Skip to main content

Leafy Controls Meristem Identity in Arabidopsis

  • Chapter
Cellular Communication in Plants

Abstract

Flower development can be broken down into at least five steps: (1) Upon floral induction, the vegetative shoot meristem is converted into an inflorescence meristem. (2) The inflorescence meristem starts to generate floral meristems, or is itself transformed into a floral meristem. This step can be preceded by the generation of a limited number of secondary inflorescence meristems by the primary inflorescence meristem. (3) The floral meristems produce floral organ primordia. (4) The floral organ primordia adopt different fates according to their position within the developing flower. (5) The floral organ primordia differentiate into floral organs. Despite many efforts, very little is known about the molecules directing these processes. Since classical physiological approaches toward understanding flower development have met only with limited success, a genetic-molecular approach has recently been chosen by several groups (e.g., Komaki et al., 1988; Bowman et al., 1989, 1991, 1992; Hill and Lord, 1989; Kunst et al., 1989; Sommer et al., 1990; Yanofsky et al., 1990; Irish and Sussex, 1990; Carpenter and Coen, 1990; Coen et al., 1990; Martinez-Zapater and Somerville, 1990; Drews et al., 1991; Goto et al., 1991; Koornneef et al., 1991; Schultz and Haughn, 1991; Schultz et al. 1991; Shannon and Meeks-Wagner, 1991; Alvarez et al., 1992; Schwarz-Sommer et al., 1992; Jack et al., 1992; Huijser et al., 1992; Weigel et al., 1992; Huala and Sussex, 1992). The underlying rationale is to first identify mutations that specifically affect different steps of flower development, then to analyze these mutations at the genetic level, and finally to clone the corresponding genes to determine their function at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, J., Guli, C. L., Yu, X.-H., and Smyth, D.R. (1992) terminal flower: A gene affecting inflorescence development in Arabidopsis thaliana. Plant J. 2, 103–116.

    Article  Google Scholar 

  • Ambros, V., and Horvitz, H. R. (1984) Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226, 409–416.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, J. L. (1991) Molecular genetics of flower development in Arabidopsis thaliana. Ph. D. thesis, California Institute of Technology.

    Google Scholar 

  • Bowman, J. L., Smyth, D. R., and Meyerowitz, E. M. (1989) Genes directing flower development in Arabidopsis. Plant Cell 1, 37–52.

    PubMed  CAS  Google Scholar 

  • Bowman, J. L., Smyth, D. R., and Meyerowitz, E. M. (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112, 1–20.

    PubMed  CAS  Google Scholar 

  • Bowman, J. L., Sakai, H., Jack, T., Weigel, D., Mayer, U., and Meyerowitz, E.M. (1992) SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development 114, 599–615.

    PubMed  CAS  Google Scholar 

  • Carpenter, R., and Coen, E. S. (1990) Floral homeotic mutations produced by transposon-mutagenesis n Antirrhinum majus. Genes Dev. 4, 1483–1493.

    Article  PubMed  CAS  Google Scholar 

  • Coen, E. S., Romero, J. M., Doyle, S., Elliott, R., Murphy, G., and Carpenter, R. (1990) floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63, 1311–1322.

    Article  PubMed  CAS  Google Scholar 

  • Drews, G. N., Bowman, J. L., and Meyerowitz, E. M. (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65, 991–1002.

    Article  PubMed  CAS  Google Scholar 

  • Feldmann, K. A. (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J. 1, 71–82.

    Article  CAS  Google Scholar 

  • Goto, K., Kumagai, T., and Koornneef, M. (1991) Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana, a long-day plant. Physiol. Plant. 83, 209–215.

    Article  Google Scholar 

  • Haughn, G. W., and Somerville, C. R. (1988) Genetic control of morphogenesis in Arabidopsis. Dev. Genet. 9, 73–89.

    Article  Google Scholar 

  • Hill, J. P., and Lord, E. M. (1989) Floral development in Arabidopsis thaliana: comparison of the wildtype and the homeotic pistillata mutant. Can. J. Bot. 67, 2922–2936.

    Article  Google Scholar 

  • Huala, E., and Sussex, I. M. (1992) LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell, submitted.

    Google Scholar 

  • Huijser, P., Klein, J., Lönnig, W.-E., Meijer, H., Saedler, H., and Sommer, H. (1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 11, 1239–1249.

    PubMed  CAS  Google Scholar 

  • Irish, V. F., and Sussex, I. M. (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2,741–751.

    PubMed  CAS  Google Scholar 

  • Jack, T., Brockman, L. L., and Meyerowitz, E. M. (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens. Cell 68, 683–697.

    Article  PubMed  CAS  Google Scholar 

  • Komaki, M. K., Okada, K., Nishino, E., and Shimura, Y. (1988) Isolation and characterization of novel mutants of Arabidopsis thaliana defective in flower development. Development 104, 195–203.

    Google Scholar 

  • Koornneef, M., Hanhart, C. J., and Vanderveen, J. H. (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229, 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Kunst, L., Klenz, J. E., Martinez-Zapater, J., and Haughn, G.W. (1989) AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. Plant Cell 1, 1195–1208.

    PubMed  Google Scholar 

  • Martinez-Zapater, J. M., and Somerville, C. R. (1990) Effect of light quality and vernalization on late-flowering mutants of Arabidopsis thaliana. Plant Physiol. 92, 770–776.

    Article  PubMed  CAS  Google Scholar 

  • Meyerowitz, E.M. (1989) Arabidopsis, a useful weed. Cell 56, 263–269.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, E. A., and Haughn, G.W. (1991) LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3, 771–781.

    PubMed  Google Scholar 

  • Schultz, E. A., Pickett, F. B., and Haughn, G. W. (1991) The FLO10 gene product regulates the expression domain of homeotic genes AP3 and PI in Arabidopsis flowers. The Plant Cell 3, 1221–1237.

    PubMed  CAS  Google Scholar 

  • Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P. J., Hansen, R., Tetens, F., Lönnig, W.-E., Saedler, H., and Sommer, H. (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11, 251–263.

    PubMed  CAS  Google Scholar 

  • Shannon, S., and Meeks-Wagner, D. R. (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3, 877–892.

    PubMed  CAS  Google Scholar 

  • Smyth, D. R., Bowman, J. L., and Meyerowitz, E. M. (1990) Early flower development in Arabidopsis. Plant Cell 2, 755–767.

    PubMed  CAS  Google Scholar 

  • Sommer, H., Beltrán, J. P., Huijser, P., Pape, H., Lönnig, W.-E., Saedler, H., and Schwarz-Sommer, Z. (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9, 605–613.

    PubMed  CAS  Google Scholar 

  • Weberling, F. (1981) Morphologie der Blüten und der Blütenstände. (Stuttgart: Eugen Ulmer Verlag).

    Google Scholar 

  • Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., and Meyerowitz, E. M., (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69, in press.

    Google Scholar 

  • Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A., and Meyerowitz, E. M. (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weigel, D., Meyerowitz, E.M. (1993). Leafy Controls Meristem Identity in Arabidopsis . In: Amasino, R.M. (eds) Cellular Communication in Plants. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9607-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9607-0_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9609-4

  • Online ISBN: 978-1-4757-9607-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics