Electrodiffusion Model of Electrical Conduction in Neuronal Processes

  • Ning Qian
  • Terrence J. Sejnowski


The cable model of electrical conduction in neurons is central to our understanding of information processing in neurons. The conduction of action potentials in axons has been modeled as a nonlinear excitable cable (Hodgkin and Huxley, 1952), and the integration of postsynaptic signals in dendrites has been studied with analytic solutions to passive cables (Rall, 1977). Recently, several groups have examined the possibility of more complex signal processing in dendrites with complex morphologies and excitable membranes by numerical integration of the cable equations (Shepherd et al., 1985; Koch et al., 1983; Rall and Segev, 1985; Perkel and Perkel, 1985).


Dendritic Spine Conductance Change Excitatory Postsynaptic Potential Spine Head Dendritic Shaft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Coss, R. G., and Perkel, D. H., 1985, The function of dendritic spines, Behay. Neural Biol. 44: 151–185.CrossRefGoogle Scholar
  2. Fogelson, A. L., and Zucker, R. S., 1985, Presynaptic calcium diffusion from various arrays of single channels, Biophys. J. 48: 1003–1017.PubMedCrossRefGoogle Scholar
  3. Goldman, D. E., 1943, Potential, impedance and rectification in membranes, J. Gen. Physiol. 27: 37–60.PubMedCrossRefGoogle Scholar
  4. Hodgkin, A. L., and Huxley, A. F. 1952, Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J. Physiol. (Lond.) 116: 449–472.Google Scholar
  5. Jack, J. J. B., Noble, D., and Tsien, R. W., 1975, Electrical Current Flow in Excitable Cells, Oxford University Press, Oxford.Google Scholar
  6. Koch, C., and Poggio, T., 1983, A theoretical analysis of electrical properties of spines, Proc. R. Soc. Lond. [Biol.] 218: 455–477.CrossRefGoogle Scholar
  7. Koch, C., Poggio, T., and Torre, V., 1983, Nonlinear interaction in a dendritic tree: Location, timing, and role in information processing, Proc. Natl. Acad. Sci. U.S.A. 80: 2799–2802.PubMedCrossRefGoogle Scholar
  8. Perkel, D. H., and Perkel, D. J., 1985, Dendritic spines: Role of active membrane modulating synaptic efficacy, Brain Res. 325: 331–335.PubMedCrossRefGoogle Scholar
  9. Rall, W., 1977, Core conductor theory and cable properties of neurons, in: Handbook of Physiology: The Nervous System ( E. R. Kandel, ed.), American Physiological Society, Bethesda, pp. 39–97.Google Scholar
  10. Rall, W., 1978, Dendritic spines and synaptic potency, in: Studies in Neurophysiology ( R. Porter, ed.), Cambridge University Press, Cambridge, pp. 203–209.Google Scholar
  11. Rall, W., and Segev, I., 1987, Functional possibilities for synapses on dendrites and dendritic spines, in: New Insights into Synaptic Function (G. M. Edelman, W. F. Gall, and W. M. Cowan, eds.), John Wiley & Sons, New York (in press).Google Scholar
  12. Shepherd, G. M., Brayton, R. K., Miller, J. P., Segev, I., Rinzel, J., and Rall, W., 1985, Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines, Proc. Natl. Acad. Sci. U.S.A. 82: 2192–2195.PubMedCrossRefGoogle Scholar
  13. Simon, S. M., and Llinas, R. R., 1985, Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release, Biophys. J. 48: 485–498.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Ning Qian
    • 1
  • Terrence J. Sejnowski
    • 1
  1. 1.Department of BiophysicsJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations