Leukodiapedesis, Function, and Physiological Role of Leucocyte Matrix Metalloproteinases

  • Harald Tschesche
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 421)


Any inflammatory process is accompanied by the invasion of polymorphonuclear neutrophils (PMN) which emigrate from the vascular bed through the blood capillary walls into the surrounding tissue towards the site of inflammation (Fig. 1).


Human Neutrophil Stroma Tissue Interstitial Collagenase Matrix Supplement Amnion Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. J. Williams and P. G. Hellewell, Endothelial cell biology. Adhesion molecules involved in the microvascular inflammatory response, Am. Rev. Respir. Dis. 146, 45–50 (1992)CrossRefGoogle Scholar
  2. 2.
    M. P. Bevilacqua and R. M. Nelson, Selectins, J. Clin. Invest. 91, 379–387 (1993)PubMedCrossRefGoogle Scholar
  3. 3.
    E. C. Butcher, Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity, Cell 67, 1033–1036(1991)Google Scholar
  4. 4.
    R. Pardi, L. Inverardi, and J. R. Bender, Regulatory mechanisms in leukocyte adhesion: flexible receptors for sophisticated travelers, Immunol. Today 13, 224 (1993)CrossRefGoogle Scholar
  5. 5.
    T. M. Carlos and J. M. Harlan, Leukocyte-endothelial adhesion molecules, Blood 84, 2068–2101 (1994)PubMedGoogle Scholar
  6. 6.
    B. Bakowski and H. Tschesche, Migration of polymorphonuclear leukocytes through human amnion membrane–A scanning electron microscopic study Biol. Chem. Hoppe-Seyler 373, 529–546 (1992)PubMedGoogle Scholar
  7. 7.
    I. I. Singer, S. Scott, D. W. Kawda, D. M. Kazazis, Adhesomes: Specific granules containing receptors for laminin, C3bi/fibrinogen, fibrinectin, and vitronectin in human polymorphonuclear leucocytes and monocytes, J. Cell Biol. 109, 3169–3182 (1989)PubMedCrossRefGoogle Scholar
  8. 8.
    R. Snyderman and R. J. Uhing, Phagocytic cells: stimulus-response coupling mechanisms, in: Inflammation: Basic Principles and Clinical Correlates, 309–332 ( J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds.), Raven Press, New York (1988)Google Scholar
  9. 9.
    H. Tschesche. A. Schettler, H Thorn, B. Bakowski, V. Knäuper, H. Reinke, and B. M. Jockusch, Chemotaxis, proteinase secretion and activation of collagenase of PMN leucocytes in: Proteinases and Their Inhibitors - Recent Developments, Proceedings of the 8th Winter School, (E. Auerswald, H. Fritz, V. Turk, eds.) 31–36, KFA Jülich GmbH, (1989)Google Scholar
  10. 10.
    A. Schettler, H. Thorn, B. M. Jockusch, and H. Tschesche, Release of proteinases from stimulated polymorphonuclear leukocytes: Evidence for subclasses of the main granule types and their association with cytoskeletal components, Eur. J. Biochem. 197, 197–202 (1991)PubMedCrossRefGoogle Scholar
  11. 1.
    D. G. Wright and J. I. Gallin, Secretory responses of human neutrophils: Exocytosis of specific (secondary) granules of human neutrophils during adherence in vitro and during exudation in vivo, J. Immunol. 123, 285–294 (1979)Google Scholar
  12. 12.
    M. C. M. Vissers, C. C. Winterbourn, and J. S. Hunt, Degradation of glomerular basement membrane by human neutrophils in vitro, Biochem. Biophy.s. Acta, 804, I54–160 (1984)Google Scholar
  13. 13.
    V.-J. Uitto, D. Schwartz, and A Veis, Degradation of basement-membrane collagen by neutral proteases from human leukocytes, Eur. J. Biochem. 105, 409–417 (1980)PubMedCrossRefGoogle Scholar
  14. 14.
    R. A. D. Bunning, G. Murphy. S. Kumar, P. Phillips, and J. J. Reynolds, Metalloproteinase inhibitors from bovine cartilage and body fluids, Eur.1. Biochem. 139, 75–80 (1984)CrossRefGoogle Scholar
  15. 15.
    Y. A. De Clerck, T.-D. Yean, B. J. Ratzkin, H. S. Lu, and K. E. Langley, Purification and characterization of two related but distinct metallo-proteinase inhibitors secreted by bovine aortic endothelial cells, J. Bio! Chem. 264, 17445–1 7453, (1989)Google Scholar
  16. 16.
    G. I. Goldberg, B. L. Manner, G. A. Grant, A. Z. Eisen, and S. Wilhelm, Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2, Proc. Vail. Acad. Sci. USA 86, 8207–8211 (1989)CrossRefGoogle Scholar
  17. 17.
    W. G. Stetler-Stevenson, H. C. Krutzsch, and L. A. Liotta, Tissue Inhibitor of Metalloproteinase (TIMP-2), J. Biol. Chen. 264, 17374–17378 (1989)Google Scholar
  18. 18.
    E. J. Campbell and M. A. Campbell, Pericellular proteolysis by neutrophils in the presence of proteinase inhibitors: Effects of substrate opsonizatìon, J. Cell Biol. 106, 667–676 (1988)PubMedCrossRefGoogle Scholar
  19. 19.
    A. F. Brown, Neutrophil granulocytes: Adhesion and locomotion on collagen substrata and in collagen matrices, J. Cell Sci. 58, 455. 467 (1982)Google Scholar
  20. 20.
    H. Tschesche, Human neutrophil collagenase in: Methods in Enzymology, 248, (A.J.Barrett, ed.), 431–449, Academic Press, San Diego (1995)Google Scholar
  21. 21.
    G. Murphy and T. Crabbe, Gelatinases A and B, Methods in Enzvmol. 248, 470–484 (1995)CrossRefGoogle Scholar
  22. 22.
    H. Tschesche, C. Kopp, W. H. Hörl, and U. Hempelmann, Inhibition of degranulation of polymorphonuclear leukocytes by angiogenin and its tryptic fragment, J. Biol.Chem. 269, 30274–30280 (1994)PubMedGoogle Scholar
  23. 23.
    N. Balke, U. Holtkamp, W.H. Hörl, and H. Tschesche, Inhibition of degranulation of human polymorphonuclear leukocytes by complement factor D, FEBS Lett. 371, 300–302 (1995)PubMedCrossRefGoogle Scholar
  24. 24.
    H. Tschesche, V. Knäuper, S. Krämer, J. Michaelis, R. Oberhoff, and H. Reinke, Latent collagenase and gelatinase from human neutrophils and their activation, in: MATRIX Supplement 1, 245–255 ( H. BirkedalHansen, Z. Werb, H. Welgus and H. Van Wart eds.), Gustav-Fischer Verlag, Stuttgart, New York, (1992)Google Scholar
  25. 25.
    G. Murphy, R. Ward, J. Gavrilovic, and S. Atkinson, Physiological mechanisms for metalloproteinase activation, in: MATRIX Supplement 1, 224–230 ( H. Birkedal-Hansen, Z. Werb, H. Welgus and H. Van Wart eds.), Gustav Fischer Verlag, Stuttgart, New York (1992)Google Scholar
  26. 26.
    H. Nagase, K. Suzuki, T. Morodomi, J. J. Enghild, and G. Salvesen, Activation Mechanisms of the precursors of matrix metalloproteinases 1,2 and 3, in: MATRIX Supplement 1, 237–244 ( H. Birkedal-Hansen, Z. Werb, H. Welgus and H. Van Wart eds.), Gustav Fischer Verlag, Stuttgart, New York (1992)Google Scholar
  27. 27.
    E. B. Springman, E. L. Angleton, H. Birkedal-Hansen, and H. E. van Wart, Biochemical basis for multiple modes of activation of human fibroblast collagenase, in: MATRIX Supplement 1, 76–77(H. Birkedal-Hansen, Z. Werb, H. Welgus and H. Van Wart eds.), Gustav Fischer Verlag, Stuttgart, New York (1992)Google Scholar
  28. 28.
    S. J. Weiss, G. Peppin, X. Ortiz, C. Ragsdale, and S. T. Test, Oxidative activation of latent collagenase by human neutrophils, Science 227, 747–749 (1985)PubMedCrossRefGoogle Scholar
  29. 29.
    E. B. Springman, E. L. Angleton, H. Birkendal-Hansen, and H. E. Van Wart, Multiple modes of activation of latent human fibroblast collagenase: Evidence for a role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation, Proc. Natl. Acad Sci. USA 87, 364–368 (1990)PubMedCrossRefGoogle Scholar
  30. 30.
    W. Bode, P. Reinemer, R. Huber, T. Kleine, S. Schnierer, and H. Tschesche, The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity, EMBO J. 6, 1263–1269 (1994)Google Scholar
  31. 31.
    P. Reinemer, F. Grams, R. Huber, T. Kleine, S. Schnierer, M. Pieper, H. Tschesche, and W. Bode, Structural implications for the role of the N-terminus in the “superactivation” of collagenases. A crystallographic study, FEBS Lett. 338, 227–233 (1994)PubMedCrossRefGoogle Scholar
  32. 32.
    V. Knäuper, S. Krämer, H. Reinke, and H. Tschesche, Characterization and activation of procollagenase from human polymorphonuclear leucocytes–N-terminal sequence determination of the proenzyme and various proteolytically activated forms, Eur. J. Biochem. 189, 295–300 (1990)PubMedCrossRefGoogle Scholar
  33. 33.
    J. M. Clark and T. E. Cawston,Fragments of human fibroblast collagenase purification and characterization, Biochem. J. 263, 201–206 (1989)PubMedGoogle Scholar
  34. 34.
    V. Knäuper, S. M. Wilhelm, P.K. Seperack, Y. A. DeClerck, K. E. Langley,A. Osthues, and H. Tschesche. Direct activation of human neutrophil procollagenase by recombinant stromelysin, Biochem. J. 295. 581–586(1993)Google Scholar
  35. 35.
    S. Schnierer, T. Kleine, T. Gote, A. Hillemann, V. Knäuper, and H. Tschesche, The recombinant catalytic domain of human neutrophil collagenase lacks type I collagen substrate specificity, Biochern. Bïaphrs. Res. Comm. 191, 319–326 (1993)CrossRefGoogle Scholar
  36. 36.
    E. J. Miller, E. D. Harris, Jr., E. Chung. D. E. Finch, Jr., P. A. McCroskery, and W. T. Butler, Cleavage of type Il and HI colagens with mammalian collagenase: Site of cleavage and primary structure at the NH,-terminal portion of the smaller fragment released from both collagens, Biochemistry 15, 787 (1976)PubMedCrossRefGoogle Scholar
  37. 37.
    A. J. Fosang, K. Last, P. J. Neame, G. Murphy, V. Knäuper, H. Tschessche, C. E. Hughes, B. Caterson, and T. E. Hardingam. Neutrophil collagenase (MMP-8) cleaves at the aggrecanase site E373–A374 in the inter-globular domain of cartilage aggrecan, Biochem. J. 304, 347–351 (1994)PubMedGoogle Scholar
  38. 38.
    V. Knäuper, H. Reinke and H. Tschesche,lnactivation of Human Plasma l-Proteinase Inhibitor by Human PMN Leucocyte Collagenase, FEBS Lett. 263, 355–357 (1990)Google Scholar
  39. 39.
    V. Knäuper, S. Triebel, H. Reinke and H. Tschesche,lnactivation of human plasma Cl-inhibitor by human PMN leucocyte matrix metalloproteinases, FEBS Lett. 290 99–102 !;1991)Google Scholar
  40. 40.
    O. Diekmann and H. Tschesche, Degradation of kinins, angiotensins and substance P by polymorphonuclear matrix metalloproteinases MMP 8 and MMP 9, Braz. J. Med. Biol. Res. 27, 1877–1883 (1994)Google Scholar
  41. 41.
    I. Walter, I. Wölker and W. Kuhn, Serum collagenase levels during pregnancy and parturition. R. Osmers, M. A. Pflanz, W. Rath, M. Szeverényi, V. Süwer, H. Tschesche, EurJ. Obstet. Gvnecol. Reprod. Biot 53, 55–57 (1994)Google Scholar
  42. 42.
    R. G. W. Osmers, B. C. Adelmann-Grill, W. Rath, H. W. Stuhlsatz, H. Tschesche, and W. Kuhn, Biochemical events in cervical ripening dilatation during pregnancy and parturition, J. Obstet. Gynaecol. 21, 185–194 (1996)Google Scholar
  43. R. Osmers, H. Tschesche, J. Bläser, Th. Cunze, B. Lefhalm, and W. Kuhn, Bedeutung von I1–1 und II-8 während der Geburt, 110. Congress Norddeutsche Gesellschafi für Gynäkologie und Gehurtshiije,Abstract No. 89 142–143 (1995)Google Scholar
  44. 44.
    M. Takagi, Y. Konttinen, P. Kemppinen, T. Sorsa, H. Tschesche, J. Bläser. A. Suda, and S. Santavirta. Tissue inhibitor of metalloproteinase (TIMP)- 1 and collagenolytic and gelatinolytic potential in loose THR endoprostheses, J. Rheumatot. 22, 2285–2290, (1995)Google Scholar
  45. 45.
    T. Sorsa, Y.-L. Ding, T. Ingman, T. Salo, U. Westerlund, M. Haapasalo, H. Tschesche, and Y.T. Konttinen, Cellular source, activation and inhibition of dental plaque collagenase, J. Clin. Periodontol 22, 709 717 (1995)Google Scholar
  46. 46.
    H. Tschesche, B. Bakowski, A. Schettler, V. Knäuper, and H. Reinke, Leukodiapedesis, release of PMN leucocyte proteinases and activation of PMNL procollagenase, Biomed. Biochim. Acta 50, 755–761 (1991)PubMedGoogle Scholar
  47. 47.
    L. A. Liotta, U. P. Thorgeirsson, and S. Garbisa, Role of collagenases in tumor cell invasion. Cancer Metastasis Rev. 1, 277–288 (1982)PubMedCrossRefGoogle Scholar
  48. 48.
    W. G. Stetler-Stevenson, Type IV collagenases in tumour invasion and metastasis, Rev. 9, 289–303 (1990)Google Scholar
  49. 49.
    H. Sato, T. Takino, Y. Okada, J. Cao, A. Shinagawa, E. Yamamoto, and M. Seiki, A matrix metalloproteinase expressed on the surface of invasive tumour cells, Nature 370, 61–65 (1994)PubMedCrossRefGoogle Scholar
  50. 50.
    A. Y. Strongin, I. Collier, G. Bannikov, B. L. Marmer, G. A. Grant, and G I. Goldberg, Mechanism of cell surface activation of 72-kDa type IV collagenase, J. Biol. Chem. 270, 5331–5338 (1995)PubMedCrossRefGoogle Scholar
  51. 51.
    H. Sato and M. Seiki, Membrane-type matrix metalloproteinases (MT-MMPs) in tumor metastasis, J. Biochem. 119, 209–215 (1996)PubMedCrossRefGoogle Scholar
  52. 52.
    R. V. Ward, S. J. Atkinson, J. J. Reynolds, and G. Murphy, Cell surface-mediated activation of progelatinase A: Demonstration of the involvement of the C-terminal domain of progelatinase A in cell surface binding and activation of progelatinase A by primary fibroblasts, Biochem J. 304, 263–269 (1994)PubMedGoogle Scholar
  53. 53.
    H. Will, S. J. Atkinson, G. S. Butler, B. Smith, and G. Murphy, The soluble catalytic domain of membrane type I matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates äutoproteolytic activation, J. Biol. Chem. 271, 17119–17123 (1996)PubMedCrossRefGoogle Scholar
  54. 54.
    A. Lichte, H. Kolkenbrock, and H. Tschesche, The recombinant catalytic domain of membrane-type matrix metalloproteinase-1 (MT-MMP) induces activation of progelatinase A and progelatinase A complexed with TIMP-2, FEBS Lett. 397, 277–282 (1996)PubMedCrossRefGoogle Scholar
  55. 55.
    X. S. Puente, A. M. Pendäs, E. Llano, G. Velasco, and C. López-Otin, Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma, Cancer Research 56, 944–949 (1996)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Harald Tschesche
    • 1
  1. 1.Faculty of Chemistry and BiochemistryUniversity BielefeldBielefeldGermany

Personalised recommendations