Intermediate Filament Structure

Diversity, Polymorphism, and Analogy to Myosin
  • Alasdair C. Steven


Together with actin microfilaments and microtubules (MT), intermediate filaments (IF, or “intermediate-sized” filaments) constitute one of the three major systems of protein filaments that form the cytoskeletal networks of virtually all eukaryotic cells. However, unlike actin and tubulin, which are highly conserved molecules, IF proteins make up a notably diverse family, whose molecular weights range from ~ 44k to ~ 120k. The helical packing arrangements of protein subunits in actin filaments and MT have long been known, and their quaternary structures have been found (like their primary sequences) to be resistant to evolutionary divergence. In contrast, a conclusive determination of the molecular packing in any kind of IF remains to be achieved, although considerable progress has been made (see Fraser et. al., this volume). Consequently, the extent to which different IF are structurally related—apart from their having roughly similar diameters—has been unclear.


Actin Filament Intermediate Filament Scanning Transmission Electron Microscopy Myosin Filament Helical Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebi, U., Fowler, W. E., Rew, P., and Sun, T.-T., 1983, The fibrillar substructure of keratin filaments unravelled, J. Cell Biol. 97: 1131–1143.PubMedCrossRefGoogle Scholar
  2. Ahmadi, B., and Speakman, P. T., 1978, Suberimidate cross-linking shows that a rod-shaped, low-cystine, high-helix protein prepared by limited proteolysis of reduced wool has four protein chains, FEBS Lett. 94: 365–367.PubMedCrossRefGoogle Scholar
  3. Cantino, M., and Squire, J., 1986, Resting myosin cross-bridge configuration in frog muscle thick filaments, J. Cell Biol. 102: 610–618.PubMedCrossRefGoogle Scholar
  4. Chin, T. K., Eagles, P. A. M., and Maggs, A., 1983, The proteolytic digestion of ox neurofilaments with trypsin and α-chymotrypsin, Biochem. J. 215: 239–252.PubMedGoogle Scholar
  5. Connell, N. D., and Rheinwald, J. G., 1983, Regulation of the cytoskeleton in mesothelial cells: Reversible loss of keratin and increase in vimentin during rapid growth in culture, Cell 34: 245–253.PubMedCrossRefGoogle Scholar
  6. Crewther, W. G., Inglis, A. S., and McKern, N. M., 1978, Amino-acid sequence of α-helical segments from S-carboxymethylkerateine A, Biochem. J. 173: 365–371.PubMedGoogle Scholar
  7. Crewther, W. G., Dowling, L. M., Steinert, P. M., and Parry, D. A. D., 1983, Structure of intermediate filaments, Int. J. Biol. Macromol. 5: 267–274.CrossRefGoogle Scholar
  8. Davey, C. L., and Graafhuis, A. E., 1976, Organization of myosin molecules in the muscle thick filament, Experientia 32: 32–34.PubMedCrossRefGoogle Scholar
  9. Duda, R. L., Wall, J. S., Hainfeld, J. F., Sweet, R. M., and Eiserling, F. A., 1985, Mass distribution of a probable tail-length-determining protein in bacteriophage T4, Proc. Natl. Acad. Sci. USA 82: 5550–5554.PubMedCrossRefGoogle Scholar
  10. Eichner, R. A., Rew, P., Engel, A., and Aebi, U., 1985, Human epidermal keratin filaments: Studies on their structure and assembly, Ann. N.Y. Acad. Sci. 455: 381–402.PubMedCrossRefGoogle Scholar
  11. Engel, A., Eichner, R., and Aebi, U., 1985, Polymorphism of reconstituted human epidermal keratin filaments: Determination of their mass-per-unit-length and width by scanning transmission electron microscopy, J. Ultrastruct. Res. 90: 323–335.PubMedCrossRefGoogle Scholar
  12. Eriksson, A., and Thornell, L. E., 1979, Intermediate (skeletin) filaments in heart Purkinje fibers, J. Cell Biol. 80: 231–247.PubMedCrossRefGoogle Scholar
  13. Filshie, B. K., and Rogers, G. E., 1961, The fine structure of α-keratin, J. Mol. Biol. 3: 784–786.PubMedCrossRefGoogle Scholar
  14. Franke, W. W., Schiller, D. L., and Grund, C., 1982, Protofilamentous and annular structures as intermediates during reconstitution of cytokeratin filaments in vitro, Biol. Cell 46: 257–268.Google Scholar
  15. Fraser, R. D. B., and MacRae, T. P., 1973a, The structure of a-keratin, Polymer 14: 61–67.CrossRefGoogle Scholar
  16. Fraser, R. D. B., and MacRae, T. P., 1973b, Conformation in Fibrous Proteins, Academic Press, New York.Google Scholar
  17. Fraser, R. D. B., and MacRae, T. P., 1982, The fine structure of keratin fibers, in: Milton Harris: Chemist, Innovator, and Entrepreneur (M. M. Breuer, ed.), American Chemical Society, Washington, D.C., pp. 109–137.Google Scholar
  18. Fraser, R. D. B., and MacRae, T. P., 1983, The structure of the α-keratin microfibril, Biosci. Rep. 3: 517–525.PubMedCrossRefGoogle Scholar
  19. Fraser, R. D. B., MacRae, T. P., and Suzuki, E., 1976, Structure of the α-keratin microfibril, J. Mol. Biol. 108: 435–452.PubMedCrossRefGoogle Scholar
  20. Fraser, R. D. B., MacRae, T. P., Suzuki, E., and Parry, D. A. D., 1985, Intermediate filament structure: 2. Molecular interactions in the filament, Int. J. Biol. Macromol. 7: 258–274.CrossRefGoogle Scholar
  21. Geisler, N., Kaufmann, E., and Weber, K., 1982, Protein-chemical characterization of three structurally distinct domains along the protofilament unit of desmin 10nm filaments, Cell 30: 277–286.PubMedCrossRefGoogle Scholar
  22. Geisler, N., Plessmann, U., and Weber, K., 1983a, The complete amino-acid sequence of the major mammalian neurofilament protein, FEBS Lett. 182: 475–478.CrossRefGoogle Scholar
  23. Geisler, N., Kaufmann, E., Fischer, S., Plessmann, U., and Weber, K., 1983b, Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins, EMBO J. 2: 1295–1302.PubMedGoogle Scholar
  24. Geisler, N., Kaufmann, E., and Weber, K., 1985, Antiparallel orientation of the two double-stranded coiled-coils in the tetrameric protofilament unit in intermediate filaments, J. Mol. Biol. 182: 173–177.PubMedCrossRefGoogle Scholar
  25. Hanukoglu, I., and Fuchs, E., 1982, The cDNA sequence of a human epidermal keratin: Divergence of sequence but conservation of structure among intermediate filament proteins, Cell 31: 243–252.PubMedCrossRefGoogle Scholar
  26. Hanukoglu, I., and Fuchs, E., 1983, The cDNA sequence of a Type II cytoskeletal keratin reveals constant and variable structural domains among keratins, Cell 33: 915–924.PubMedCrossRefGoogle Scholar
  27. Harrington, W. F., Burke, M., and Barton, J. S., 1972, Association of myosin to form contractile system, Cold Spring Harbor Symp. Quant. Biol. 37: 77–85.CrossRefGoogle Scholar
  28. Hatzfeld, M., and Franke, W. W., 1985, Pair formation and promiscuity of cytokeratins: Formation in vitro of heterotypic complexes and intermediate-sized filaments by homologous and heterologous recombinations of purified polypeptides, J. Cell Biol. 101: 1826–1841.PubMedCrossRefGoogle Scholar
  29. Henderson, D., Geisler, N., and Weber, K., 1982, A periodic ultrastructure in intermediate filaments, J. Mol. Biol. 155: 173–176.PubMedCrossRefGoogle Scholar
  30. Hirokawa, N., Glicksman, M. A., and Willard, M. B., 1984, Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton, J. Cell Biol. 98: 1523–1536.PubMedCrossRefGoogle Scholar
  31. Huxley, H. E., 1963, Electron microscopic studies on the structure of natural and synthetic protein filaments from striated muscle, J. Mol. Biol. 7: 281–308.PubMedCrossRefGoogle Scholar
  32. Ip, W., Hartzer, M. K., Pang, V.-Y. S., and Robson, R. M., 1985a, Assembly of vimentin in vitro and its implications concerning the structure of intermediate filaments, J. Mol. Biol. 183: 365–376.PubMedCrossRefGoogle Scholar
  33. Ip, W., Hartzer, M. K., Pang, Y.-Y. S., and Robson, R. M., 1985b, Subunit structure of desmin and vimentin protofilaments and how they assemble into intermediate filaments, Ann. N.Y. Acad. Sci. 455: 185–199.PubMedCrossRefGoogle Scholar
  34. Kaminer, B., Szonyi, E., and Belcher, C. D., 1976, “Hybrid” myosin filaments from smooth and striated muscle, J. Mol. Biol. 100: 379–386.PubMedCrossRefGoogle Scholar
  35. Kaufmann, E., Geisler, N., and Weber, K., 1984, SDS-PAGE strongly overestimates the molecular masses of neurofilament proteins, FEBS Lett. 170: 81–84.PubMedCrossRefGoogle Scholar
  36. Kaufmann, E., Geisler, N., and Weber, K., 1985, Intermediate filament forming ability of desmin derivatives lacking either the amino-terminal 67 or the carboxy-terminal 27 residues, J. Mol. Biol. 185: 733–742.PubMedCrossRefGoogle Scholar
  37. Knapp, A. C., Franke, W. W., Heid, H., Hatzfeld, M., Jorcano, J. L., and Moll, R., 1986, Cytokeratin No. 9, an epidermal type I keratin characteristic of a special program of keratinocyte differentiation, J. Cell Biol. 103: 657–667.PubMedCrossRefGoogle Scholar
  38. Knapp, B., Rentrop, M., Schweizer, J., and Winter, H., 1986, Nonepidermal members of the keratin multigene family: cDNA sequence and in situ localization of the mRNAs, Nucleic Acids Res. 14: 751–763.PubMedCrossRefGoogle Scholar
  39. Krishnan, N., Kaiserman-Abramof, I. R., and Lasek, R. J., 1979, Helical substructure of neurofilaments isolated from Myxicola and squid giant axons, J. Cell Biol. 82: 323–335.PubMedCrossRefGoogle Scholar
  40. Lasek, R. J., Phillip, L., Katz, M. J., and Autilio-Gambetti, L., 1985, Function and evolution of neurofilament proteins, Ann. N.Y. Acad. Sci. 455: 462–478.PubMedCrossRefGoogle Scholar
  41. Lieska, N., Maisel, H., and Romero-Herrera, A. E., 1981, Electron microscopy supports a fibrous substructure for lens intermediate filaments, Curr. Eye Res. 1: 339–350.PubMedCrossRefGoogle Scholar
  42. McKeon, F. D., Kirschner, M. W., and Caput, D., 1986, Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins, Nature 319: 463–468.PubMedCrossRefGoogle Scholar
  43. McLachlan, A. D., and Karn, J., 1983, Periodic features in the amino-acid sequence of nematode myosin rod, J. Mol. Biol. 164: 605–626.PubMedCrossRefGoogle Scholar
  44. Mandelkow, E., Thomas, J., and Cohen, C., 1977, Microtubule structure at low resolution by x-ray diffraction, Proc. Natl. Acad. Sci. USA 74: 3370–3374.PubMedCrossRefGoogle Scholar
  45. Mau, M. C., and Rowe, A. J., 1980, Fraying of A-filaments into three subfilaments, Nature 286: 412–414.CrossRefGoogle Scholar
  46. Milam, L. A., and Erickson, H. P., 1982, Visualization of a 21-nm axial periodicity in shadowed keratin filaments and neurofilaments, J. Cell Biol. 94: 592–596.PubMedCrossRefGoogle Scholar
  47. Millward, G. R., 1970, The substructure of α-keratin microfibrils, J. Ultrastruct. Res. 31: 349–355.PubMedCrossRefGoogle Scholar
  48. Misell, D. L., 1978, Image Analysis, Enhancement and Interpretation, North-Holland, Amsterdam.Google Scholar
  49. Parry, D. A. D., Steven, A. C., and Steinert, P. M., 1985, The coiled-coil molecules of intermediate filaments consist of two parallel chains in axial register, Biochem. Biophys. Res. Commun. 127: 1012–1018.PubMedCrossRefGoogle Scholar
  50. Pollard, T. D., and Cooper, J. A., 1986, Actin and actin-binding proteins: A critical evaluation of mechanisms and function, Annu. Rev. Biochem. 55: 987–1035.PubMedCrossRefGoogle Scholar
  51. Pruss, R. M., Mirsky, R., Raff, M. C., Thorpe, R., Dowding, A. J., and Anderton, B. H., 1981, All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody, Cell 27: 419–428.PubMedCrossRefGoogle Scholar
  52. Quinlan, R. A., Cohlberg, J. A., Schiller, D. L., Hatzfeld, M., and Franke, W. W., 1984, Heterotypic tetramer (A2D2) complexes of non-epidermal keratins isolated from cytoskeletons of rat hepatocytes and hepatoma cells, J. Mol. Biol. 178: 365–388.PubMedCrossRefGoogle Scholar
  53. Renner, W., Franke, W. W., Schmid, E., Geisler, N., Weber, K., and Mandelkow, E., 1981, Reconstitution of intermediate-sized filaments from denatured monomeric vimentin, J. Mol. Biol. 149: 285–306.PubMedCrossRefGoogle Scholar
  54. Roop, D. R., Cheng, C. K., Titterington, L., Meyers, C. A., Stanley, J. R., Steinert, P. M., and Yuspa, S. H., 1984, Synthetic peptides corresponding to keratin subunits elicit highly specific antibodies, J. Biol. Chem. 259: 8037–8040.PubMedGoogle Scholar
  55. Sauk, J. J., Krumweide, M., Cocking-Johnson, D., and White, J. G., 1984, Reconstitution of cytokeratin filaments in vitro: Further evidence for the role of nonhelical peptides in filament assembly, J. Cell Biol. 99: 1590–1597.PubMedCrossRefGoogle Scholar
  56. Squire, J., 1981, The Structural Basis of Muscular Contraction, Plenum, New York.CrossRefGoogle Scholar
  57. Steinert, P. M., 1977, The mechanism of assembly of bovine epidermal keratin filaments in vitro, in: Biochemistry of Cutaneous Epidermal Differentiation (M. Seiji and I. A. Bernstein, eds.), University of Tokyo Press, Tokyo, pp. 444–464.Google Scholar
  58. Steinert, P. M., 1980, Structural changes of human epidermal α-keratin in disorders of keratinization, in: Biochemistry of Normal and Abnormal Epidermal Differentiation (I. A. Bernstein and M. Seiji, eds.), University of Tokyo Press, Tokyo, pp. 391–405.Google Scholar
  59. Steinert, P. M., and Idler, W. W., 1975, The polypeptide composition of bovine epidermal α-keratin, Biochem. J. 151: 603–614.PubMedGoogle Scholar
  60. Steinert, P. M., and Steven, A. C., 1985, Splitting hairs and other intermediate filaments, Nature 316: 767.PubMedCrossRefGoogle Scholar
  61. Steinert, P. M., Idler, W. W., and Zimmerman, S. B., 1976, Self-assembly of bovine epidermal keratin filaments in vitro, J. Mol. Biol. 108: 547–567.PubMedCrossRefGoogle Scholar
  62. Steinert, P. M., Idler, W. W., Cabrai, F., Gottesman, M. G., and Goldman, R. D., 1981, In vitro assembly of homopolymer and copolymer filaments from intermediate filament subunits of muscle and fibroblastic cells, Proc. Natl. Acad. Sci. USA 78: 3692–3696.PubMedCrossRefGoogle Scholar
  63. Steinert, P., Idler, W., Aynardi-Whitman, M., Zackroff, R., and Goldman, R. D., 1982, Heterogeneity of intermediate filaments assembled in vitro, Cold Spring Harbor Symp. Quant. Biol. 46: 465–474.PubMedCrossRefGoogle Scholar
  64. Steinert, P. M., Rice, R. H., Roop, D. R., Trus, B. L., and Steven, A. C., 1983, Complete amino-acid sequence of a mouse epidermal keratin subunit and implications for the structure of intermediate filaments, Nature 302: 794–800.PubMedCrossRefGoogle Scholar
  65. Steinert, P. M., Parry, D. A. D., Racoosin, E. L., Idler, W. W., Steven, A. C., Trus, B. L., and Roop, D. R., 1984, The complete cDNA and deduced amino-acid sequence of a Type II mouse epidermal keratin of 60,000 Da: Analysis of sequence differences between Type I and Type II keratins, Proc. Natl. Acad. Sci. USA 78: 3692–3696.CrossRefGoogle Scholar
  66. Steinert, P. M., Steven, A. C., and Roop, D. R., 1985a, The molecular biology of intermediate filaments, Cell 42: 411–419.PubMedCrossRefGoogle Scholar
  67. Steinert, P. M., Parry, D. A. D., Idler, W. W., Johnson, L. D., Steven, A. C., and Roop, D. R., 1985b, Amino-acid sequences of mouse and human epidermal Type II keratins of Mr 67,000 provide a systematic basis for the structural and functional diversity of the end-domains of keratin intermediate filament subunits, J. Biol. Chem. 260: 7142–7149.PubMedGoogle Scholar
  68. Steven, A. C., Wall, J., Hainfeld, J. F., and Steinert, P. M., 1982, Structure of fibroblastic intermediate filaments: Analysis by scanning transmission electron microscopy, Proc. Natl. Acad. Sci. USA 79: 3101–3105.PubMedCrossRefGoogle Scholar
  69. Steven, A. C., Hainfeld, J. F., Trus, B. L., Wall, J. S., and Steinert, P. M., 1983a, The distribution of mass in heteropolymer intermediate filaments assembled in vitro, J. Biol. Chem. 258: 8323–8329.PubMedGoogle Scholar
  70. Steven, A. C., Hainfeld, J. F., Trus, B. L., Wall, J. S., and Steinert, P. M., 1983b, Epidermal keratin filaments assembled in vitro have masses per unit length that scale according to average subunit mass, J. Cell Biol. 97: 1939–1944.PubMedCrossRefGoogle Scholar
  71. Steven, A. C., Hainfeld, J. F., Trus, B. L., Wall, J. S., and Steinert, P. M., 1984, Radial distributions of density within macromolecular complexes determined from dark-field electron micrographs, Proc. Natl. Acad. Sci. USA 81: 6363–6367.PubMedCrossRefGoogle Scholar
  72. Steven, A. C., Hainfeld, J. F., Trus, B. L., Wall, J. S., and Steinert, P. M., 1985a, Conformity and diversity in the structures of intermediate filaments, Ann. N.Y. Acad. Sci. 455: 371–380.PubMedCrossRefGoogle Scholar
  73. Steven, A. C., Stall, R., Steinert, P. M., and Trus, B. L., 1985b, Computational straightening of images of curved macromolecular helices by cubic spline interpolation facilitates structural analysis by Fourier methods, Proc. 43rd Annu. Meet. EMSA, pp. 738-739.Google Scholar
  74. Steven, A. C., Simpson, T. A., Trus, B. L., Furcinitti, P. S., Hainfeld, J. F., and Wall, J. S., 1986, Radial density profiles of macromolecular filaments determined from dark-field STEM micrographs: Improvements in technique and some applications, Ann. N.Y. Acad. Sci., 483: 188–201.PubMedCrossRefGoogle Scholar
  75. Sun, T.-T., Tseng, S. C. G., Huang, A. J.-W., Cooper, D., Schermer, A., Lynch, M. H., Weiss, R., and Eichner, R., 1985, Monoclonal antibody studies of mammalian and epithelial keratins, a review, Ann. N.Y. Acad. Sci. 455: 307–329.PubMedCrossRefGoogle Scholar
  76. Suzuki, E., Crewther, W. G., Fraser, R. D. B., MacRae, T. P., and McKern, N. M., 1973, X-ray diffraction and infrared studies of an α-helical fragment from α-keratin, J. Mol. Biol. 73: 275–278.PubMedCrossRefGoogle Scholar
  77. Thaler, M., Fukuyama, K., Epstein, W. L., and Fisher, K. A., 1980, Comparative studies of keratins isolated from psoriasis and atopic psoriasis, J. Invest. Dermatol. 75: 156–158.PubMedCrossRefGoogle Scholar
  78. Trachtenberg, S., Steinert, P. M., Trus, B. L., and Steven, A. C., 1986, Electron microscopy and image analysis of paracrystalline bundles obtained from psoriatic epidermal keratin, in: Electron Microscopy and Alzheimer’s Disease (J. Metuzals, ed.), San Francisco Press, San Francisco, pp. 56–59.Google Scholar
  79. Traub, P., and Vorgias, C. E., 1983, Involvement of the N-terminal polypeptides of vimentin in the formation of intermediate filaments, J. Cell. Sci. 63: 43–67.PubMedGoogle Scholar
  80. Trinick, J., Cooper, J., Seymour, J., and Egelman, E. H., 1986, Cryo-electron microscopy and three-dimensional reconstruction of actin filaments, J. Microsc. 141: 349–360.PubMedCrossRefGoogle Scholar
  81. Tzaphlidou, M., Chapman, J. A., and Al-Samman, M. H., 1982, A study of positive staining for electron microscopy using collagen as a model system, Micron 13: 133–146.Google Scholar
  82. Wais-Steider, C., Eagles, P. A. M., Gilbert, D. S., and Hopkins, J. M., 1983, Structural similarities and differences among neurofilaments, J. Mol. Biol. 165: 393–400.PubMedCrossRefGoogle Scholar
  83. Weeds, A., 1982, Actin-binding proteins—Regulators of cell architecture and motility, Nature 296: 811–815.PubMedCrossRefGoogle Scholar
  84. Woods, E. F., and Inglis, A. S., 1984, Organization of the coiled-coils in the wool microfibril, Int. J. Biol. Macromol. 6: 277–283.CrossRefGoogle Scholar
  85. Wray, J., 1979, Structure of the backbone in myosin filaments of muscle, Nature 277: 37–40.PubMedCrossRefGoogle Scholar
  86. Yu, L. C., Steven, A. C., Naylor, G. R. S., Gamble, R. C., and Podolsky, R. J., 1985, Distribution of mass in relaxed frog skeletal muscle and its redistribution upon activation, Biophys. J. 47: 311–321.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Alasdair C. Steven
    • 1
    • 2
  1. 1.Laboratory of Physical BiologyNational Institute of Arthritis, MusculoskeletalBethesdaUSA
  2. 2.Skin DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations