Contrasting Roles of a Brain-Specific Protein Kinase C Substrate

Has Protein F1 Evolved a New Function in CNS of Higher Vertebrates?
  • Robert B. Nelson
  • Aryeh Routtenberg


Increased phosphorylation of the neuronal membrane-bound protein F1 and translocation of its kinase, Ca2+- and phospholipid-stimulated protein kinase C (PKC), have been related to long-term increases in adult synaptic efficacy in a number of reports from our laboratory (Routtenberg et al.,1985; Lovinger et al., 1985; Akers et al., 1986).


Growth Cone High Vertebrate Optic Nerve Crush Fast Axonal Transport Nerve Growth Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akers, R. F., and Routtenberg, A., 1985, Kinase C phosphorylates a protein involved in synaptic plasticity, Brain Res. 334: 147–151.PubMedCrossRefGoogle Scholar
  2. Akers, R. F., Lovinger, D., Colley, P., Linden, D., and Routtenberg A., 1986, Translocation of protein kinase C activity may mediate hippocampal long term potentiation, Science 231: 587–589.PubMedCrossRefGoogle Scholar
  3. Benowitz, L. I., and Lewis, E. R., 1983, Increased transport of 44,000- to 49,000-dalton acidic proteins during regeneration of the goldfish optic nerve: A two-dimensional gel analysis, J. Neurosci. 3: 2153–2163.PubMedGoogle Scholar
  4. Berger, T. W., 1984, Long-term potentiation of hippocampal synaptic transmission affects rate of behavioral learning, Science 224: 627–630.PubMedCrossRefGoogle Scholar
  5. Bernstein, E., and Stelzner, D., 1983, Plasticity of the corticospinal tract following mid-thoracic spinal injury in post-natal rat, J. Comp. Neurol. 221: 382–400.PubMedCrossRefGoogle Scholar
  6. Bliss, T. V. P., and Lomo, T., 1973, Long lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path, J. Physiol. (Lond.) 232: 357–374.Google Scholar
  7. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257: 7847–7851.PubMedGoogle Scholar
  8. Desmond, N. L., and Levy, W. B., 1983, Synaptic correlates of associative potentiation/depression: An ultrastructural study in the hippocampus, Brain Res. 265: 21–30.PubMedCrossRefGoogle Scholar
  9. Douglas, R. M., and Goddard, G. V., 1975, Long-term potentiation of the perforant path—granule cell synapse in the rat hippocampus, Brain Res. 86: 205–215.PubMedCrossRefGoogle Scholar
  10. Gispen, W. H., Leunissen, J. L. M., Oestreicher, A. B., Verkleij, A. J., and Zwiers, H., 1985a, Presynaptic localization of 50 phosphoprotein: The (ACTH)-sensitive protein kinase substrate involved in rat brain polyphosphoinositide metabolism, Brain Res. 328: 381–385.PubMedCrossRefGoogle Scholar
  11. Gispen, W. H., Van Dongen, C. J., De Graan, P. N. E., Oestreicher, A. B., and Zwiers, H., 1985b, The role of phosphoprotein B50 in phosphoinositide metabolism in brain synaptic plasma membranes, in: Inositol and Phosphoinositides ( J. E. Bleasdale, G. Hauser, and J. Eichberg, ed.), Humana Press, Dallas, pp. 399–414.CrossRefGoogle Scholar
  12. Gispen, W. H., De Graan, P. N. E., Chan, S. Y., and Routtenberg, A., 1986, Comparison between the neural acidic proteins B50 and F1, in: Progress in Brain Research, Volume 69 (W. H. Gispen and A. Routtenberg, eds.), Elsevier, Amsterdam, pp. 383–386.Google Scholar
  13. Hsu, L., Natyzak, D., and Laskin, J. D., 1984, Effects of the tumor promoter 12-O-tetradecanoylphorbol-13acetate on neurite outgrowth from chick embryonic sensory ganglia, Cancer Res. 44: 4607–4614.PubMedGoogle Scholar
  14. Hubel, D. H., Weisel, T. N., and LeVay, S., 1977, Plasticity of ocular dominance columns in monkey striate cortex, Phil. Trans. R. Soc. Lond. [Biol.] 278: 377–409.CrossRefGoogle Scholar
  15. Jones, E. G., and Powell, T. P. S., 1970, An anatomical study of converging sensory pathways within the cerebral cortex of the monkey, Brain 503: 793–820.CrossRefGoogle Scholar
  16. Kalil, K., and Reh, T., 1979, Regrowth of severed axons in the neonatal CNS; establishment of normal connections, Science 205: 1158–1161.PubMedCrossRefGoogle Scholar
  17. Katz, F., Ellis, L., and Pfenninger, K. H., 1985, Nerve growth cones isolated from fetal rat brain: Calcium dependent protein phosphorylation, J. Neurosci. 5: 1402–1411.PubMedGoogle Scholar
  18. Kikkawa, U., Takai, Y., Minakuchi, R., Inohara, S., and Nishizuka, Y., 1982, Calcium-activated, phospholipid-dependent protein kinase from rat brain, J. Biol. Chem. 257: 13341–13348.PubMedGoogle Scholar
  19. Kraft, A. S., and Andersen, W. B., 1983, Phorbol esters increase the amount of calcium, phospholipiddependent protein kinase associated with the plasma membrane, Nature 301: 621–623.PubMedCrossRefGoogle Scholar
  20. Kristjansson, G. I., Zwiers, H., Oestricher, A. B., and Gispen, W. H., 1982, Evidence that the synaptic phosphoprotein B50 is localized exclusively in nerve tissues, J. Neurochem. 39: 371–378.PubMedCrossRefGoogle Scholar
  21. Kuypers, H. G. J., Szwarcbart, M. K., Mishkin, M., and Rosvold, H. E., 1965, Occipitotemporal corticocortical connections in the rhesus monkey, Exp. Neurol. 11: 245–262.PubMedCrossRefGoogle Scholar
  22. Larson, J., and Lynch, G., 1986, Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events, Science 232: 985–988.PubMedCrossRefGoogle Scholar
  23. Lee, K. S., Schottler, F., Oliver, M., and Lynch, G., 1980, Brief bursts of high-frequency stimulation produce two types of structural change in rat hippocampus, J. Neurophysiol. 44: 247–258.PubMedGoogle Scholar
  24. Levy, W. B., and Steward, O., 1983, Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus, Neuroscience 8: 791–797.PubMedCrossRefGoogle Scholar
  25. Lovinger, D. M., Akers, R. F., Nelson, R. B., Barnes, C. A., McNaughton, B. L., and Routtenberg, A., 1985, A selective increase in the phosphorylation of protein Fl, a protein kinase C substrate, directly related to three day growth of long term synaptic enhancement, Brain Res. 343: 137–143.PubMedCrossRefGoogle Scholar
  26. Lovinger, D. M., Colley, P. A., Akers, R. F., Nelson, R. B., and Routtenberg, A., 1986, Direct relation of long-duration synaptic potentiation to phosphorylation of membrane protein Fl: A substrate for membrane protein kinase C, Brain Res. 399: 205–211.PubMedCrossRefGoogle Scholar
  27. Lynch, S. A., Brugge, J. S., and Levine, J. M., 1986, Induction of an altered c-src protein accompanies the neural differentiation of an embryonal cell line, Soc. Neurosci. Abstr. 12: 2–16.Google Scholar
  28. Macara, I. G., 1985, Oncogenes, ions, and phospholipids, Am. J. Physiol. 248: C3 — C11.PubMedGoogle Scholar
  29. Macko, K. A., Jarvis, C. D., Kennedy, C., Miyaoka, M., Shinohara, M., Sokoloff, L., and Mishkin, M., 1982, Mapping the primate visual system with 2-[14C]deoxyglucose, Science 218: 394–397.PubMedCrossRefGoogle Scholar
  30. Matus, A. I., Ng, M. L., and Mazat, J. P., 1980, Protein phosphorylation in synaptic membranes: Problems of interpretation, in: Protein Phosphorylation and Bio-Regulation ( G. Thomas, E. J. Podesta, and J. Gorson, eds.), Karger, Basel, pp. 25–36.Google Scholar
  31. Mishkin, M., 1982, A memory system in the monkey, Phil. Trans. R. Soc. Lond. [Biol.] 298: 85–95.CrossRefGoogle Scholar
  32. Mishkin, M., and Ungerleider, L. G., 1982, Contributions of striate inputs to the visuospatial functions of parietopreoccipital cortex in monkeys, Behay. Brain Res. 6: 57–77.CrossRefGoogle Scholar
  33. Murphy, K. M. M., Gould, R. J., Oster-Granite, M. L., Gearheart, J. D., and Snyder, S. H., 1983, Phorbol esters receptors: Autoradiographic identification in the developing rat, Science 222: 1036–1038.PubMedCrossRefGoogle Scholar
  34. Nelson, R. B., and Routtenberg, A., 1985, Characterization of the 47kD protein FI (pI 4.5), a kinase C substrate directly related to neural plasticity, Exp. Neurol. 89: 213–224.PubMedCrossRefGoogle Scholar
  35. Nelson, R. B., Routtenberg, A., Hyman, C., and Pfenninger, K. H., 1985, A phosphoprotein, F1, directly related to neuronal plasticity in adult rat brain may be identical to a major growth cone membrane protein, Soc. Neurosci. Abstr. 11: 927.Google Scholar
  36. Nelson, R. B., Friedman, D. P., O’Neill, J. B., Mishkin, M., and Routtenberg, A., 1986, Protein kinase C substrate phosphorylation in primate cerebral cortex (e.g., protein FI) is increased in those stages of the occipitotemporal visual processing pathway important for information storage, Soc. Neurosci. Abstr. 12: 11–68.Google Scholar
  37. Niedel, J. E., Kuhn, L. J., and Vandenbark, G. R., 1983, Phorbol diester receptor copurifies with protein kinase C, Proc. Natl. Acad. Sci. U.S.A. 80: 36–40.PubMedCrossRefGoogle Scholar
  38. Nishizuka, Y., 1986, Studies and perspectives of protein kinase C, Science 233: 305–312.PubMedCrossRefGoogle Scholar
  39. Oestreicher, A. B., Dekker, L. V., and Gispen, W. H., 1986, A radioimmunoassay for the phosphoprotein B50: Distribution in rat brain, J. Neurochem. 46: 1366–1369.PubMedCrossRefGoogle Scholar
  40. Pandya, D. N., and Kuypers, H. G. J. M., 1969, Cortico-cortical connections in the rhesus monkey, Brain Res. 13: 13–36.PubMedCrossRefGoogle Scholar
  41. Routtenberg, A., 1982, Memory formation as a posttranslational modification of brain proteins, in: Mechanisms and Models of Neural Plasticity. Proceedings V/th International Neurobiology IBRO Symposium on Learning and Memory ( C. A. Marsden and H. Matthies, eds.), Raven Press, New York, pp. 17–24.Google Scholar
  42. Routtenberg, A., 1985, Protein kinase C activation leading to protein F1 phosphorylation may regulate synaptic plasticity by presynaptic terminal growth, Behay. Neural Biol. 44: 186–200.CrossRefGoogle Scholar
  43. Routtenberg, A., Lovinger, D., and Steward, O., 1985, Selective increase in the phosphorylation of a 47kD protein (F1) directly related to long-term potentiation, Behay. Neural Biol. 43: 3–11.CrossRefGoogle Scholar
  44. Simkowitz, P., Ellis, L., and Pfenninger, K. H., 1987, Developmentally regulated membrane proteins of nerve growth cones and synaptic endings, (submitted for publication).Google Scholar
  45. Skene, J. H. P., 1984, Growth-associated proteins and the curious dichotomies of nerve regeneration, Cell 37: 697–700.PubMedCrossRefGoogle Scholar
  46. Skene, J. H. P., and Willard, M., 1981a, Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells, J. Cell Biol. 89: 86–95.PubMedCrossRefGoogle Scholar
  47. Skene, J. H. P., and Willard, M., 1981b, Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous system, J. Cell Biol. 89: 96–103.PubMedCrossRefGoogle Scholar
  48. Skene, J. H. P., and Willard, M., 1981c, Characteristics of growth-associated polypeptides in regenerating toad retinal ganglion cell axons, J. Neurosci. 1: 419–426.PubMedGoogle Scholar
  49. Snipes, J., Freeman, J. A., Costello, B., Chan, S., and Routtenberg, A., 1986, A growth associated protein, GAP43, is immunologically and structurally related to the plasticity associated protein, protein Fl, Soc. Neurosci. Abstr. 12: 500.Google Scholar
  50. Van Harreveld, A., and Fifkova, E., 1975, Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic stimulation, Exp. Neurol. 49: 736–739.PubMedCrossRefGoogle Scholar
  51. Weisel, T. N., and Hubel, D. H., 1963, Single-cell responses in striate cortex of kittens deprived of vision in one eye, J. Neurophysiol. 26: 1003–1117.Google Scholar
  52. Wolf, M., Cuatrecasas, P., and Sahyoun, N., 1985, Interaction of protein kinase C with membranes is regulated by Ca++, phorbol esters, and ATP, J. Biol. Chem. 260: 15718–15722.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Robert B. Nelson
    • 1
  • Aryeh Routtenberg
    • 2
  1. 1.Neuroscience GroupThe DuPont CompanyWilmingtonUSA
  2. 2.Cresap Neuroscience LaboratoryNorthwestern UniversityEvanstonUSA

Personalised recommendations