Passive and Active Properties of Motoneuron Dendrites

  • Stephen Redman
  • John Clements


The active and passive current—voltage characteristics of dendritic membrane must be determined if the integrative actions of central neurons are to be fully understood. Reliable measurements of these properties have been elusive, largely because the electrical transients generated by a somatically located microelectrode are dominated by the electrical properties of somatic and proximal dendritic membrane and hence give limited resolution of the properties of more distal dendritic membrane. Yet some progress has been made, mainly by combining electrophysiological measurements with intracellular staining of the same neuron (Lux et al., 1970; Barrett and Crill, 1974; Turner and Schwartzkroin, 1983; Turner, 1984; Durand et al., 1983). This chapter gives a brief report on results obtained by combining voltage clamp, current clamp, and intracellular HRP staining in the same motoneuron.


Dendritic Branch Electrical Length Somatic Membrane Membrane Time Constant Dendritic Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrett, J. N., and Crill, W. E., 1974, Specific membrane properties of cat motoneurones, J. Physiol. (Lond.) 239: 301–324.Google Scholar
  2. Brown, A. G., and Fyffe, R. E. W., 1981, Direct observations on the contacts made between la afferent fibers and α-motoneurones in the cat’s lumbosacral cord, J. Physiol. (Gond.) 313: 121–140.Google Scholar
  3. Burke, R. E., 1967, Composite nature of the monosynaptic excitatory postsynaptic potential, J. Neurophysiol. 30: 114–1137.Google Scholar
  4. Burke, R. E., Walmsley, B., and Hodgson, J. A., 1979, HRP anatomy of group la afferent contacts on alpha motoneurones, Brain Res. 160: 347–352.PubMedCrossRefGoogle Scholar
  5. Clements, J. D., Nelson, P. G., and Redman, S. J., 1986, Intracellular tetra-ethyl ammonium ions enhance group la excitatory post-synaptic potentials evoked in cat motoneurones, J. Physiol. (Lond.) 377: 267–282.Google Scholar
  6. Durand, D., Carlen, P. L., Gurevich, N., Ho, A., and Kunov, H., 1983, Electrotonic parameters of rat dentate granule cells measured using short current pulses and HRP staining, J. Neurophysiol. 50: 1080–1097.PubMedGoogle Scholar
  7. Edwards, F. R., Jack, J. J. B., and Kullmann, D. M., 1983, The relationship between amplitude and time course of single fibre group la excitatory postsynaptic potentials in cat spinal motoneurones, J. Physiol. (Lond.) 345: 58 p.Google Scholar
  8. Egger, M. D., Egger, L. D., 1982, Quantitative morphological analysis of spinal motoneurones, Brain Res. 253: 19–30.PubMedCrossRefGoogle Scholar
  9. Finkel, A. S., and Redman, S. J., 1983, The synaptic current evoked in cat spinal motoneurones by impulses in single group la axons, J. Physiol. (Lond.) 342: 615–632.Google Scholar
  10. Fleshman, J. W., Segev, I., Culheim, S., and Burke, R. E., 1983, Matching electrophysiological and morphological measurements in cat alpha motoneurones, Soc. Neurosci. Abstr. 9: 341.Google Scholar
  11. Gustaffson, B., and Pinter, M. J., 1984, Relations among passive electrical properties of lumbar α-motoneurones of the cat, J. Physiol. (Lond.) 356: 401–431.Google Scholar
  12. Iansek, R., and Redman, S. J., 1973, The amplitude, time course and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites, J. Physiol. (Land.) 234: 665–688.Google Scholar
  13. Jack, J. J. B., 1979, An introduction to linear cable theory, in: The Neurosciences ( F. O. Schmitt and F. G. Warden, eds.), MIT Press, Cambridge, pp. 423–437.Google Scholar
  14. Jack, J. J. B., Miller, S., Porter, R., and Redman, S. J., 1971, The time course of minimal excitatory post-synaptic potentials evoked in spinal motoneurones by group la afferent fibres, J. Physiol. (Land.) 215: 353–380.Google Scholar
  15. Jack, J. J. B., Redman, S. J., and Wong, K., 1981, The components of synaptic potentials evoked in cat spinal motoneurones by impulses in single group la afferents, J. Physiol. (Lond.) 321: 65–96.Google Scholar
  16. Johnston, D., and Brown, T. H. G., 1983, Interpretation of voltage-clamp measurements in hippocampal neurons, J. Neurophysiol. 50: 464–486.PubMedGoogle Scholar
  17. Krnjevié, K., Puil, E., and Werman, R., 1978, EGTA and motoneuronal after-potentials, J. Physiol. (Land.) 275: 199–223.Google Scholar
  18. Llinâs, R., and Sugimori, M., 1980, Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices, J. Physiol. (Lund.) 305: 197–213.Google Scholar
  19. Llinâs, R., and Yarom, Y., 1981a, Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances, J. Physiol. (Land.) 315: 549–568.Google Scholar
  20. Llinâs, R., and Yarom, Y., 1981b, Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro, J. Physiol. (Land.) 315: 569–584.Google Scholar
  21. Lux, H. D., Schubert, P., and Kreutzberg, G. W., 1970, Direct matching of morphological and electrophysiological data in cat spinal motoneurones, in: Excitatory Synaptic Mechanisms (P. Andersen and J. K. S. Jansen, eds,), Universitetsforlaget, Oslo, pp. 189–198.Google Scholar
  22. Neher, E., and Lux, H. D., 1972, Differential actions of TEA’ on two K+ current components of a molluscan neurone, Pflugers Arch. 336: 87–100.PubMedCrossRefGoogle Scholar
  23. Rall, W., 1962, Theory of physiological properties of dendrites, Ann. N.Y. Acad. Sci. 96: 1071–1092.PubMedCrossRefGoogle Scholar
  24. Rall, W., 1977, Core conductor theory and cable properties of neurons, in: Handbook of Physiology, The Nervous System, Section 1, Vol. 1 ( E. R. Kandel, ed.), American Physiology Society, Bethesda, pp. 39–97.Google Scholar
  25. Rall, W., Burke, R. E., Smith, T. G., Nelson, P. G., and Frank, K., 1967, Dendritic location of synapses and possible mechanisms for the monosynaptic e.p.s.p. in motoneurons, J. Neurophysiol. 30: 1169–1193.PubMedGoogle Scholar
  26. Rang, H., 1981, The characteristics of synaptic currents and responses to acetylcholine of rat submandibular ganglion cells, J. Physiol. (Land.) 311: 23–55.Google Scholar
  27. Redman, S. J., and Walmsley, B., 1983a, The time course of synaptic potentials evoked in cat spinal moto-neurones at identified group la synapses, J. Physiol. (Lond.) 343: 117–133.Google Scholar
  28. Redman, S. J., and Walmsley, B., 1983b, Amplitude fluctuations in synaptic potentials evoked in cat spinal motoneurones at identified group la synapses, J. Physiol. (Lond.) 343: 135–145.Google Scholar
  29. Schwindt, P. C., and Crill, W. E., 1980, Properties of a persistent inward current in normal and TEA-injected motoneurons, J. Neurophysiol. 43: 1700–1724.PubMedGoogle Scholar
  30. Turner, D. A., 1984, Segmental cable evaluation of somatic transients in hippocampal neurons (CAI, CA3 and dentate), Biophys. J. 46: 73–84.PubMedCrossRefGoogle Scholar
  31. Turner, D. A., and Schwartzkroin, P. A., 1983, Electrical characteristics of dendrites and dendritic spines in intracellularly stained CA3 and dentate hippocampal neurones, J. Neurosci. 3: 2381–2394.PubMedGoogle Scholar
  32. Ulfhake, B., and Kellerth, J.-O., 1981a, A quantitative light microscopic study.of the dendrites of cat spinal α-motoneurones after intracellular staining with horseradish peroxidase, J. Comp. Neurol. 202: 571–583.PubMedCrossRefGoogle Scholar
  33. Ulfhake, B., and Kellerth, J.-O., 1981b, A quantitative morphological study of HRP-labelled cat α-motoneurones supplying different hindlimb muscles, Brain Res. 264: 1–19.CrossRefGoogle Scholar
  34. Ulfhake, B., and Kellerth, J.-O., 1984, Electrophysiological and morphological measurements in cat gastrocnemius and soleus α-motoneurones, Brain Res. 307: 167–179.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Stephen Redman
    • 1
  • John Clements
    • 1
  1. 1.Experimental Neurology Unit, John Curtin School of Medical ResearchAustralian National UniversityCanberra, A.C.T.Australia

Personalised recommendations