Advertisement

Proteases of Isolated Pancreatic Acinar Cells after Caerulein Hyperstimulation

  • Walter Halangk
  • Dagmar Kunz
  • Rainer Matthias
  • Abidat Schneider
  • Jörg Stürzebecher
  • Hans-Ulrich Schulz
  • Hans Lippert
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 421)

Abstract

Acute pancreatitis has been considered for a long time as autodigestive disease of the pancreatic gland. However, the pathophysiology of this disease is still poorly understood. Therefore, some aspects of the pathogenesis may be investigated in experimental animal models. Supramaximal doses of the cholecystokinin analogue caerulein induces a mild edematous pancreatitis in rats [1]. As main intracellular alterations, an impaired stimulus-secretion coupling, a formation of vacuolic structures, a diminished energy metabolism, and an activation of zymogens occur. A morphological feature of caerulein pancreatitis is the loss (or shedding) of the apical part of the plasma membrane. In the present study, this model was used to study the role of proteolytic enzymes to the pathological alterations of the pancreatic acinar cell. To this end, the activities of the potential cell surface peptidases dipeptidyl peptidase IV (DP IV) and aminopeptidase N (AP N) were measured in the course of caerulein pancreatitis and the following regeneration period. In a second set of experiments, the possible role of trypsin for initiating proteolytic actions within the acinar cell was investigated. For this purpose, we used rhodamine 110-based fluorogenic substrates to register proteolytic activities in intact cells.

Keywords

Acute Pancreatitis Serine Protease Acinar Cell Pancreatic Acinar Cell Pancreatic Acinus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gorelick, F. S., G. Adler, and H. F. Kern. Cerulein-induced pancreatitis. In: The pancreas: Biology. pathobiology, and disease. Go, V. L. W., E. P. DiMagno, J. D. Gardner, E. Lebenthal, H. A. Reber, and G. A. Scheele (eds.) Raven Press, New York, 501–526, 1993Google Scholar
  2. 2.
    Amsterdam, A., and J. D. Jamieson. Structural and functional characterization of isolated pancreatic exocrine cells. Proc. Natl. Acad. Sci. U.S.A. 69: 3028–3032, 1972PubMedCrossRefGoogle Scholar
  3. 3.
    Rothe, G., S. Klingel, 1. Assfalg-Machleidt, W. Machleidt, C. Zirkelbach, R. B. Banati. W. F Mangel, and G. Valet. Flow cytometric analysis of protease activities in vital cells. Biol. Chem_ Hoppe-Seyler 373: 547–5 54. 1992Google Scholar
  4. 4.
    Schön, E., I. Born, H.-U. Demuth, J. Faust, K. Neubert, T, Steinmetzer, A. Barth, and S. Ansorge. Dipeptidyl peptidase IV in the immune system. Biol. Chem. Hoppe-Seyler 372: 305–311, 1991CrossRefGoogle Scholar
  5. 5.
    Kunz, D., F. Bühling, H.-J- Hütter, T. Aoyagi, and S. Ansorge. Amìnopeptidase N (CD 13, EC 3.4.11.2) occurs on the surface of resting and concanavalin A-stimulated lymphocytes. Biol. Chem. Hoppe-Seyler 374: 291–296. 1993Google Scholar
  6. 6.
    Stürzebecher, J., D. Prasa, P. Wikström, H. Vieweg, and J. Hauptmann. Synthesis and structure-activity relationships of potent thrombin inhibitors: piperazides of 3-amidinophenylalanine. J. Med. Chem. (1996) in pressGoogle Scholar
  7. 7.
    Tieku, S. and N. M. Hooper. Inhibition of aminopeptidases N, A and W. Biochem. Pharm. 44: 1725–1730, 1992PubMedCrossRefGoogle Scholar
  8. 8.
    Heymann, E.. R. Mentlein, I. Nausch, C. Erlanson-Albertsson, T. Yoshimoto, and A. C. Feller, Processing of pro-colipase and trypsinogen by pancreatic dipeptidyl peptidase IV Biomed. Biochem. Acta 45: 575–584, 1986Google Scholar
  9. 9.
    Yamaguchi, H., T. Kimura, K. Kimura, and N. Nawata. Activation of proteases m caerulein-induced pancreatitis. Pancreas 4: 565–571, 1989PubMedCrossRefGoogle Scholar
  10. 10.
    Bialek, R., S. Willemer, R. Arnold, and G. Adler. Evidence of intracellular activation of serine proteases in acute caerulein-induced pancreatitis in rats. Scand. J. Gastroenterol. 26: 190–196, 1991Google Scholar
  11. 11.
    Lüthen, R., C. Niederau, and J. H. Grendell. Intrapancreatic zymogen activation and levels of ATP and glutathione during caerulein pancreatitis in rats. Am. J. Physiol. 268: G592–604, 1995PubMedGoogle Scholar
  12. 12.
    Grady, T, A. Saluja, A. Kaiser, and M. Steer. Edema and intrapancreatic trypsinogen activation precede glutathione depletion during caerulein pancreatitis. Am. J. Physiol. 271: G20 - G26, 1996PubMedGoogle Scholar
  13. 13.
    Leach, S. D., I. M. Modlin, G. A. Scheele, and F. S. Gorelick. Intracellular activation of digestive zymogens in rat pancreatic acini. Stimulation by high doses of cholecystokinin. J. Clin. Invest. 87: 362–366, 1991CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Walter Halangk
    • 1
  • Dagmar Kunz
    • 2
  • Rainer Matthias
    • 2
  • Abidat Schneider
    • 2
  • Jörg Stürzebecher
    • 3
  • Hans-Ulrich Schulz
    • 1
  • Hans Lippert
    • 1
  1. 1.Centre of Surgery, Department of Experimental SurgeryUniversity MagdeburgMagdeburgGermany
  2. 2.Institute of Clinical ChemistryUniversity MagdeburgMagdeburgGermany
  3. 3.Centre of Vascular Biology and Medicine ErfurtUniversity JenaErfurtGermany

Personalised recommendations