Leafy Controls Meristem Identity in Arabidopsis

  • Detlef Weigel
  • Elliot M. Meyerowitz

Abstract

Flower development can be broken down into at least five steps: (1) Upon floral induction, the vegetative shoot meristem is converted into an inflorescence meristem. (2) The inflorescence meristem starts to generate floral meristems, or is itself transformed into a floral meristem. This step can be preceded by the generation of a limited number of secondary inflorescence meristems by the primary inflorescence meristem. (3) The floral meristems produce floral organ primordia. (4) The floral organ primordia adopt different fates according to their position within the developing flower. (5) The floral organ primordia differentiate into floral organs. Despite many efforts, very little is known about the molecules directing these processes. Since classical physiological approaches toward understanding flower development have met only with limited success, a genetic-molecular approach has recently been chosen by several groups (e.g., Komaki et al., 1988; Bowman et al., 1989, 1991, 1992; Hill and Lord, 1989; Kunst et al., 1989; Sommer et al., 1990; Yanofsky et al., 1990; Irish and Sussex, 1990; Carpenter and Coen, 1990; Coen et al., 1990; Martinez-Zapater and Somerville, 1990; Drews et al., 1991; Goto et al., 1991; Koornneef et al., 1991; Schultz and Haughn, 1991; Schultz et al. 1991; Shannon and Meeks-Wagner, 1991; Alvarez et al., 1992; Schwarz-Sommer et al., 1992; Jack et al., 1992; Huijser et al., 1992; Weigel et al., 1992; Huala and Sussex, 1992). The underlying rationale is to first identify mutations that specifically affect different steps of flower development, then to analyze these mutations at the genetic level, and finally to clone the corresponding genes to determine their function at the molecular level.

Keywords

Floral Meristem Homeotic Gene Inflorescence Meristem Cauline Leaf Inflorescence Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, J., Guli, C. L., Yu, X.-H., and Smyth, D.R. (1992) terminal flower: A gene affecting inflorescence development in Arabidopsis thaliana. Plant J. 2, 103–116.CrossRefGoogle Scholar
  2. Ambros, V., and Horvitz, H. R. (1984) Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226, 409–416.PubMedCrossRefGoogle Scholar
  3. Bowman, J. L. (1991) Molecular genetics of flower development in Arabidopsis thaliana. Ph. D. thesis, California Institute of Technology.Google Scholar
  4. Bowman, J. L., Smyth, D. R., and Meyerowitz, E. M. (1989) Genes directing flower development in Arabidopsis. Plant Cell 1, 37–52.PubMedGoogle Scholar
  5. Bowman, J. L., Smyth, D. R., and Meyerowitz, E. M. (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112, 1–20.PubMedGoogle Scholar
  6. Bowman, J. L., Sakai, H., Jack, T., Weigel, D., Mayer, U., and Meyerowitz, E.M. (1992) SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development 114, 599–615.PubMedGoogle Scholar
  7. Carpenter, R., and Coen, E. S. (1990) Floral homeotic mutations produced by transposon-mutagenesis n Antirrhinum majus. Genes Dev. 4, 1483–1493.PubMedCrossRefGoogle Scholar
  8. Coen, E. S., Romero, J. M., Doyle, S., Elliott, R., Murphy, G., and Carpenter, R. (1990) floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63, 1311–1322.PubMedCrossRefGoogle Scholar
  9. Drews, G. N., Bowman, J. L., and Meyerowitz, E. M. (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65, 991–1002.PubMedCrossRefGoogle Scholar
  10. Feldmann, K. A. (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J. 1, 71–82.CrossRefGoogle Scholar
  11. Goto, K., Kumagai, T., and Koornneef, M. (1991) Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana, a long-day plant. Physiol. Plant. 83, 209–215.CrossRefGoogle Scholar
  12. Haughn, G. W., and Somerville, C. R. (1988) Genetic control of morphogenesis in Arabidopsis. Dev. Genet. 9, 73–89.CrossRefGoogle Scholar
  13. Hill, J. P., and Lord, E. M. (1989) Floral development in Arabidopsis thaliana: comparison of the wildtype and the homeotic pistillata mutant. Can. J. Bot. 67, 2922–2936.CrossRefGoogle Scholar
  14. Huala, E., and Sussex, I. M. (1992) LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell, submitted. Google Scholar
  15. Huijser, P., Klein, J., Lönnig, W.-E., Meijer, H., Saedler, H., and Sommer, H. (1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 11, 1239–1249.PubMedGoogle Scholar
  16. Irish, V. F., and Sussex, I. M. (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2,741–751.PubMedGoogle Scholar
  17. Jack, T., Brockman, L. L., and Meyerowitz, E. M. (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens. Cell 68, 683–697.PubMedCrossRefGoogle Scholar
  18. Komaki, M. K., Okada, K., Nishino, E., and Shimura, Y. (1988) Isolation and characterization of novel mutants of Arabidopsis thaliana defective in flower development. Development 104, 195–203.Google Scholar
  19. Koornneef, M., Hanhart, C. J., and Vanderveen, J. H. (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229, 57–66.PubMedCrossRefGoogle Scholar
  20. Kunst, L., Klenz, J. E., Martinez-Zapater, J., and Haughn, G.W. (1989) AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. Plant Cell 1, 1195–1208.PubMedGoogle Scholar
  21. Martinez-Zapater, J. M., and Somerville, C. R. (1990) Effect of light quality and vernalization on late-flowering mutants of Arabidopsis thaliana. Plant Physiol. 92, 770–776.PubMedCrossRefGoogle Scholar
  22. Meyerowitz, E.M. (1989) Arabidopsis, a useful weed. Cell 56, 263–269.PubMedCrossRefGoogle Scholar
  23. Schultz, E. A., and Haughn, G.W. (1991) LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3, 771–781.PubMedGoogle Scholar
  24. Schultz, E. A., Pickett, F. B., and Haughn, G. W. (1991) The FLO10 gene product regulates the expression domain of homeotic genes AP3 and PI in Arabidopsis flowers. The Plant Cell 3, 1221–1237.PubMedGoogle Scholar
  25. Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P. J., Hansen, R., Tetens, F., Lönnig, W.-E., Saedler, H., and Sommer, H. (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11, 251–263.PubMedGoogle Scholar
  26. Shannon, S., and Meeks-Wagner, D. R. (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3, 877–892.PubMedGoogle Scholar
  27. Smyth, D. R., Bowman, J. L., and Meyerowitz, E. M. (1990) Early flower development in Arabidopsis. Plant Cell 2, 755–767.PubMedGoogle Scholar
  28. Sommer, H., Beltrán, J. P., Huijser, P., Pape, H., Lönnig, W.-E., Saedler, H., and Schwarz-Sommer, Z. (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9, 605–613.PubMedGoogle Scholar
  29. Weberling, F. (1981) Morphologie der Blüten und der Blütenstände. (Stuttgart: Eugen Ulmer Verlag).Google Scholar
  30. Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., and Meyerowitz, E. M., (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69, in press.Google Scholar
  31. Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A., and Meyerowitz, E. M. (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35–39.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Detlef Weigel
    • 1
  • Elliot M. Meyerowitz
    • 1
  1. 1.Division of Biology 156-29California Institute of TechnologyPasadenaUSA

Personalised recommendations