An Increased Basal Calcium Hypothesis for Long-Term Potentiation of Transmitter Release in Bullfrog Sympathetic Ganglia

  • K. Kuba
  • E. Kumamoto
  • S. Minota
  • K. Koyano
  • K. Tanaka
  • S. Tsuji

Abstract

Long-term potentiation (LTP) of synaptic transmission, a basis for learning and memory (cf. Tsukahara, 1981), occurs in response to conditioning stimuli in various neuronal elements at both central and peripheral synapses. In bullfrog sympathetic ganglia, there are two types of long-term potentiation of transmitter release, one induced by conditional tetanic stimulation of the preganglionic nerve through a Ca2+ -dependent mechanism (presynaptic LTP, pre-LTP; Koyano et al., 1985), and the other generated by the action of epinephrine through a cAMP-dependent mechanism (epinephrine-induced LTP, adrLTP; Kuba et al., 1981; Kuba and Kumamoto, 1986). We describe here novel mechanisms of these LTPs in which a rise in the basal level of the intracellular free Ca2+ ([Ca2+]i) in the presynaptic terminal plays an important role.

Keywords

Transmitter Release Presynaptic Terminal Quantal Content Dibutyryl cAMP Synaptic Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkon, D. L., 1984, Calcium-mediated reduction of ionic currents: A biophysical memory trace, Science 226: 1037–1045.PubMedCrossRefGoogle Scholar
  2. Andersen, P., Sundberg, S. H., Sveen, O., Swann, J. W., and Wigström, H., 1980, Possible mechanisms for long-lasting potentiation of synaptic transmission in hippocampal slices from guinea-pigs, J. Physiol. (Lond.) 302: 463–482.Google Scholar
  3. Bliss, T. V. P., and LOmo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol. (Loud.) 232: 331–356.Google Scholar
  4. Brattin, W. J., and Waller, R. L., 1983, Calcium inhibition of rat liver microsomal calcium-dependent ATPase, J. Biol. Chem. 258: 6724–6729.PubMedGoogle Scholar
  5. Brown, T. H., and McAfee, D. A., 1982, Long-term synaptic potentiation in the superior cervical ganglion, Science 215: 1411–1413.Google Scholar
  6. Kandel, E. R., Abrams, T., Bernier, L., Carew, T. J., Hawkins, R. D., and Schwartz, J. H., 1983, Classical conditioning and sensitization share aspects of the same molecular cascade in Aplysia, Cold Spring Harbor Symp. Quant. Biol. 48: 821–830.PubMedCrossRefGoogle Scholar
  7. Koyano, K., Kuba, K., and Minota, S., 1985, Long-term potentiation of transmitter release induced by repetitive presynaptic activities in bullfrog sympathetic ganglia, J. Physiol. (Lond.) 359: 219–233.Google Scholar
  8. Kuba, K., 1980, Release of calcium ions linked to the activation of potassium conductance in a caffeine-treated sympathetic neurone, J. Physiol. (Lond.) 298: 251–269.Google Scholar
  9. Kuba, K., and Kumamoto, E., 1986, Long-term potentiation of transmitter release induced by adrenaline in bullfrog sympathetic ganglia, J. Physiol. (Lond.) 374: 515–530.Google Scholar
  10. Kuba, K., Kato, E., Kumamoto, E., Koketsu, K., and Hirai, K., 1981, Sustained potentiation of transmitter release by adrenaline and dibutyryl cyclic AMP in sympathetic ganglia, Nature 291: 654–656.PubMedCrossRefGoogle Scholar
  11. Kumamoto, E., and Kuba, K., 1983, Independence of presynaptic bimodal actions of adrenaline in sympathetic ganglia, Brain Res. 265: 344–347.PubMedCrossRefGoogle Scholar
  12. Kumamoto, E., and Kuba, K., 1985, Effects of K’-channel blockers on transmitter release in bullfrog sympathetic ganglia, J. Pharmacol. Exp. Ther. 235: 241–247.PubMedGoogle Scholar
  13. Kumamoto, E., and Kuba, K., 1986, Mechanism of long-term potentiation of transmitter release induced by adrenaline in bullfrog sympathetic ganglia, J. Gen. Physiol. 87: 775–799.PubMedCrossRefGoogle Scholar
  14. Kumamoto, E., and Kuba, K., 1987, Mechanisms regulating the adrenaline-induced long-term potentiation in bullfrog sympathetic ganglia, Pflügers Arch. 408: 573–577.PubMedCrossRefGoogle Scholar
  15. Mallart, A., 1985, A calcium-activated potassium current in motor nerve terminals of the mouse, J. Physiol. (Lond.) 368: 577–591.Google Scholar
  16. Tokimasa, T., 1985, Intracellular Ca’-ions inactivates K’-current in bullfrog sympathetic neurons, Brain Res. 337: 386–391.PubMedCrossRefGoogle Scholar
  17. Tsukahara, N., 1981, Synaptic plasticiy in the mammalian central nervous system, Annu. Rev. Neurosci. 4: 351–379.PubMedCrossRefGoogle Scholar
  18. Yamamoto, C., and Chujo, T., 1978, Long-term potentiation in thin hippocampal sections studied by intracellular and extracellular recordings, Exp. Neurol. 58: 242–250.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • K. Kuba
    • 1
  • E. Kumamoto
    • 1
  • S. Minota
    • 1
  • K. Koyano
    • 1
  • K. Tanaka
    • 1
  • S. Tsuji
    • 1
  1. 1.Department of PhysiologySaga Medical SchoolSagaJapan

Personalised recommendations