Postsynaptic Activity-Dependent Facilitation of Excitatory Synaptic Transmission in the Neocortex

  • Attila Baranyi
  • Magdolna B. Szente


Heterosynaptic facilitation (HF), analyzed first by Kandel and Tauc (1965), is an activity-dependent, lasting amplification of synaptic transmission in convergent neural pathways. As a cellular associative mechanism, HF can account for the temporal specificity and stimulus—response specificity of classical conditioning in Aplysia (Kandel and Tauc, 1965; Kandel, 1976). Heterosynaptic facilitation is a presynaptic phenomenon in molluscs, and action potential generation in the postsynaptic neuron is neither necessary nor sufficient for HF induction in these species (Wurtz et al., 1967; Carew et al., 1984). This finding is at odds with Hebb’s postulate (Hebb, 1949) proposing that synaptic transmission is enhanced only when the presynaptic stimulus occurs in conjunction with action potential generation in the postsynaptic cell. Apart from Aplysia, plastic synaptic changes in agreement with the Hebb model have been documented in vertebrate ganglion cells (Schulman and Weight, 1976; Kumamoto and Kuba, 1983; Mochida and Libet, 1985), in the hippocampus (McNaughton et al., 1978; Levy and Steward, 1979; Lynch et al., 1983; Kuhnt, 1984; Scharfman and Sarvey, 1985; Wigstrom and Gustafsson, 1985; Wigstrom et al., 1986; Kelso et al., 1986; Malinow and Miller, 1986), and in the visual cortex (Hubel and Wiesel, 1965; Rauschecker and Singer, 1981; Bienenstock et al., 1983; Fregnac and Imbert, 1984; Bear and Singer, 1986).


Unconditioned Stimulus Pyramidal Tract Action Potential Generation Excitatory Synaptic Transmission Conditioning Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alkon, D. L., 1984, Calcium mediated reduction of ionic currents: A biophysical memory trace, Science 226: 1037–1045.PubMedCrossRefGoogle Scholar
  2. Baranyi, A., and Chase, M. H., 1984, Ethanol-induced modulation of the membrane potential and synaptic activity of trigeminal motoneurons during sleep and wakefulness, Brain Res. 307: 233–245.PubMedCrossRefGoogle Scholar
  3. Baranyi, A., and Feher, 0., 1978, Conditioned changes of synaptic transmission in the motor cortex of the cat, Exp. Brain Res. 33: 283–298.PubMedCrossRefGoogle Scholar
  4. Baranyi, A., and Feher, O., 1981a, Selective facilitation of synapses in the neocortex by heterosynaptic activation, Brain Res. 212: 164–168.PubMedCrossRefGoogle Scholar
  5. Baranyi, A., and Feher, O., 1981b, Intracellular studies on cortical synaptic plasticity: Conditioning effect of antidromic activation of test-EPSPs, Exp. Brain Res. 41: 124–134.PubMedCrossRefGoogle Scholar
  6. Baranyi, A., and Feher, O., 1981c, Synaptic facilitation requires paired activation of convergent pathways in the neocortex, Nature 290: 413–415.PubMedCrossRefGoogle Scholar
  7. Baranyi, A., and Feher, O., 1981d, Long-term facilitation of excitatory synaptic transmission in single motor cortex neurons of the cat produced by repetitive pairing of synaptic potentials and action potentials following intracellular stimulation, Neurosci. Lett. 23: 303–308.PubMedCrossRefGoogle Scholar
  8. Baranyi, A., and Szente, M., 1986, The effect of intracellular colchicine and EGTA injection on the hetero-synaptic facilitation of cortical neurons, Acta Physiol. Hung. 68: 353 (Absr.).Google Scholar
  9. Baux, G., Simonneau, M., and Tauc, L., 1981, Action of colchicine on membrane currents and synaptic transmission in Aplysia ganglion cells, J. Neurobiol. 12: 75–85.PubMedCrossRefGoogle Scholar
  10. Bear, M. F., and Singer, W., 1986, Modulation of visual cortical plasticity by acetylcholine and noradrenaline, Nature 320: 172–176.PubMedCrossRefGoogle Scholar
  11. Bienenstock, E. L., Fregnac, Y., and Thorpe, S., 1983, Iontophoretic clamp of activity in visual cortical neurons in the cat: A test of Hebb’s hypothesis, J. Physiol. (Lond.) 345: 123 P.Google Scholar
  12. Bindman, L. J., Lippold, O. C. J., and Milne, A. R., 1979, Prolonged changes in excitability of pyramidal tract neurons in the cat: A postsynaptic mechanism, J . Physiol. (Lond.) 286: 457–477.Google Scholar
  13. Black-Cleworth, P., Woody, C. D., and Nieman, J. A., 1975, Conditioned eyeblink obtained by using electrical stimulation of the facial nerve as unconditioned stimulus, Brain Res. 90: 44–56.CrossRefGoogle Scholar
  14. Brindley, G. S., 1969, Nerve net models of plausible size that perform many simple learning tasks, Proc. R. Soc. (Lond.) 174: 173–191.CrossRefGoogle Scholar
  15. Byrne, J. H., 1985, Neuronal and molecular mechanisms underlying information storage in Aplysia: Implications for learning and memory, Trends Neurosci. 9: 478–482.CrossRefGoogle Scholar
  16. Carew, T. J., Hawkins, R. D., Abrams, T. W., and Kandel, E. R., 1984, A test of Hebb’s postulate at identified synapses which mediate classical conditioning in Aplysia, J. Neurosci. 4:1217–1224.Google Scholar
  17. Carlson, N. R., Laxer, K. D., and Mason, M. A., 1983, Intracerebral infusions of colchicine abolish kindled epileptogenic foci in cats, Soc. Neurosci. Abstr. 9: 764.Google Scholar
  18. Deschenes, M., Landry, P., and Clercq, M., 1982, Reanalysis of the ventrolateral input in slow and fast pyramidal tract neurons of the cat motor cortex, Neuroscience 7: 2149–2157.PubMedCrossRefGoogle Scholar
  19. Fambrough, M. D., and Devreotes, P. M., 1978, Newly synthetized acetylcholine receptors are located in the Golgi apparatus, J. Cell. Biol. 76: 237–244.PubMedCrossRefGoogle Scholar
  20. Fregnac, Y., and Imbert, M., 1984, Development of neuronal selectivity in primary visual cortex of cat, Physiol. Rev. 64: 325–434.PubMedGoogle Scholar
  21. Gardner-Medwin, A. R., 1976, The recall of events through the learning of associations between their parts, Proc. R. Soc. (Lond.) [Biol.] 194: 375–402.CrossRefGoogle Scholar
  22. Gardner-Medwin, A. R., 1978, The possible significance for learning of some different types of synaptic modification, Biochem. Soc. Trans. 6: 841–844.PubMedGoogle Scholar
  23. Goelet, P., Castellucci, V. F., Schacher, S., and Kandel, E. R., 1986, The long and the short of long-term memory—a molecular framework, Nature 322: 419–422.PubMedCrossRefGoogle Scholar
  24. Gustafsson, B., and Wigstrom, H., 1986, Hippocampal long-lasting potentiation produced by pairing single volleys and brief conditioning tetani evoked in separate afferents, J. Neurosci. 6: 1575–1582.PubMedGoogle Scholar
  25. Hebb, D. 0., 1949, The Organization of Behavior, John Wiley & Sons, New York.Google Scholar
  26. Holmes, W. R., and Woody, C. D., 1987, Effects of uniform and nonuniform synaptic “activation-distributions” on the cable properties of modeled cortical pyramidal neurons, J. Neurophysiol. (in press).Google Scholar
  27. Hubel, D. H., and Wiesel, T. N., 1965, Binocular interaction in striate cortex of kittens reared with artificial squint, J. Neurophysiol. 28: 1041–1049.PubMedGoogle Scholar
  28. Kandel, E. R., 1976, Cellular Basis of Behavior, W. H. Freeman, San Francisco.Google Scholar
  29. Kandel, E. R., and Tauc, L., 1965, Mechanism of heterosynaptic facilitation in the giant cell of the abdominal ganglion of Aplysia depilans, J. Physiol. (Lond.) 181: 28–47.Google Scholar
  30. Kelso, S. R., Ganong, A. H., and Brown, T. H., 1986, Hebbian synapses in hippocampus, Proc. Natl. Acad. Sci. U.S.A. 83: 5326–5330.PubMedCrossRefGoogle Scholar
  31. Kreutzberg, G. W., 1981, Parameters of dendritic transport, Neurosci. Res. Prog. Bull. 20: 45–55.Google Scholar
  32. Kuhnt, U., 1984, Long-lasting changes of synaptic excitability induced by repetitive intracellular current injection in hippocampal neurons, Neurosci. Lett. Suppl. 18: S27.Google Scholar
  33. Kumamoto, E., and Kuba, K., 1983, Sustained rise in ACh sensitivity of sympathetic ganglion cell induced by postsynaptic electrical activities, Nature 305: 145–146.PubMedCrossRefGoogle Scholar
  34. Levy, W. B., and Steward, O., 1979, Synapses as associative elements in the hippocampal formation, Brain Res. 175: 233–245.PubMedCrossRefGoogle Scholar
  35. Libet, B., 1984, Heterosynaptic interaction at a sympathetic neuron as a model for induction and storage of a postsynaptic memory trace, in: Neurobiology of Learning and Memory ( G. Lynch, J. L. McGaugh, and N. M. Weinberger, eds.), Guilford Press, New York, pp. 405–430.Google Scholar
  36. Lynch, G., and Baudry, T., 1984, The biochemistry of memory: A new and specific hypothesis, Science 224: 1057–1063.PubMedCrossRefGoogle Scholar
  37. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G., and Shottler, F., 1983, Intracellular injections of EGTA block induction of hippocampal long-term potentiation, Nature 305: 719–721.PubMedCrossRefGoogle Scholar
  38. Malinow, R., and Miller, J. P., 1986, Postsynaptic hyperpolarization during conditioning reversibly block induction of long-term potentiation, Nature 320: 529–530.PubMedCrossRefGoogle Scholar
  39. Man, D. A., 1970, A theory for cerebral neocortex, Proc. R. Soc. Lond. [Biol.] 176: 164–234.Google Scholar
  40. Martin, G. K., Land, T., and Thompson, R. F., 1980, Classical conditioning of the rabbit (Oryctolagus cuniculus) nicticating membrane response with electrical brain stimulation, J. Comp. Physiol. Psychol. 94: 216–226.PubMedCrossRefGoogle Scholar
  41. McCabe, B., 1976, An after-effect of local stimulation of neurons in the cerebral cortex of the unanaesthetized tat, J. Physiol. (Lond.) 263: 140–141.Google Scholar
  42. McNaughton, B. L., Douglas, P. M., and Goddard, G. V., 1978, Synaptic enhancement in fascia dentata: Cooperativity among coactive afferents, Brain Res. 157: 277–293.PubMedCrossRefGoogle Scholar
  43. Mochida, S., and Libet, B., 1985, Synaptic long-term enhancement (LTE) induced by heterosynaptic neuronal input, Brain Res. 39: 360–363.CrossRefGoogle Scholar
  44. Nestler, E. J., Walaas, J. S., and Greengard, P., 1984, Neuronal phosphoproteins. Physiological and clinical implications, Science 225: 1357–1365.PubMedCrossRefGoogle Scholar
  45. O’Brien, J. H., Wilder, M. B., and Stevens, C. D., 1977, Conditioning of cortical neurons in cats with antidromic activation as the unconditioned stimulus, J. Comp. Physiol. Psychol. 91: 918–929.PubMedCrossRefGoogle Scholar
  46. Olds, J., 1980, Thoughts on cerebral function: The cortex as an action system, in: Biology of Reinforcement, Facets of Brain-Stimulation Reward ( A. Routtenberg, ed.), Academic Press, New York, pp. 149–167.Google Scholar
  47. Palm, G., 1982, Neural Assemblies: An Alternative Approach to Artificial Intelligence Studies of Brain Function, Vol. 7, Spinger-Verlag, Berlin, Heidelberg, New York.Google Scholar
  48. Peters, A., and Jones, E. G., 1984, Cellular Components of the Cerebral Cortex, Plenum Press, New York, London.Google Scholar
  49. Pumain, R., and Heinemann, H., 1985, Stimulus and aminoacid-induced calcium and potassium changes in rat neocortex, J. Neurophysiol. 53: 1–16.PubMedGoogle Scholar
  50. Purpura, D. P., 1972, Intracellular studies on synaptic organizations in mammalian brain, in: Structure and Function of Synapses ( D. P. Purpura and G. D. Pappas, eds.), Raven Press, New York, pp. 253–302.Google Scholar
  51. Quinn, K. J., and O’Brien, J. H., 1983, Cortical motor neuron activity in the cat during classical conditioning with central stimulation as the CS and US, Behay. Neurosci. 97: 28–41.CrossRefGoogle Scholar
  52. Rauschecker, J. P., and Singer, W., 1981, The effects of early visual experience and their possible explanation by Hebb synapses, J. Pysiol. (Lond.) 310: 215–239.Google Scholar
  53. Scharfman, H., and Sarvey, J. M., 1985, Postsynaptic firing during repetitive stimulation is required for longterm potentiation in hippocampus, Brain Res. 331: 267–274.PubMedCrossRefGoogle Scholar
  54. Schulman, J. A., and Weight, F. F., 1976, Synaptic transmission: Long-lasting potentiation by a postsynaptic mechanism, Science 194: 1434–1439.CrossRefGoogle Scholar
  55. Sutula, T., Goldsmith, R., and Steward, 0., 1982, Effect of colchicine on synaptic transmission and longterm potentiation in the dentate gyms, Soc. Neurosci. Absr. 9: 240.Google Scholar
  56. Takahashi, K., Kubota, K., and Uno, M., 1967, Recurrent facilitation in cat pyramidal tract cells, J. Neurophysiol. 30: 22–34.Google Scholar
  57. Tzebelikos, E., and Woody, C. D., 1979, Intracellularly studies on excitability changes in coronal—pericruciate neurons following low-frequency stimulation of the corticobulbar tract, Brain Res. Bull. 4: 635–641.PubMedCrossRefGoogle Scholar
  58. Wigstrom, H., and Gustaffson, B., 1985, On long-lasting potentiation in the hippocampus: A proposed mechanism for its dependence on coincident pre-and postsynaptic activity, Acta Physiol. Scand. 123: 519–522.PubMedCrossRefGoogle Scholar
  59. Wigstrom, H., Gustafsson, B., Huang, Y. Y., and Abraham, W. C., 1986, Hippocampal long-term potentiation is induced by pairing single afferent valleys with intracellularly injected depolarizing current pulse, Acta Physiol. Scand. 126: 317–319.PubMedCrossRefGoogle Scholar
  60. Woody, C. D., Buerger, J. A., Ungar, R. A., and Levine, D. S., 1977, Modelling aspects of learning by altering biophysical properties of a simulated neuron, Biol. Cybernet. 23: 73–82.CrossRefGoogle Scholar
  61. Woody, C. D., Alkon, D. L., and Hay, B., 1984, Depolarization-induced effects of Ca’ -calmodulin-dependent protein kinase injection, in vivo, in single neurons of cat motor cortex, Brain Res. 321: 192–197.PubMedCrossRefGoogle Scholar
  62. Woody, C. D., Bartfai, T., Gruen, E., and Nairn, A. C., 1986, Intracellular injection of cGMP-dependent protein kinase results in increase input resistance in neurons of the mammalian motor cortex, Brain Res. 386: 379–385.PubMedCrossRefGoogle Scholar
  63. Wurtz, R. H., Castellucci, V. F., and Nusrala, J. M., 1967, Synaptic plasticity: The effect of the action potential in the postsynaptic neuron, Exp. Neurol. 18: 350–368.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Attila Baranyi
    • 1
  • Magdolna B. Szente
    • 1
  1. 1.Department of Comparative PhysiologyAttila Jozsef University of SciencesSzegedHungary

Personalised recommendations