Advertisement

Synaptic Efficacy Is Controlled by the Concentration of Transmitter in the Nerve Ending

  • Bernard Poulain
  • Ladislav Tauc
  • Gerard Baux
  • Philippe Fossier

Abstract

Plastic changes related to the quantity of transmitter released per impulse have been more or less directly correlated with induced changes in calcium influx (Kandel and Schwartz, 1982; Alkon, 1986; Krnjevic, 1986), which is known to trigger the transmitter release. As the cytosol of the presynaptic terminal is a site for other intensive events (which regulate the metabolic equilibrium of its molecular constituents), it seems legitimate to ask whether other processes than calcium concentration can influence the quantity of transmitter released. In particular, it was found that in stimulated nervous tissues the transmitter content varies, and it is tempting to consider a possible control of transmitter release by the presynaptic intracellular transmitter concentration. We attempted to obtain evidence for such an effect on a central cholinergic synapse.

Keywords

Transmitter Release Synaptic Efficacy Postsynaptic Response Choline Oxidase Cholinergic Synapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkon, D. L., 1986, Changes of membrane currents and calcium-dependent phosphorylation during associative learning, in: Neural Mechanisms of Conditioning ( D. L. Alkon and C. D. Woody, eds.), Plenum Press, New York, pp. 3–18.CrossRefGoogle Scholar
  2. Baux, G., and Tauc, L., 1983, Carbachol can be released at a cholinergic ganglionic synapse as a false transmitter, Proc. Natl. Acad. Sci. U.S.A. 80: 5126–5128.PubMedCrossRefGoogle Scholar
  3. Baux, G., Poulain, B., and Tauc, L., 1986, Quantal analysis of action of hemicholinium-3 studied at a central cholinergic synapse of Aplysia, J. Physiol. (Lond.) 380: 209–226.Google Scholar
  4. Birks, R. I., 1977, A long-lasting potentiation of transmitter release related to an increase in transmitter stores in a sympathetic ganglion, J. Physiol. (Lond.) 271: 847–862.Google Scholar
  5. Birman, S., Israel, M., Lesbats, B., and Morel, N., 1986, Solubilization and partial purification of a presynaptic membrane protein ensuring calcium-dependent acetylcholine release from proteoliposomes, J. Neurochem. 47: 433–444.PubMedCrossRefGoogle Scholar
  6. Corthay, J., Dunant, Y., and Loctin, F., 1982, Acetylcholine changes underlying transmission of a single nerve impulse in the presence of 4-aminopyridine in Torpedo, J. Physiol. (Land.) 325: 461–479.Google Scholar
  7. Dunant, Y., Gautron, J., Israel, M., Lesbats, B., and Manaranche, R., 1972, Les compartiments d’acétylcholine de l’organe électrique de la torpille et leurs modifications par la stimulation, J. Neurochem. 19: 1987–2002.PubMedCrossRefGoogle Scholar
  8. Dunant, Y., Gautron, J., Israel, M., Lesbats, B., and Manaranche, R., 1974, Evolution de la décharge de l’organe électrique de la torpille et variations simultanées de l’acétylcholine au cours de la stimulation, J. Neurochem. 23: 635–643.PubMedCrossRefGoogle Scholar
  9. Elmqvist D., and Quastel, D. M. J., 1965, Presynaptic action of hemicholinium at the neuromuscular junction, J. Physiol. (Lond.) 177: 463–482.Google Scholar
  10. Fossier, P., Baux, G., and Tauc, L., 1983, Possible role of acetylcholinesterase in regulation of postsynaptic receptor efficacy at a central inhibitory synapse of Aplysia, Nature 301: 710–712.PubMedCrossRefGoogle Scholar
  11. Fossier, P., Baux, G., and Tauc, L., 1986, Acetylcholinesterase and synaptic efficacy, in: Neural Mechanisms of Conditioning ( D. L. Alkon and C. D. Woody, eds.), Plenum Press, New York, pp. 341–354.CrossRefGoogle Scholar
  12. Haubrich, D. R., Wang, P. F. L., Clody, D. E., and Wedeking, P. W., 1975, Increase in rat brain acetylcholine induced by choline or deanol, Life Sci. 17: 975–980.PubMedCrossRefGoogle Scholar
  13. Israel, M., and Manaranche, R., 1985, The release of acetylcholine from a cellular towards a molecular mechanism, Biol. Cell 55: 1–14.PubMedCrossRefGoogle Scholar
  14. Jones, S. F., and Kwanbunbumpen, S., 1970, Some effects of nerve stimulation and hemicholinium on quantal transmitter release at the mammalian neuromuscular junction, J. Physiol. (Lond.) 207: 51–61.Google Scholar
  15. Kandel, E. R., and Schwartz, J. H., 1982, Molecular biology of learning: Modulation of transmitter release, Science 218: 433–443.PubMedCrossRefGoogle Scholar
  16. Katz, B., 1969, The Release of Neural Substances, Liverpool University Press, Liverpool.Google Scholar
  17. Krnjevic, K., 1978, Intracellular actions of a transmitter, in: fontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System ( R. W. Ryall and J. S. Kelly, eds.), Elsevier, New York and Amsterdam, pp. 155–157.Google Scholar
  18. Krnjevic, K., 1986, Role of calcium ions in learning, in: Neural Mechanisms of Conditioning ( D. L. Alkon and C. D. Woody, eds.), Plenum Press, New York, pp. 251–259.CrossRefGoogle Scholar
  19. Poulain, B., Baux, G., and Tauc, L., 1986a, Presynaptic transmitter content controls the number of quanta released at a neuro-neuronal cholinergic synapse, Proc. Natl. Acad. Sci. U.S.A. 83: 170–173.PubMedCrossRefGoogle Scholar
  20. Poulain, B., Baux, G., and Tauc, L., 1986b, The quantal release at a neuro-neuronal synapse is regulated by the content of acetylcholine in the presynaptic cell, J. Physiol. (Paris.) 81: 270–277.Google Scholar
  21. Simonneau, M., Tauc, L., and Baux, G., 1980, Quantal release of acetylcholine examined by current fluctuation analysis at an identified neuro-neuronal synapse of Aplysia, Proc. Natl. Acad. Sci. U.S.A. 77: 1661–1665.PubMedCrossRefGoogle Scholar
  22. Tauc, L., 1982, Nonvesicular release of neurotransmitter, Physiol. Rev. 62: 857–893.PubMedGoogle Scholar
  23. Tauc, L., and Baux, G., 1982, Are there intracellular acetylcholine receptors in the cholinergic synaptic nerve terminals? J. Physiol. (Paris.) 78: 366–372.Google Scholar
  24. Tauc, L., and Baux, G., 1985, Mechanisms of acetylcholine release at neuroneuronal synapses, in: Nonvesicular Transport ( S. S. Rothman and J. L. Ho, eds.), John Wiley Sons, New York, pp. 253–269.Google Scholar
  25. Tauc, L., Hoffmann, A., Tsuji, S., Hinzen, D. H., and Faille, L., 1974, Transmission abolished on a cholinergic synapse after injection of acetylcholinesterase into the presynaptic neurone, Nature 250: 496–498.PubMedCrossRefGoogle Scholar
  26. Yarom, Y., Bracha, O., and Werman, R., 1985, Intracellular injection of acetylcholine blocks various potassium conductances in vagal motoneurons, Neuroscience 16: 739–752.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Bernard Poulain
    • 1
  • Ladislav Tauc
    • 1
  • Gerard Baux
    • 1
  • Philippe Fossier
    • 1
  1. 1.Laboratory of Cellular and Molecular NeurobiologyNational Center for Scientific ResearchGif-sur-YvetteFrance

Personalised recommendations