail, W., 1970, Cable properties of dendrites and effects of synaptic location, in: Excitatory Synaptic Mechanisms. Proceedings of the 5th International Meeting of Neurobiologists (P. Anderson and J. K. S. Jansen, eds.), Univeritets-forlag, Oslo, pp. 175–187.Google Scholar
  181. Rail, W, Burke, R. E., Smith, T G., Nelson, P. G., and Frank, K., 1967, Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons, J. Neurophysiol. 30:1169–1193.Google Scholar
  182. Ralston, H. J., 1983, The synaptic organization of the ventrobasal thalamus in the rat, cat and monkey, in: Somatosensory Integration in the Thalamus (G. Macchi, A. Rustioni, and R. Spreafico, eds.), Elsevier, Amsterdam, pp. 241–250.Google Scholar
  183. Schiller, P. H., Finlay, B. L., and Volman, S. F., 1976, Quantitative studies of single-cell properties in monkey striate cortex, J. Neurophysiol. 39:1288–1374.PubMedGoogle Scholar
  184. Schwark, H. D., and Jones, E. G., 1989, The distribution of intrinsic cortical axons in area 3b of cat primary somatosensory cortex, Exp. Brain Res. 78:501–513.PubMedGoogle Scholar
  185. Simons, D. J., 1978, Response properties of vibrissa units in rat SI somatosensory neocortex, J. Neurophysiol. 41:798–820.PubMedGoogle Scholar
  186. Simons, D. J., 1985, Temporal and spatial integration in the rat SI vibrissa cortex, J. Neurophysiol. 54:615.PubMedGoogle Scholar
  187. Simons, D. J., and Carvell, G. E., 1989, Thalamocortical response transformation in rat vibrissa/barrel system, J. Neurophysiol. 61:311–330.PubMedGoogle Scholar
  188. Simons, D. J., and Woolsey, T. A., 1979, Functional organization in mouse barrel cortex, Brain Res. 165:327–332.PubMedGoogle Scholar
  189. Simons, D. J., and Woolsey, T. A., 1984, Morphology of Golgi-Cox-impregnated barrel neurons in rat SmI cortex, J. Comp. Neural. 230:119–132.Google Scholar
  190. Simons, D. J., Carvell, G. E., and Land, P. W., 1989, The vibrissa/barrel cortex as a model of sensory information processing, in: Sensory Processing in Mammalian Brain: Neuronal Substrate and Experimental Strategies (J. S. Lund, ed.), Oxford University Press, London, pp. 67–83.Google Scholar
  191. Simons, D. J., Carvell, G. E., Hersher, A. E., and Bryant, D. P., 1992, Responses of barrel cortex neurons in awake rats and effects of urethane anesthesia, Exp. Brain Res. 91:259–272.PubMedGoogle Scholar
  192. Slotnick, B. M., and Leonard, C. M., 1975, A Stereotaxic Atlas of the Albino Mouse Forebrain, U.S. Department of Health, Education, and Welfare, Rockville, Ml).Google Scholar
  193. Sloviter, R. S., 1987, Calcium binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: Localization in the rat hippocampus and with specific reference to the selective vulnerability of hippocampal neurons to seizure activity, J. Comp. Nenrol. 280:183–196.Google Scholar
  194. Smith, R. L., 1980, The ascending fiber projections from the principal sensory trigeminal nucleus in the rat, J. Comp. Neurol. 148:423–446.Google Scholar
  195. Soreide, A. J., and Fonnum, F., 1980, High affinity uptake of n-aspartate in the barrel subfield of the mouse somatic sensory cortex, Brain Res. 201:427–430.PubMedGoogle Scholar
  196. Steffen, H., 1976, Golgi-stained barrel neurons in the somatosensory region of the mouse cerebral cortex, Neurosci. Lett. 2:57–59.PubMedGoogle Scholar
  197. Stewart, M. G., Siucinska, E., JKossut, M., and Davies, H., 1993, Loss of glutamate immunoreactivity from mouse first somatosensory (SI) cortex following neonatal vibrissal lesion, Brain Res. 621:331–338.PubMedGoogle Scholar
  198. Storm-Mathisen, J., and Ottersen, O. P., 1988, Anatomy of putative glutaminergic neurons, in: Neurotransmitters and Cortical Function (M. Avoli, T. A. Reader, R. W. Dykes, and P. Gloor, eds.), Plenum Press, New York, pp. 39–70.Google Scholar
  199. Streit, P., 1984, Glutamate and aspartate as transmitter candidates for systems of the cerebral cortex, in: Cerebral Cortex, Vol. 2 (E. G. Jones and A. Peters, eds.). Plenum Press, New York, pp. 119–143.Google Scholar
  200. Sugitani, M., Yano, J., Sugai, T, and Oyama, H., 1990, Somatotopic organization and columnar structure of vibrissae representation in the rat ventrobasal complex, Exp. Brain Res. 81:346–352.PubMedGoogle Scholar
  201. Toyama, K., Kimura, M., and Tanaka, K., 1981, Cross-correlation analysis of interneuronal connectivity in cat visual cortex, J. Neurophysiol. 46:191–201.PubMedGoogle Scholar
  202. Ts’o, D. Y., Gilbert, C. D., and Wiesel, T. N., 1986, Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis, J.Neurosci. 6:1160–1170.Google Scholar
  203. Tsumoto, T., 1990, Excitatory amino acid transmitters and their receptors in neural circuits of the cerebral neocortex, Neurosci. Res. 9:79–102.PubMedGoogle Scholar
  204. Tsumoto, T., Masui, H., and Sato, H., 1986, Excitatory amino acid transmitters in neuronal circuits of the cat visual cortex, J. Neurophysiol. 55:469–483.PubMedGoogle Scholar
  205. Uhr, J. L., Chapin, J. K., and Woodward, D. J., 1982, Variation in receptive field size across layer IV in rat barrelfield cortex, Soc. Neurosci. Abstr. 91:724–744.Google Scholar
  206. van Brederode, J. F. M., and Helliesen, M. K., 1991, Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat, Neuroscience. 44:157–171.PubMedGoogle Scholar
  207. Van der Loos, H., 1976, Barreloids in mouse somatosensory thalamus, Neurosci. Lett. 2:1–6.Google Scholar
  208. Vercelli, A., Assal, F., and Innocenti, G. M., 1992, Emergence of callosally projecting neurons with stellate morphology in the visual cortex of the kitten, Exp. Brain Res. 90:346–358.PubMedGoogle Scholar
  209. Vincent, S. B., 1912, The function of the vibrissae in the behavior of the white rat, Behav. Monogr. 1:7–86.Google Scholar
  210. von Bonim, G., and Mehler, W. R., 1971, On columnar arrangement of nerve cells in cerebral cortex, Brain Res. 27:1–10.Google Scholar
  211. Waite, P. M. E., 1973, Somatotopic organization of vibrissal responses in the ventrobasal complex of the rat thalamus, J. Physiol. (London). 228:527–540.Google Scholar
  212. Wallace, M. N., Kitzes, L. M., and Jones, E. G., 1991, Intrinsic interlaminar and intralaminar connections and their relationship to the tonotopic map in cat primary auditory cortex, Exp. Brain Res. 86:527–544.PubMedGoogle Scholar
  213. Weiss, D. S., and Keller, A., 1994, Specific patterns of intrinsic connections between representation zones in the rat motor cortex, Cereb. Cortex. 4:295–214.Google Scholar
  214. Welker, C, 1971, Microelectrode delineation of fine grain somatopic organization of SmI cerebral neocortex in albino rat, Brain Res. 26:259–275.PubMedGoogle Scholar
  215. Welker, C, 1976, Receptive fields of barrels in the somatosensory neocortex of the rat, J. Comp. Neurol. 166:173–190.PubMedGoogle Scholar
  216. Welker, C, and Woolsey, T. A., 1974, Structure of layer IV in the somatosensory neocortex of the rat: Description and comparison with the mouse, J. Comp. Neurol. 158:437–454.PubMedGoogle Scholar
  217. Welker, E., Hoogland, P. V, and Van der Loos, H., 1988, Organization of feedback and feedforward projections of the barrel cortex: A PHA-L study in the mouse, Exp. Brain Res. 73:411–435.PubMedGoogle Scholar
  218. Welker, W. I., 1964, Analysis of sniffing of the albino rat, Behavior. 22:223–244.Google Scholar
  219. Weiler, W. L., 1972, Barrels in somatic sensory neocortex of the marsupial Trichosurus vulpecula (brush-tailed possum), Brain Res. 43:11–24.Google Scholar
  220. Weller, W. L., 1993, SmI cortical barrels in an australian marsupial, Trichosurus vulpecula (brush-tailed possum): Structural organization, patterned distribution, and somatotopic relationships, J. Comp. Neurol. 337:471–492.PubMedGoogle Scholar
  221. White, E. L., 1976, Ultrastructure and synaptic connections in barrels of mouse SI cortex, Brain Res. 105:229–251.PubMedGoogle Scholar
  222. White, E. L., 1978, Identified neurons in mouse SmI cortex which are postsynaptic to thalamocortical axon terminals: A combined Golgi-electron microscopic and degeneration study, J.Comp. Neurol. 181:627–662.PubMedGoogle Scholar
  223. White, E. L., 1979, Thalamocortical synaptic relations: A review with emphasis on the projection of specific thalamic nuclei to the primary sensory areas of the neocortex, Brain Res. Rev. 1:275–311.Google Scholar
  224. White, E. L., 1986, Termination of thalamic afferents in the cerebral cortex, in: Cerebral Cortex, Vol. 5 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 271–289.Google Scholar
  225. White, E. L. (ed.), 1989a, Cortical Circuits: Synaptic Organization of the Cerebral CortexStructure, Function and Theory, Birkhäuser, Boston.Google Scholar
  226. White, E. L., 1989b, General organization of the cerebral cortex, in: Cortical Circuits: Synaptic Organization of the Cerebral CortexStructure, Function and Theory (E. L. White, ed.), Birkhäuser, Boston, pp. 19–45.Google Scholar
  227. White, E. L., 1989c, Synaptic connections between identified elements, in: Cortical Circuits: Synaptic Organization of the Cerebral CortexStructure, Function and Theory (E. L. White, ed.), Birkhäuser, Boston, pp. 46–195.Google Scholar
  228. White, E. L., and Gzeiger, D., 1991, Synapses made by axons of callosal projection neurons in mouse somatosensory cortex: Emphasis on intrinsic connections, J. Comp. Neurol. 303:233–244.PubMedGoogle Scholar
  229. White, E. L., and De Amicis, R., 1977, Afferent and efferent projections of the region in mouse SmI cortex which contains the posteromedial barrel subfield, J. Comp. Neurol. 175:455–481.PubMedGoogle Scholar
  230. White, E. L., and Hersch, S. M., 1981, Thalamocortical synapses of pyramidal cells which project from SmI to Msl cortex in the mouse, J. Comp. Neurol. 198:167–181.PubMedGoogle Scholar
  231. White, E. L., and Hersch, S. M., 1982, A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex, J. Neuro-cytol. 11:137–157.Google Scholar
  232. White, E. L., and Keller, A., 1987, Intrinsic circuitry involving the local axonal collaterals of corticothalamic projection cells in mouse SmI cortex, J. Comp. Neurol. 26:213–226.Google Scholar
  233. White, E. L., and Peters, A., 1993, Gortical modules in the posteromedial barrel subfield (Sml) of the mouse, J. Comp. Neurol. 334:86–96.PubMedGoogle Scholar
  234. White, E. L., and Rock, M. P., 1979, Distribution of thalamic input to different dendrites of a spiny stellate cell, Neurosa, Lett. 15:115–119.Google Scholar
  235. White, E. L., and Rock, M. P., 1980, Three dimensional aspects and synaptic relationships of a Golgi impregnated spiny stellate cell reconstructed from serial thin sections, J. Neurocytol. 9:615–636.PubMedGoogle Scholar
  236. White, E. L., and Rock, M. P., 1981, A comparison of thalmocortical and other synaptic inputs to dendrites of two non-spiny neurons in a single barrel of mouse SmI cortex, J. Comp. Neurol. 195:265–277.PubMedGoogle Scholar
  237. White, E. L., Hersch, S. M., and Rock, M. P., 1980, Synaptic sequences in mouse SmI cortex involving pyramidal cells labeled by retrograde filling with horseradish peroxidase, Neurosci. Lett. 19:149–154.PubMedGoogle Scholar
  238. White, E. L., Benshalom, G., and Hersch, S. M., 1984, Thalamocortical and other synapses of non-spiny multipolar cells in mouse SmI cortex, J. Comp. Neurol. 229:311–320.PubMedGoogle Scholar
  239. White, E. L., Amitai, Y., and Gutnick, M. J., 1994, A comparison of synapses onto the somata of intrinsically bursting and regular spiking neurons in layer V of rat SmI cortex, J. Comp. Neurol. 342:1–14.PubMedGoogle Scholar
  240. White, E. L., Czeiger, C, and Weinfield, E., 1992, A simplified approach to retrograde/anterograde axonal labeling using combined injections of horseradish peroxidase and ibotenic acid, J. Neurosci. Methods. 42:27–36.PubMedGoogle Scholar
  241. Wiesel, T. N., Hubel, D. H., and Lam, D. M. K., 1974, Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport, Brain Res. 79:273–279.PubMedGoogle Scholar
  242. Winguth, S. D., and Winer, J. A., 1986, Corticocortical connections of cat primary auditory cortex (AI): Laminar organization and identification of supragranular neurons projecting to area All, J. Comp. Neurol. 248:36–56.PubMedGoogle Scholar
  243. Wise, S. P., and Jones, E. G., 1977, Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex, J. Comp. Neurol. 175:129–158.PubMedGoogle Scholar
  244. Woolsey, T. A., 1967, Somatosensory, auditory and visual cortical areas of the mouse, Johns Hopkins Med. J. 121:91–112.PubMedGoogle Scholar
  245. Woolsey, T. A., and Rovainen, C. M., 1991, Whisker barrels: A model for direct observation of changes in the cerebral microstimulation with neuronal activity, in: Brain Work and Mental ctivity (N. A. Lassen, D. H. Ingvar, M. E. Raichle, and L. Friberg, eds.), Munksgaard, Copenhagen, pp. 189–198.Google Scholar
  246. Woolsey, T. A., and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex, Brain Res. 17:205–242.PubMedGoogle Scholar
  247. Woolsey, T. A., Dierker, M. K., and Wann, D. F., 1975a, Mouse SmI cortex: Qualitative and quantitative classification of Golgi-impregnated barrel neurons, Proc. Nail. Acad. Sci. USA 72;2165–2169.Google Scholar
  248. Woolsey, T. A., Welker, C, and Schwartz, R. H., (1975b), Comparative anatomical studies of the SmI face cortex with special reference to the occurrence of “barrels” in layer IV, J.Comp. Neurol. 164:79–94.PubMedGoogle Scholar
  249. Woolston, D. C, La Londe, J. R., and Gibson, J. M., 1983, Corticofugal influences in the rat on responses of neurons in the trigeminal nucleus interpolaris to mechanical stimulation, Neurosci. Lett. 36:43–48.PubMedGoogle Scholar
  250. Yuan, B., Morrow, T. J., and Casey, K. L., 1985, Responsiveness of ventrobasal thalamic neurons after suppression of SI cortex in the anesthetized rat, J. Neurosci. 5:2971–1978.PubMedGoogle Scholar
  251. Yuan, B., Morrow, T. J., and Casey, K. L., 1986, Corticofugal influences of SI cortex on ventrobasal thalamic neurons in the awake rat, Neuroscience. 6:3611–3617.PubMedGoogle Scholar
  252. Zilles, K., and Wree, A., 1985, Cortex: Areal and laminar structure, in: The Rat Nervous System, Academic Press, New York, pp. 375–415.Google Scholar
  253. Zucker, E., and Weiler, W. I., 1969, Coding of somatic sensory input by vibrissae in the rat’s trigeminal ganglion, Brain Res. 12:138–156.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Asaf Keller
    • 1
  1. 1.Departments of Anatomy and Cell Biology and NeuroscienceUniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations