Conservation of Cellular Mechanisms for Models of Learning and Memory

  • Daniel L. Alkon


Obvious differences in the behavioral phenomenology of various learning preparations necessitate differences in underlying brain structure, the number and complexity of responsible neural networks, and the actual transformations and integration of information. The usefulness of a learning model must, therefore, be narrowly defined by real similarities between the model and what is modeled. Dissimilarities will aid discrimination of freewheeling speculation from candidate mechanisms conserved during the course of evolution. A model, whether it be a mathematical description or a close behavioral parallel between one species and another, approaches uniqueness as more and more constraints are satisfied. The value of an interspecies model also depends on the degree to which physiology is conserved during evolution.


Cellular Mechanism Classical Conditioning Hippocampal Slice Associative Learning Pavlovian Conditioning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acosta-Urquidi, J., Alkon, D. L., and Neary, J. T., 1984, Ca’-dependent protein kinase injection in a photoreceptor mimics biophysical effects of associative learning, Science 224: 1254–1257.PubMedCrossRefGoogle Scholar
  2. Akers, R. F., Lovinger, D. M., Colley, P. A., Linden, D. J., and Rottenberg, A., 1986, Translocation of protein kinase C activity may mediate hippocampal long-term potentiation, Science 231: 587–588.PubMedCrossRefGoogle Scholar
  3. Alkon, D. L., 1980, Membrane depolarization accumulates during acquisition of an associative behavioral change, Science 210: 1375–1376.PubMedCrossRefGoogle Scholar
  4. Alkon, D. L., 1984, Calcium-mediated reduction of ionic currents: A biophysical memory trace, Science 226: 1037–1045.PubMedCrossRefGoogle Scholar
  5. Alkon, D. L., and Naito, S., 1986, Biochemical mechanisms of memory storage, J. Physiol. (Paris) 81: 252–260.Google Scholar
  6. Alkon, D. L., Kubota, M., Neary, J. T., Naito, S., Coulter, D., and Rasmussen, H., 1986, C-kinase activation prolongs Ca-dependent inactivation of K+ currents, Biochem. Biophys. Res. Commun. 134: 1254–1253.CrossRefGoogle Scholar
  7. Bank, B., Coulter, D., Kuzirian, A., Rasmussen, H., Alkon, D. L., and Chute, D. L., 1986, Effects of NMR conditioning on intracellular levels of protein kinase C, Proc. Natl. Acad. Sci. U.S.A. (in press).Google Scholar
  8. Baraban, J. M., Snyder, S. H., and Alger, B. E., 1985, Protein kinase C regulates ionic conductance in hippocampal pyramidal neurons: Electrophysiological effects of phorbol esters, Proc. Natl. Acad. Sci. U.S.A. 82: 2538–2542.PubMedCrossRefGoogle Scholar
  9. Berger, T. W., Rinaldi, P. C., Weisz, D. J., and Thompson, R. F., 1983, Single-unit analysis of different hippocampal cell types during classical conditioning of the rabbit nictitating membrane response, J. Neurophysiol. 50: 1197–1219.PubMedGoogle Scholar
  10. Connor, J., and Alkon, D. L., 1984, Light-and voltage-dependent increases of calcium ion concentration in molluscan photoreceptors, J. Neurophysiol. 51: 745–752.PubMedGoogle Scholar
  11. Disterhoft, J. F., Coulter, D. A., and Alkon, D. L., 1986, Conditioning—specific membrane changes of rabbit hippocampal neurons measured in vitro, Proc. Natl. Acad. Sci. U.S.A. 83: 2733–2737.PubMedCrossRefGoogle Scholar
  12. Farley, J., and Auerbach, S., (1986), Protein kinase C activation induced conductance changes in Hermissenda photoreceptors like those seen in associative learning, Nature 319: 220–223.PubMedCrossRefGoogle Scholar
  13. Farley, J., Richards, W. G., Ling, L. J., Linman, E., and Alkon, D. L., 1983, Membrane changes in a single photoreceptor cause associative learning in Hermissenda, Science 221: 1201–1203.PubMedCrossRefGoogle Scholar
  14. Goh, Y., Lederhendler, I., and Alkon, D. L., 1985, Input and output changes of an identified neural pathway are correlated with associative learning in Hermissenda, J. Neurosci. 5: 536–543.PubMedGoogle Scholar
  15. Kandel, E. R., and Schwartz, J. H., 1982, Molecular biology of learning: Modulation of transmitter release, Science 218: 433–443.PubMedCrossRefGoogle Scholar
  16. Naito, S., Bank, B., and Alkon, D. L., 1987, Transient and persistent depolarization-induced changes at protein phosphorylation in a molluscan nervous system, J. Neurochem. (in press).Google Scholar
  17. Neary, J. T., Crow, T. J., and Alkon, D. L., 1981, Change in a specific phosphoprotein band following associative learning in Hermissenda, Nature 293: 658–660.PubMedCrossRefGoogle Scholar
  18. Neary, J. T., Naito, S., and Alkon, D. L., 1986, Ca’ -activated phospholipid-dependent protein kinase (C-kinase) activity in the Hermissenda nervous system, J. Neurochem. 47: 1405–1411.PubMedCrossRefGoogle Scholar
  19. Sakakibara, M., Alkon, D. L., DeLorenzo, R., Goldenring, J. R., Neary, J. T., and Heldman, E., 1986, Modulation of calcium-mediated inactivation of ionic currents by Ca’ /calmodulin-dependent protein kinase II, Biophys. J. 50: 319–327.PubMedCrossRefGoogle Scholar
  20. Thompson, R. F., Barchas, J. D., Clark, G. A., Donegan, N., Kettner, R. E., Lavond, D. G., Madden, J. IV, Mauk, M. E., and McCormick, D. A., 1984, Neuronal substrates of associative learning in the mammalian brain, in: Primary Neural Substrates of Learning and Behavioral Change ( D. L. Alkon and J. Farley, eds.), Cambridge University Press, New York p. 71.Google Scholar
  21. Woody, C. D., Alkon, D. L., and Hay, B., 1984, Depolarization-induced efects of Ca=2+ -calmodulin-dependent protein kinase injection, in vivo, in single neurons of cat motor cortex, Brain Res. 321: 192–197.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Daniel L. Alkon
    • 1
  1. 1.Section on Neural Systems, Laboratory of Biophysics, IRP, National Institute of Neurological and Communicative Disorders and StrokeNational Institutes of Health at the Marine Biological LaboratoryWoods HoleUSA

Personalised recommendations