Skip to main content

A Preliminary Note on Spatial EEG Correlates of Olfactory Conditioning

  • Chapter
Cellular Mechanisms of Conditioning and Behavioral Plasticity
  • 62 Accesses

Abstract

The vertebrate olfactory epithelium (100–200 µm thick) covers roughly 100 cm2 and contains 106–108 receptor cells. Each receptor cell has a broad response characteristic to odorants (Lancet, 1986). Odorant information is conveyed topographically to the main olfactory bulb (OB) via the primary olfactory nerve (PON) as spatial patterns of spike trains generated by the noninteracting receptor cells. The PON fibers converge onto 103 glomeruli in the OB glomerular layer. Within each glomerulus (80–150 µm in diameter), 103–105 PON fibers synapse with the apical dendrites of 102–103 mitral and tufted cells. The mitral and tufted cells form reciprocal synapses with 103–104 deep-lying granule cells. Mitral—granule cell interactions are mediated by a sigmoidal gain function (Eeckman and Freeman, 1986). Under synaptic driving, the nonspiking granule cells generate electric dipoles with common instantaneous orientation perpendicular to the bulbar surface. These field potentials form the predominant component of the EEG activity recorded at the bulbar surface (Freeman, 1975). Mitral cell axons converge to form the lateral, olfactory tract (LOT), which projects topographically to the anterior olfactory nucleus but nontopographically to the prepiriform cortex. These structures project back to the bulb in a similar fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baird, B., 1986, Nonlinear dynamics of pattern formation and pattern recognition in rabbit olfactory bulb, Physica D 22: 150–175.

    Article  Google Scholar 

  • Baird, B., 1986b, Bifurcation analysis of oscillating network model of pattern recognition in the rabbit olfactory bulb, in: Neural Networks for Computing (J. S. Denker, ed.), American Institute of Physics Conference Proceedings, American Institute of Physics, New York, Volume 151. pp. 29–34.

    Google Scholar 

  • Breiman, L, and Ihaka, R., 1984, Discriminant Analysis via Scaling and ACE, Technical Report No. 40, UC Berkeley Department of Statistics, Berkeley.

    Google Scholar 

  • Bressler, S. L., 1982, Response of olfactory bulb and cortex to conditioned odor stimulation, Soc. Neurosci. Abstr. 8: 314.

    Google Scholar 

  • Davis, W., and Freeman, W. J., 1982, On-line detection of respiratory events applied to behavioral conditioning in rabbits, IEEE Trans. Biomed. Eng. 29: 453–456.

    Article  PubMed  CAS  Google Scholar 

  • Edelman, G. M., and Mountcastle, V.B., 1978, The Mindful Brain: Cortical Organization and the Group-Selective Theory. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Eeckman, F., and Freeman, W. J., 1986, The sigmoid nonlinearity in neural computation: An experimental approach, in: Neural Networks for Computing (J. S. Denker, ed.), American Institute of Physics Conference Proceedings Volume 151, American Institute of Physics, New York, pp. 135–139.

    Google Scholar 

  • Freeman, W. J., 1975, Mass Action in the Nervous System, Academic Press, New York.

    Google Scholar 

  • Freeman, W. J., 1979, Nonlinear dynamics of paleocortex manifested in olfactory EEG, Biol Cybernet. 35: 2137.

    Google Scholar 

  • Freeman, W. J., and Baird, B., 1987, Correlation of olfactory EEG with behavior: Spatial analysis. Behav. Neurosci. 101: 393–408.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, W. J., and Grajski, K. A., 1987, Correlation of olfactory EEG with behavior: Factor analysis. Behav Neurosci. (in press).

    Google Scholar 

  • Freeman, W. J., and Skarda, C., 1986, Spatial EEG patterns, non-linear dynamics and perception: The neoSherringtonian view, Brain Res. Rev. 10: 147–175.

    Article  Google Scholar 

  • Freeman, W. J., Viana di Prisco, G., Davis, G. W., and Whitney, T. M., 1983, Conditioning of relative frequency of sniffing by rabbits to odors, J. Comp. Psychol. 97 (1): 12–23.

    Article  PubMed  CAS  Google Scholar 

  • Gormezano, I., Kehoe, E. J., and Marshall, B. S., 1983, Twenty years of classical conditioning research with the rabbit, Prog. Psychobiol. Psychol. 10: 197–275.

    Google Scholar 

  • Grajski, K. A., and Freeman, W. J., 1987, Spatial EEG correlates of non-associative and associative olfactory learning in rabbits (submitted for publication).

    Google Scholar 

  • Grajski, K. A., and Freeman, W. J., 1986, A dynamic model of olfactory discrimination, in: Neural Networks for Computing (J. S. Deuker, ed.), American Institute of Physics Conference Proceedings, Volume 151, American Institute of Physics, New York, pp. 188–193.

    Google Scholar 

  • Grajski, K. A., Breiman, L., Viana di Prisco, G., and Freeman, W. J., 1986, Classification of EEG spatial patterns with a tree structured methodology: CART, IEEE Trans. Biomed. Eng. 33: (12): 1076–1086.

    Article  PubMed  CAS  Google Scholar 

  • Gray, C. M., Freeman, W. J., and Skinner, J. E., 1986, Chemical dependencies of learning in the rabbit olfactory bulb: Acquisition of the transient spatial pattern change depends on norepinephrine, Behay. Neurosci. 100: 585–596.

    Article  CAS  Google Scholar 

  • Grossberg, S.,1976, Adaptive classification and universal coding, Biol. Cybernet. 23: 187.

    Google Scholar 

  • Hinton, G., and Anderson, J., 1981, Parallel Models of Associative Memory, Lawrence Erlbaum Associates, Hillsdale, NJ.

    Google Scholar 

  • Hopfield, J. J., 1982, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci U.S.A. 79: 2554–2557.

    Article  PubMed  CAS  Google Scholar 

  • Kohonen, T., 1984, Self-Organization and Associative Memory, Springer-Verlag, Berlin.

    Google Scholar 

  • Lancet, D., 1986, Vertebrate olfactory reception, Ann. Rev. Neurosci. 9: 329–355.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, R. F., and Spencer, W. A., 1966, Habituation: A model phenomenon for the study of neuronal substrates of behavior, Psychol. Rev. 73 (1): 16–43.

    Article  PubMed  CAS  Google Scholar 

  • Viana di Prisco, G., and Freeman, W. J., 1986, Odor-related bulbar EEG spatial pattern analysis during appetitive conditioning in rabbits, Behay. Neurosci. 99: 964–978.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grajski, K.A. (1988). A Preliminary Note on Spatial EEG Correlates of Olfactory Conditioning. In: Woody, C.D., Alkon, D.L., McGaugh, J.L. (eds) Cellular Mechanisms of Conditioning and Behavioral Plasticity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9610-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9610-0_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9612-4

  • Online ISBN: 978-1-4757-9610-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics