Postsynaptic Events Associated with Long-Lasting Activity-Induced Changes in Excitability of Neocortical Neurons

Studies in the Anesthetized Rat and in Slices in Vitro
  • Lynn J. Bindman
  • Tim Meyer
  • Clive A. Prince

Abstract

It is well established that changes in excitability of neocortical neurons that persist, undiminished, for tens of minutes can be induced by increasing the firing rate for just a few minutes. Any of a number of experimental procedures can be used to increase firing, including depolarizing current, synaptic activation, and iontophoresis of glutamate or acetylcholine (Burns, 1957; Bindman et al., 1964; Bindman and Boisacq-Schepens, 1966; McCabe, 1973; Woody et al., 1978). The site of the underlying change has been localized to the neocortex in experiments carried out a neuronally isolated slabs of cortex in vivo (Bliss et al., 1968). Both increases and decreases in excitability of different neurons were observed following stimulation in a number of these studies.

Keywords

Input Resistance Membrane Capacity Interspike Interval Spike Amplitude Neocortical Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkon, D. L., 1984, Calcium-mediated reduction of ionic currents: A biophysical memory trace, Science 226: 1037–1045.PubMedCrossRefGoogle Scholar
  2. Baranyi, A., and Feher, O., 1981, Synaptic facilitation requires paired activation of convergent pathways in the neocortex, Nature 290: 413–415.PubMedCrossRefGoogle Scholar
  3. Bindman, L. J., and Boisacq-Schepens, N., 1966, Persistent changes in the rate of firing of single, spontaneously active cortical cells in the rat produced by peripheral stimulation, J. Physiol. (Lond.) 185: 14–17 P.Google Scholar
  4. Bindman, L. J., and Prince, C. A., 1986, Persistent changes in excitability and input resistance of cortical neurons in the rat, in: Neural Mechanisms of Conditioning ( D. L. Alkon and C. D. Woody, eds.), Plenum Press, New York and London, pp. 291–305.CrossRefGoogle Scholar
  5. Bindman, L. J., Lippold, O. C. J., and Redfeam, J. W. T., 1964, The action of brief polarizing currents on the cerebral cortex of the rat, (1) during current flow, and (2) in the production of long-lasting aftereffects, J. Physiol. (Loud.) 172: 369–382.Google Scholar
  6. Bindman, L. J., Lippold, O. C. J., and Milne, A. R., 1979, Prolonged changes in excitability of pryamidal tract neurons in the cat, J. Physiol. (Lond.) 286: 457–477.Google Scholar
  7. Birdman, L. J., Lippold, O. C. J., and Milne, A. R., 1982, A postsynaptic mechanism underlying long-lasting changes in the excitability of pryamidal tract neurones in the anaesthetized cat, in: Conditioning ( C. D. Woody, ed.), Plenum Press, New York, pp. 171–178.CrossRefGoogle Scholar
  8. Birdman, L. J., Meyer, T., and Pockett, S., 1987, Long-term potentiation in rat neocortical neurones in slices, produced by repetitive pairing of an afferent volley with intracellular depolarizing current, J. Physiol. (Lond.) 386: 90 P.Google Scholar
  9. Bindman, L. J., Meyer, T., and Prince, C. A., 1985, Intracellular measurements of the electrical properties of neurones in the cerebral cortex of the rat: Comparative data from slices in vitro and from the anaesthetized animal, J. Physiol. (Lond.) 341: 7–8 P.Google Scholar
  10. Bliss, T. V. P., and Lomo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol. (Lond.) 232: 331–356.Google Scholar
  11. Bliss, T. V. P., Bums, B. D., and Uttley, A. M., 1968, Factors affecting the conductivity of pathways in the cerebral cortex, J. Physiol. (Lond.) 195: 339–367.Google Scholar
  12. Bums, B. D., 1957, Electrophysiologic basis of normal and psychotic function, in: Psychotropic Drugs ( S. Garattini and V. Ghetti, eds.), Elsevier, Amsterdam, pp. 177–184.Google Scholar
  13. Crill, W. E., 1986, A critique of modeling population responses for mammalian central neurons, in: Neural Mechanisms of Conditioning ( D. L. Alkon and C. D. Woody, eds.), Plenum Press, New York, pp. 307–310.CrossRefGoogle Scholar
  14. Frankenheuser, B., 1957, The effect of calcium on the myelinated nerve fibre, J. Physiol. (Lond.) 137: 245–260.Google Scholar
  15. Gustafsson, B., and Wigstrom, H., 1983, Hyperpolarization following long-lasting tetanic activation of hippocampal pyramidal cells, Brain Res. 275: 159–163.PubMedCrossRefGoogle Scholar
  16. Halliwell, J. V., and Adams, P. R., 1982, Voltage clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res. 250: 71–92.PubMedCrossRefGoogle Scholar
  17. Kelso, S. R., Ganong, A. H., and Brown, T. H., 1986, Hebbian synapses in hippocampus, Proc. Natl. Acad. Sci. U.S.A. 83: 5326–5330.PubMedCrossRefGoogle Scholar
  18. Lev-Tov, A., and Rahamimoff, R., 1980, A study of tetanic and post-tetanic potentiation of miniature endplate potentials at the frog neuromuscular junction, J. Physiol. (Lond.) 309: 247–273.Google Scholar
  19. Malenka, R. C., Madison, D. V., Andrade, R., and Nicoll, R. A., 1986, Phorbol esters mimic some cholinergic actions in hippocampal pyramidal neurons, J. Neurosci. 6: 475–480.PubMedGoogle Scholar
  20. Malinow, R., and Miller, J. P., 1986, Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation, Nature 320: 529–530.PubMedCrossRefGoogle Scholar
  21. McCabe, B. J., 1973, Production of Prolonged Changes in Cortical Neuronal Activity by lontophoresis of L-Glutamate in Anaesthetized and Unanaesthetized Rats, Ph.D. thesis, University of London.Google Scholar
  22. Stafstrom, C. E., Schwindt, P. C., and Crill, W. E., 1982, Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro, Brain Res. 236: 221–226.PubMedCrossRefGoogle Scholar
  23. Stafstrom, C. E., Schwindt, P. C., Flatman, J. A., and Crill, W. E., 1984a, Properties of subthreshold response and action potential recorded in layer V neurons from cat sensorimotor cortex in vitro, J. Neurophysiol. 52: 244–263.PubMedGoogle Scholar
  24. Stafstrom, C. E., Schwindt, P. C., and Crill, W. E., 1984b, Cable properties of layer V neurons from cat sensorimotor cortex in vitro, J. Neurophysiol. 52: 278–289.PubMedGoogle Scholar
  25. Stafstrom, C. E., Schwindt, P. C., Chubb, M. C., and Crill, W. E., 1985, Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro, J. Neurophysiol. 53: 153–170.PubMedGoogle Scholar
  26. Wigström, H., and Gustafsson, B., 1986, Postsynaptic control of hippocampal long-term potentiation, J. Physiol. (Paris) 81: 228–236.Google Scholar
  27. Wigström, H., Gustafsson, B., Huang, Y.-Y. and Abraham, W. C., 1986, Hippocampal long-term potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing current pulses, Acta Physiol. Scand. 126: 317–319.PubMedCrossRefGoogle Scholar
  28. Winkelmann, A., Kunz, G., Winkelmann, E., Kirsche, W., Neumann, H., and Wenzell, J., 1973, Quantitative Untersuchungen an Dendriten der grossen pyramidenzellen der Lamin V des sensorichsen Cortex der Ratte, J. Hirnforsch. 14: 137–149.PubMedGoogle Scholar
  29. Woody, C.D., and Gruen, E., 1978, Characterization of electrophysiological properties of intracellularly recorded neurons in the neocortex of awake cats: A comparison of the response to injected current in spike overshoot and undershoot neurons, Brain Res. 158: 343–357.PubMedCrossRefGoogle Scholar
  30. Woody, C.D., Swartz, B., and Gruen, E, 1978, Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats, Brain Res. 158: 373–395.PubMedCrossRefGoogle Scholar
  31. Woody, C.D., Bindman, L.J., Gruen, E., and Betts, B., 1985, Two different mechanisms control inhibition of spike discharge in neurons of cat motor cortex after stimulation of the pyramidal tract, Brain Res. 332: 369–375.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Lynn J. Bindman
    • 1
  • Tim Meyer
    • 1
  • Clive A. Prince
    • 1
  1. 1.Department of PhysiologyUniversity College LondonLondonEngland

Personalised recommendations