Skip to main content

Abstract

In the first demonstration of long-term potentiation (LTP) by Bliss and Lømo (1973), the conditioning presynaptic stimulation was a brief tetanus (usually 15 Hz for 15 sec) of the perforating pathway to the fascia dentata (Fig. 1A) of the hippocampus, and the homosynaptic stimulation was by a single stimulus through the same electrode; i.e., it was a homosynaptic LTP. Figure 1B illustrates the extracellular potentials recorded either at the level of the synapses and hence largely a negative wave, a population EPSP, or at the level of the granule cell bodies and hence a favorable site for recording the cell discharges, the negative population spike. In Fig. 1C, four bursts of conditioning stimulations cause the population EPSP to increase to more than double and to remain large 10 hr after the last conditioning tetanus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akert, K., Peper, K., and Sandri, C., 1975, Structural organization of motor end plate and central synapses, in: Cholinergic Mechanisms ( P. G. Waser, ed.), Raven Press, New York, pp. 43–57.

    Google Scholar 

  • Barnes, C. A., and McNaughton, B. L., 1980, Spatial memory and hippocampal synaptic plasticity in senescent and middle-aged rats, in: Psychology of Aging ( D. Stein, ed.), Elsevier/North-Holland, Amsterdam, pp. 253–272.

    Google Scholar 

  • Bliss, T. V. P., and Dolphin, A. C., 1982, What is the mechanism of long-term potentiation in the hippocampus? Trends Neurosci. 5: 289–290.

    Article  Google Scholar 

  • Bliss, T. V. P., and Gardner-Medwin, A. R., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the unanesthetized rabbit following stimulation of the perforant path, J. Physiol. (Lond.) 232: 357–374.

    CAS  Google Scholar 

  • Bliss, T. V. P., and Lomo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol. (Lond.) 232: 331–356.

    CAS  Google Scholar 

  • Bloch, V., 1970, Facts and hypotheses concerning memory consolidation processes, Brain Res. 24: 561–575.

    Article  PubMed  CAS  Google Scholar 

  • Collingridge, G. L., Kehl, S. J., and McLennan, H., 1983, Excitatory amino-acids in synaptic transmission in the Schaffer collateral—commissural pathway of the rat hippocampus. J. Physiol. (Gond.) 334: 33–46.

    CAS  Google Scholar 

  • Dingledine, R., 1983, N-Methyl aspartate activates voltage-dependent calcium conductance in rat hippocampal pyramidal cells, J. Physiol. (Lond.) 343: 385–405.

    CAS  Google Scholar 

  • Eccles, J. C., 1981, The modular operation of the cerebral neocortex considered as the material basis of mental events, Neuroscience 6: 1839–1856.

    Article  PubMed  CAS  Google Scholar 

  • Eccles, J. C., 1983, Calcium in long-term potentiation as a model for memory, Neuroscience 10: 1071–1081.

    Article  PubMed  CAS  Google Scholar 

  • Eccles, J. C., 1986, Do mental events cause neural events analogously to the probability fields of quantum mechanics? Proc. R. Soc. Lond. [Biol.] 227: 411–428.

    Article  CAS  Google Scholar 

  • Feldman, M. L., 1984, Morphology of the neocortical pyramidal neuron, in: Cerebral Cortex, Vol. 1 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 123–200.

    Google Scholar 

  • Fifkovâ, E., and Anderson, C. L., 1981, Stimulation-induced changes in dimensions of stalks of dendritic spines in dentate molecular layer, Exp. Neurol. 74: 621–627.

    Article  PubMed  Google Scholar 

  • Fifkovâ, E., and van Harreveld, A., 1977, Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area, J. Neurocytol. 6: 211–230.

    Article  PubMed  Google Scholar 

  • Fifkovâ, E., Markham, J. A., and Delay, R. J., 1983, Calcium in the spine apparatus of dendritic spines in the dentate molecular layer, Brain Res. 266: 163–168.

    Article  PubMed  Google Scholar 

  • Fleischhauer, K., and Detzer, K., 1975, Dendritic bundling in the cerebral cortex, in: Advances in Neurology, Vol. 12 ( G. W. Kreutzberg, ed.), Raven Press, New York, pp. 71–77.

    Google Scholar 

  • Gustafsson, B., and Wigström, H., 1987, Hippocampal long-lasting potentiation produced by pairing single volleys and brief conditioning tetani evoked in separate afferents, J. Neurosci. 6: 1575–1582.

    Google Scholar 

  • Gustafsson, B., Wigström, H., Abraham, W. C., and Huang, Y.-Y., 1987, Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials, J. Neurosci. (in press).

    Google Scholar 

  • Jack, J. J. B., Redman, S. J., and Wong, K., 1981, The components of synaptic potentials evoked in cat spinal motoneurones by impulses in.Aile group la afferents, J. Physiol. (Lond.) 321: 65–96.

    CAS  Google Scholar 

  • Korn, H., Triller, A., Mallet, A., and Faber, D. S., 1981, Fluctuating responses at a central synapse: n of binomial fit predicts number of stained presynaptic boutons, Science 213: 898–901.

    Article  PubMed  CAS  Google Scholar 

  • Komhuber, H. H., 1973, Neural control of input into long-term memory: Limbic system and amnestic syndrome in man, in: Memory and Transfer of Information ( H. P. Zippel, ed.), Plenum Press, New York, pp. 122.

    Google Scholar 

  • Lee, K. S., 1983, Sustained modification of neuronal activity in the hippocampus and cerebral cortex, in: Molecular, Cellular and Behavioural Neurobiology of the Hippocampus ( W. Seifert, ed.), Academic Press, New York, pp. 265–272.

    Google Scholar 

  • Levy, W. B., and Steward, O., 1979, Synapses as asssociative elements in the hippocampal formation, Brain Res. 175: 233–245.

    Article  PubMed  CAS  Google Scholar 

  • Levy, W. B., and Steward, O., 1983, Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus, Neuroscience 8: 791–797.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, G., and Baudry, M., 1984, The biochemical intermediates in memory formation: A new and specific hypothesis, Science 224: 1057–1063.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, G., Larson, J., Kelso, S., Barrionirevo, G., and Schottler, F., 1983, Intracellular injections of EGTA block induction of hippocampal long-term potentiation, Nature 305: 719–721.

    Article  PubMed  CAS  Google Scholar 

  • Margenau, H., 1984, The Miracle of Existence, Ox Bow Press, Woodbridge, CT.

    Google Scholar 

  • Marr, D., 1970, A theory for cerebral neocortex, Proc. R. Soc. Lond. [Biol.] 176: 161–234.

    Article  CAS  Google Scholar 

  • Mayer, M. L., and Westbrook, G. L., 1985, Divalent cation permeability of N-methyl-D-aspartate channels, Soc. Neurosci. Abstr. 11: 7–85.

    Google Scholar 

  • McNaughton, B. L., 1982, Long-term synaptic enhancement and short-term potentiation in rat fascia dentata act through different mechanisms, J. Physiol. (Lond.) 324: 249–262.

    CAS  Google Scholar 

  • McNaughton, B. L., Douglas, R. M., and Goddard, G. V., 1978, Synaptic enhancement in fascia dentata: Cooperativity among coactive afferents, Brain Res. 157: 277–293.

    Article  PubMed  CAS  Google Scholar 

  • Penfield, W., and Perot, P., 1963, The brain’s record of auditory and visual experience, Brain 86: 596–696.

    Article  Google Scholar 

  • Roland, P. E., and Friberg, L., 1985, Localization of cortical areas activated by thinking, J. Neurophysiol. 53: 1219–1243.

    PubMed  CAS  Google Scholar 

  • Roland, P. E., Larsen, B., Lassen, N. A., Skinh$j, E., 1980, Supplementary motor area and other cortical areas in organization of voluntary movements in man, J. Neurophysiol. 43: 118–136.

    CAS  Google Scholar 

  • Squire, L. R., 1982, The neuropsychology of human memory, Annu. Rev. Neurosci. 5: 241–273.

    Article  PubMed  CAS  Google Scholar 

  • Squire, L. R., 1983, The hippocampus and the neuropsychology of memory, in: Molecular, Cellular and Behavioural Neurobiology of the Hippocampus ( W. Seifert, ed.), Academic Press, New York, pp. 491–507.

    Google Scholar 

  • Szentâgothai, J., 1970, Les circuits neuronaux de l’écorce cérébrale, Bull. Acad. R. Med. Belg. 7: 475–492.

    Google Scholar 

  • Szentggothai, J., 1978, The neuron network of the cerebral cortex: A functional interpretation, Proc. R. Soc. Lond. [Biol.] 201: 219–248.

    Article  Google Scholar 

  • Watkins, J. C., 1984, Excitatory amino acids and central synaptic transmission, Trends Pharmacol. Sci. 5: 373–376.

    Article  CAS  Google Scholar 

  • Wigström, H., and Gustafsson, B., 1983a, Facilitated induction of hippocampal long-lasting potentiation during blockade of inhibition, Nature 301: 603–604.

    Article  PubMed  Google Scholar 

  • Wigström, H., and Gustafsson, B., 1983b, Heterosynaptic modulation of homosynaptic long-lasting potentiation in the hippocampal slice, Acta Physiol. Scand. 119: 455–458.

    Article  PubMed  Google Scholar 

  • Wigström, H., and Gustafsson, B., 1984, A possible correlate of the postsynaptic condition for long-lasting potentiation in the guinea pig hippocampus in vitro, Neurosci. Leu. 44: 327–333.

    Article  Google Scholar 

  • Wigström, H., and Gustafsson, B., 1985a, Facilitation of hippocampal long-lasting potentiation by GABA antagonists, Acta Physiol. Scand. 125: 159–172.

    Article  PubMed  Google Scholar 

  • Wigström, H., and Gustafsson, B., 1985b, On long-asting potentiation in the hippocampus: A proposed mechanism for its dependence on coincident pre-and postsynaptic activity, Acta Physiol. Scand. 123: 519–522.

    Article  PubMed  Google Scholar 

  • Wigström, H., Gustafsson, B., and Huang, Y.-Y., 1985, A synaptic potential following single volleys in the hippocampal CA, region possibly involved in the induction of long-lasting potentiation, Acta Physiol. Scand. 124: 475–478.

    Article  PubMed  Google Scholar 

  • Wigström, H., Gustafsson, B., and Hunag, Y.-Y., 1986, Mode of action of excitatory amino acid receptor antagonists on hippocampal long-lasting potentiation, Neuroscience 17: 1105–1115.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eccles, J.C. (1988). Mammalian Systems for Storing and Retrieving Information. In: Woody, C.D., Alkon, D.L., McGaugh, J.L. (eds) Cellular Mechanisms of Conditioning and Behavioral Plasticity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9610-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9610-0_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9612-4

  • Online ISBN: 978-1-4757-9610-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics