Skip to main content

Digital Imaging of Ca2+ Levels in CNS Neurons under Conditions That Induce Facilitating Increases in Ca2+ Levels and Sustained Ca2+ Elevation

  • Chapter
Cellular Mechanisms of Conditioning and Behavioral Plasticity

Abstract

It is generally recognized that intracellular calcium ions (Ca2+) are important in the events that underlie cellular forms of neuronal conditioning. The experimental evidence supporting this view is clearest where there are correlations between electrophysiological and direct optical measurements of calcium fluxes, for example, in invertebrate neurons (Connor and Alkon, 1984; Boyle et al., 1984; Connor et al., 1986). The much smaller size and poor accessibility of vertebrate central nervous system (CNS) neurons have made a cellular analysis of conditioning mechanisms in these systems more difficult. The evidence suggesting that Ca’ ions are involved in changes underlying vertebrate learning has been primarily circumstantial (see, e.g., Lynch and Baudry, 1984). Recently, the development of membrane-permeable Ca2+-sensitive dyes (Tsien, 1980; Grynkiewicz et al.,1985) and high-resolution digital imaging technology have made it possible to measure spatially-resolved free Ca2+ changes in mammalian neurons (Connor, 1986; Connor et al., 1987). At the present time the measurements are optimized using tissue-cultured neurons, where experimental difficulties such as cell inaccessibility, nonspecific optical absorbance, and scattering artifacts can be minimized. However, in the future it should be possible to extend this technology to other preparations, e.g., brain slices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addison, W., 1911, The development of the Purkinje cells and of the cortical layers in the cerebellum of the albino rat, J. Comp. Neurol. 21: 459–487.

    Article  Google Scholar 

  • Altman, J., 1972a, Postnatal development of the cerebellar cortex in the rat, I. The external germinal layer and the transitional molecular layer, J. Comp. Neurol. 145: 353–398.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J., 1972b, Postnatal development of the cerebellar cortex in the rat, II. Phases in the maturation of Purkinje cells and of the molecular layer, J. Comp. Neurol. 145: 399–464.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J., 1982, Morphological development of the rat cerebellum and some of its mechanisms, Exp. Brain Res. 6 (suppl.): 8–46.

    Article  Google Scholar 

  • Altman, J., and Anderson, W., 1972, Experimental reorganization of the cerebellar cortex. I. Morphological effects of elimination of all microneurons with prolonged X-irradiation started at birth, J. Comp. Neurol. 146: 355–406.

    Article  PubMed  CAS  Google Scholar 

  • Barclay, A., 1979, Localization of the Thy-1 antigen in the cerebellar cortex of rat brain by immunofluorescence during postnatal development, J. Neurochem. 32: 1249–1257.

    Article  PubMed  CAS  Google Scholar 

  • Berry, M., and Bradley, P., 1976, The growth of the dendritic trees of Purkinje cells in irradiated agranular cerebellar cortex, Brain Res. 116: 361–387.

    Article  PubMed  CAS  Google Scholar 

  • Boyle, M., Klein, M., Smith, S., and Kandel, E., 1984, Serotonin increases intracellular Ca’ transients in voltage-clamped sensory neurons of Aplysia californica, Proc. Natl. Acad. Sci. U.S.A. 81: 7642–7646.

    Article  PubMed  CAS  Google Scholar 

  • Cajal, R., 1911, Histologie du Systeme Nerveux del l’Homme et des Vertebre, Maloine, Paris, reprinted by Consejo Superior de Investigaciones Cientificas, Madrid, 1972.

    Google Scholar 

  • Connor, J. A., 1986, Digital imaging of free calcium changes and of spatial gradients in growing processes in single, mammalian central nervous system cells, Proc. Natl. Acad. Sci. U.S.A. 83: 6179–6183.

    Article  PubMed  CAS  Google Scholar 

  • Connor, J., and Alkon, D. L., 1984, Light-and voltage-dependent increases of calcium ion concentration in molluscan photoreceptors, J. Neurophysiol. 81: 745–752.

    Google Scholar 

  • Connor, J. A., Kretz, R., and Shapiro, E., 1986, Ca levels measured in a presynaptic neuron of Aplysia under conditions that modulate transmitter release, J. Physiol. (Lond.) 375: 625–642.

    CAS  Google Scholar 

  • Connor, J. A., Tseng H., and Hockberger, P., 1987, Depolarization and transmitter induced changes in intracellular Ca of rat cerebellar granule cells in explant cultures, J. Neurosci. 7: 1384–1400.

    PubMed  CAS  Google Scholar 

  • Crepe, F., Dhanjal, S., and Garthwaite, J., 1981, Morphological and electrophysiological characteristics of rat cerebellar slices maintained in vitro, J. Physiol. (Lond.) 316: 127–138.

    Google Scholar 

  • del Cerro, M., and Snider, R., 1972, Studies on the developing cerebellum. II. The ultrastructure of the external granular layer, J. Comp. Neurol. 144: 131–164.

    Article  PubMed  Google Scholar 

  • Eccles, J., Llinas, R., and Sasaki, K., 1966, The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum, J. Physiol. (Lond.) 182: 268–296.

    CAS  Google Scholar 

  • Ekerot, C., and Kano, M., 1985, Long-term depression of parallel fibre synapses following stimulation of climbing fibres, Brain Res. 342: 357–360.

    Article  PubMed  CAS  Google Scholar 

  • Gahwiler, B., 1976, Spontaneous bioelectric activity of cultured Purkinje cells during exposure to glutamate, glycine and strychnine, J. Neurobiol. 7: 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Gallo, V., Ciotti, M., Coletti, A., Aloisi, F., and Levi, G., 1982, Selective release of glutamate from granule cells differentiating in culture, Proc. Natl. Acad. Sci. U.S.A. 79: 7919–7923.

    Article  PubMed  CAS  Google Scholar 

  • Garson, J., Beverley, P., Coakham, H., and Harper, E., 1982, Monoclonal antibodies against human T lymphocytes label Purkinje neurones of many species, Nature 298: 375–377.

    Article  PubMed  CAS  Google Scholar 

  • Geller, H., and Woodward, D., 1974, Responses of cultured cerebellar neurons to iontophoretically applied amino acids, Brain Res. 74: 67–80.

    Article  PubMed  CAS  Google Scholar 

  • Gruol, D., 1983, Cultured cerebellar neurons: Endogenous and exogenous components of Purkinje cell activity and membrane response to putative transmitters, Brain Res. 263: 223–241.

    Article  PubMed  CAS  Google Scholar 

  • Gruol, D., 1984, Intracellular and single channel analysis of voltage-sensitive ionic mechanisms in the somal and dendritic membranes of cultured cerebellar Purkinje neurons, Soc. Neurosci. Abstr. 10: 939.

    Google Scholar 

  • Grynkiewicz, G., Poenie, M., and Tsien, R. Y., 1985, A new generation of Ca indicators with greatly improved fluorescence properties, J. Biol. Chem. 260: 3440–3450.

    PubMed  CAS  Google Scholar 

  • Hamill, O., Marty, A., Neher, E., Sakmann, B., and Sigworth, F., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflugers Arch. 391: 85–100.

    Article  PubMed  CAS  Google Scholar 

  • Hild, W., and Tasaki, I., 1962, Morphological and physiological properties of neurons and glial cells in tissue culture, J. Neurophysiol. 25: 277–304.

    PubMed  CAS  Google Scholar 

  • Hockberger, P., Tseng, H., and Connor, J. A., 1987a, Immunocytochemical and electrophysiological differentiation of rat cerebellar granule cells in explant cultures, J. Neurosci. 7: 1370–1383.

    PubMed  CAS  Google Scholar 

  • Hockberger, P., Tseng, H., and Connor, J. A., 1987b, Electrophysiological properties of cerebellar Perkinje cells after dissociation from late embryonic and early postnatal rats, Soc. Neurosci. Abstr. 13: 1119.

    Google Scholar 

  • Hoshi, T., Rothlein, J., and Smith, S., 1984, Facilitation of Ca channel currents in bovine adrenal chromaffin cells, Proc. Natl. Acad. Sci. U.S.A. 81: 5871–5875.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M., 1982, Mechanisms of motor learning, in: Competition and Cooperation in Neural Nets ( S. Amari and M. Arbib, eds.), Springer, New York, pp. 418–429.

    Chapter  Google Scholar 

  • Katz, B., and Miledi, R., 1968, The role of calcium in neuromuscular facilitation, J. Physiol. (Lond.) 195: 481–492.

    CAS  Google Scholar 

  • Kingsbury, A., Gallo, V., Woodhaus, P., and Balazs, R., 1985, Survival, morphology and adhesion properties of cerebellar intemeurones cultured in chemically defined and serum-supplemented medium, Dev. Brain Res. 17: 17–25.

    Article  Google Scholar 

  • Lasher, R., and Zagon, I., 1972, The effect of potassium on neuronal differentiation in cultures of dissociated newborn rat cerebellum, Brain Res. 41: 482–488.

    Article  PubMed  CAS  Google Scholar 

  • Levi, G., Aloisi, F., Ciotti, M., and Gallo, V., 1984, Autoradiographic localization and depolarization-induced release of acidic amino acids in differentiating cerebellar granule cell cultures, Brain Res. 290: 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Llinas, R., and Sugimori, M., 1980, Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices, J. Physiol. (Lond.) 305: 171–195.

    CAS  Google Scholar 

  • Lynch, G., and Baudry, M., 1984, The biochemistry of memory: A new and specific hypothesis, Science 224: 1057–1063.

    Article  PubMed  CAS  Google Scholar 

  • MacDermott, A., Mayer, M., Westbrook, G., Smith, S., and Burker, J., 1986, NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones, Nature 32: 519–522.

    Article  Google Scholar 

  • Marangos, P. Schmechel, D., Parma, A., and Goodwin, F., 1980, Developmental profile of neuron-specific (NSE) and non-neuronal (NNE) enolase, Brain Res. 190: 185–193.

    CAS  Google Scholar 

  • Marshall, K., Wojotwicz, J., and Hendleman, W., 1980, Patterns of functional connections in organized cultures of cerebellum, Neuroscience 5: 1847–1857.

    Article  PubMed  CAS  Google Scholar 

  • Messer, A., 1977, The maintenance and identification of mouse cerebellar granule cells in monolayer culture, Brain Res. 130: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Moonen, G., Neale, E., MacDonald, R., Gibbs, W., and Nelson, P., 1982, Cerebellar macroneurons in microexplant cell culture. Methodology, basic electrophysiology, and morphology after horseradish peroxidase injection, Dev. Brain Res. 5: 59–73.

    Article  Google Scholar 

  • Nelson, P., and Peacock, J., 1972, Electrical activity in dissociated cell cultures from fetal mouse cerebellum, Brain Res. 61: 163–164.

    Article  Google Scholar 

  • Rahamimoff, R., 1968, A dual effect of calcium ions on neuromuscular facilitation, J. Physiol. (Lond.) 195: 471–480.

    CAS  Google Scholar 

  • Schmechel, D., Marangos, P., Zis, A., Brightman, M., and Goodwin, F., 1978, Brain enolases as specific markers of neuronal and glial cells, Science 199: 313–315.

    Article  PubMed  CAS  Google Scholar 

  • Schmechel, D., Brightman, M., and Marangos, P., 1980, Neurons switch from non-neuronal enolase to neuron-specific enolase during differentiation, Brain Res. 190: 195–214.

    Article  PubMed  CAS  Google Scholar 

  • Shimono, T., Nosaka, S., and Sasaki, K., 1976, Electrophysiological study on the postnatal development of neuronal mechanisms in the rat cerebellar cortex, Brain Res. 108: 279–294.

    Article  PubMed  CAS  Google Scholar 

  • Thangnipon, W., Kingsbury, A., Webb, M., and Balazs, R., 1983, Observations on rat cerebellar cells in vitro: Influence of substratum, potassium concentration, and relationship between neurones and astrocytes, Dev. Brain Res. 11: 177–189.

    Article  CAS  Google Scholar 

  • Tsien, R., 1980, New calcium indicators and buffers with high selectivity against magnesium and protons: Design, synthesis, and properties of prototype structures, Biochemistry 19: 2396–2404.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R. Y., 1981, A non-disruptive technique for loading calcium buffers and indicators into cells, Nature 280: 527–528.

    Article  Google Scholar 

  • Tsien, R. Y., Pozzan, T., and Rink, T. J., 1982, Calcium homeostasis in intact lymphocytes; cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator, J. Cell Biol. 94: 325–334.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, J., Houk, J., and Mugnaini, E., 1974, Identification of unitary potentials in turtle cerebellum and correlations with structures in granular layer, J. Neurophysiol. 7: 30–47.

    Google Scholar 

  • Williams, D. A., Fogarty, K. E., Tsien, R. Y., and Fay, F. S., 1985, Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using fura-2, Nature 318: 558–561.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, D., Hoffer, B., and Lapham, L., 1969, Postnatal development of electrical and enzyme histochemical activity in Purkinje cells, Exp. Neurol. 23: 120–139.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, D., Hoffer, B., Siggins, G., and Bloom, F., 1971, The ontogenetic development of synaptic junctions, synaptic activation and responsiveness to neurotransmitter substances in rat cerebellar Purkinje cells, Brain Res. 34: 73–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Connor, J.A., Hockberger, P.E. (1988). Digital Imaging of Ca2+ Levels in CNS Neurons under Conditions That Induce Facilitating Increases in Ca2+ Levels and Sustained Ca2+ Elevation. In: Woody, C.D., Alkon, D.L., McGaugh, J.L. (eds) Cellular Mechanisms of Conditioning and Behavioral Plasticity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9610-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9610-0_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9612-4

  • Online ISBN: 978-1-4757-9610-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics