Skip to main content

Some Conclusions Relevant to Plasticity Derived from Normal Anatomy

  • Chapter
Cellular Mechanisms of Conditioning and Behavioral Plasticity
  • 64 Accesses

Abstract

The cerebral cortex is supposed to be heavily involved in learning processes and has, therefore, been the object of many deprivation studies. However, even the study of the normal, not artifically perturbed brain during and after development may contribute to the question of anatomic traces of plasticity. The advantage of this alternative approach is that it is not necessary to expose animals to an artificial situation in which it may be difficult to distinguish between direct effects of learning and more indirect effects connected with the general condition of the animal. Here I summarize the results we have collected in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie, M., 1946, Estimation of nuclear population from microtome sections, Anat. Rec. 94: 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Albus, J. S., 1971, A theory of cerebellar function, Math. Biosci. 10: 25.

    Article  Google Scholar 

  • Fifkovâ, E., 1968, Changes in the visual cortex of rats after unilateral deprivation, Nature 220: 379–380.

    Article  PubMed  Google Scholar 

  • Glickstein, M., and May, J., 1982, Visual control of movement: The circuits which link visual to motor areas of the brain with special reference to the visual input to pons and cerebellum, in: Sensory Physiology ( W. D. Neff, ed.), Academic Press, New York, pp. 103–145.

    Google Scholar 

  • Globus, A., Rosenzweig, E., Bennett, L., and Diamond, M. C., 1973, Effects of differential experience on dendritic spine counts in rat cerebral cortex, J. Comp. Physiol. Psychol. 82: 175–181.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M., Sakurai, M., and Tongroach, P., 1982, Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells, J. Physiol. (Lond.) 324:113–134.

    Google Scholar 

  • Larramendi, L. M. H., 1969, Analysis of synaptogenesis in the cerebellum of the mouse, in: Neurobiology of Cerebellar Evolution and Development (R. Llinâs, ed.), American Medical Association, Chicago, pp. 803–843.

    Google Scholar 

  • Man, D., 1968, A theory of cerebellar cortex, J. Physiol. (Land.) 202: 437–470.

    Google Scholar 

  • Peters, A., and Fairén, A., 1978, Smooth and sparsely-spined stellate cells in the visual cortex of the rat: A study using a combined Golgi—electron microscope technique, J. Comp. Neurol. 181:129–172.

    Google Scholar 

  • Peters, A., and Feldman, L., 1977, The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. IV. Termination upon spiny dendrites, J. Neurocytol. 6: 669–689.

    Article  PubMed  CAS  Google Scholar 

  • Rutledge, L. T., Wright, C., and Duncan, J., 1974, Morphological changes in pyramidal cells of mammalian neocortex associated with increased use, Exp. Neurol. 44: 209–228.

    Google Scholar 

  • Schapiro, S., and Vukovich, K. R., 1970, Early experience effects upon cortical dendrites: A proposed model for development, Science 167: 292–294.

    Article  PubMed  CAS  Google Scholar 

  • Schüz, A., 1976, Pyramidal cells with different densities of dendritic spines in the cortex of the mouse, Z. Naturforsch. 31C:319–323.

    Google Scholar 

  • Schüz, A., 1981, Pränatale Reifung and postnatale Veränderungen im Cortex des Meerschweinchens: Mikroskopische Auswertung eines natürlichen Deprivationsexperimentes (English summary), J. Hirnforsch. 22: 93–127.

    PubMed  Google Scholar 

  • Schüz, A., 1986, Comparison between the dimensions of dendritic spines in the cerebral cortex of newborn and adult guinea pigs, J. Comp. Neurol. 224: 277–285.

    Article  Google Scholar 

  • Schüz, A., and Dortenmann, M., 1987, Synaptic density on non-spiny dendrites in the cerebral cortex of the house mouse. A phosphotungstic acid study, J. Hirnforsch. 28:(in press).

    Google Scholar 

  • Schüz, A., and Hein, F. M., 1984, Comparison between the developmental calendars of the cerebral and cerebellar cortices in a precocial and an altricial rodent, in: Cerebellar Functions ( J. R. Bloedel, J. Dichgans, and W. Precht, eds.), Springer-Verlag, Berlin, Heidelberg, New York, pp. 318–321.

    Chapter  Google Scholar 

  • Somogyi, P. and Cowey, A., 1981, Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey, J. Comp. Neurol. 195:547–566.

    Google Scholar 

  • Valverde, F., 1967, Apical dendritic spines of the visual cortex and light deprivation in the mouse, Exp. Brain Res. 3: 337–352.

    Article  PubMed  CAS  Google Scholar 

  • Valverde, F., 1971, Rate and extent of recovery from dark rearing in the visual cortex of the mouse, Brain Res. 33:1–11.

    Google Scholar 

  • Vaughan, D. W., and Peters, A., 1973, A three-dimensional study of layer I of the rat parietal cortex, J. Comp. Neurol. 149: 355–370.

    Article  PubMed  CAS  Google Scholar 

  • White, E. L., and Hersch, S. M., 1981, Thalamocortical synapses of pyramidal cells which project from SmI to MsI cortex in the mouse, J. Comp. Neurol. 198:167–181.

    Google Scholar 

  • Winkelmann, E., Brauer, K., and Werner, L., 1976, Untersuchungen zu Spineveränderungen der Lamina-VPyramidenzellen im visuellen Kortex junger und subadulter Laborratten nach Dunkelaufzucht und Zerstörung des Corpus geniculatum laterale, pars dorsalis, J. Hirnforsch. 17: 495–506.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schüz, A. (1988). Some Conclusions Relevant to Plasticity Derived from Normal Anatomy. In: Woody, C.D., Alkon, D.L., McGaugh, J.L. (eds) Cellular Mechanisms of Conditioning and Behavioral Plasticity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9610-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9610-0_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9612-4

  • Online ISBN: 978-1-4757-9610-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics