Skip to main content

Intermediate Filament Structure

Diversity, Polymorphism, and Analogy to Myosin

  • Chapter

Abstract

Together with actin microfilaments and microtubules (MT), intermediate filaments (IF, or “intermediate-sized” filaments) constitute one of the three major systems of protein filaments that form the cytoskeletal networks of virtually all eukaryotic cells. However, unlike actin and tubulin, which are highly conserved molecules, IF proteins make up a notably diverse family, whose molecular weights range from ~ 44k to ~ 120k. The helical packing arrangements of protein subunits in actin filaments and MT have long been known, and their quaternary structures have been found (like their primary sequences) to be resistant to evolutionary divergence. In contrast, a conclusive determination of the molecular packing in any kind of IF remains to be achieved, although considerable progress has been made (see Fraser et. al., this volume). Consequently, the extent to which different IF are structurally related—apart from their having roughly similar diameters—has been unclear.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebi, U., Fowler, W. E., Rew, P., and Sun, T.-T., 1983, The fibrillar substructure of keratin filaments unravelled, J. Cell Biol. 97: 1131–1143.

    Article  PubMed  CAS  Google Scholar 

  • Ahmadi, B., and Speakman, P. T., 1978, Suberimidate cross-linking shows that a rod-shaped, low-cystine, high-helix protein prepared by limited proteolysis of reduced wool has four protein chains, FEBS Lett. 94: 365–367.

    Article  PubMed  CAS  Google Scholar 

  • Cantino, M., and Squire, J., 1986, Resting myosin cross-bridge configuration in frog muscle thick filaments, J. Cell Biol. 102: 610–618.

    Article  PubMed  CAS  Google Scholar 

  • Chin, T. K., Eagles, P. A. M., and Maggs, A., 1983, The proteolytic digestion of ox neurofilaments with trypsin and α-chymotrypsin, Biochem. J. 215: 239–252.

    PubMed  CAS  Google Scholar 

  • Connell, N. D., and Rheinwald, J. G., 1983, Regulation of the cytoskeleton in mesothelial cells: Reversible loss of keratin and increase in vimentin during rapid growth in culture, Cell 34: 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Crewther, W. G., Inglis, A. S., and McKern, N. M., 1978, Amino-acid sequence of α-helical segments from S-carboxymethylkerateine A, Biochem. J. 173: 365–371.

    PubMed  CAS  Google Scholar 

  • Crewther, W. G., Dowling, L. M., Steinert, P. M., and Parry, D. A. D., 1983, Structure of intermediate filaments, Int. J. Biol. Macromol. 5: 267–274.

    Article  CAS  Google Scholar 

  • Davey, C. L., and Graafhuis, A. E., 1976, Organization of myosin molecules in the muscle thick filament, Experientia 32: 32–34.

    Article  PubMed  CAS  Google Scholar 

  • Duda, R. L., Wall, J. S., Hainfeld, J. F., Sweet, R. M., and Eiserling, F. A., 1985, Mass distribution of a probable tail-length-determining protein in bacteriophage T4, Proc. Natl. Acad. Sci. USA 82: 5550–5554.

    Article  PubMed  CAS  Google Scholar 

  • Eichner, R. A., Rew, P., Engel, A., and Aebi, U., 1985, Human epidermal keratin filaments: Studies on their structure and assembly, Ann. N.Y. Acad. Sci. 455: 381–402.

    Article  PubMed  CAS  Google Scholar 

  • Engel, A., Eichner, R., and Aebi, U., 1985, Polymorphism of reconstituted human epidermal keratin filaments: Determination of their mass-per-unit-length and width by scanning transmission electron microscopy, J. Ultrastruct. Res. 90: 323–335.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson, A., and Thornell, L. E., 1979, Intermediate (skeletin) filaments in heart Purkinje fibers, J. Cell Biol. 80: 231–247.

    Article  PubMed  CAS  Google Scholar 

  • Filshie, B. K., and Rogers, G. E., 1961, The fine structure of α-keratin, J. Mol. Biol. 3: 784–786.

    Article  PubMed  CAS  Google Scholar 

  • Franke, W. W., Schiller, D. L., and Grund, C., 1982, Protofilamentous and annular structures as intermediates during reconstitution of cytokeratin filaments in vitro, Biol. Cell 46: 257–268.

    Google Scholar 

  • Fraser, R. D. B., and MacRae, T. P., 1973a, The structure of a-keratin, Polymer 14: 61–67.

    Article  CAS  Google Scholar 

  • Fraser, R. D. B., and MacRae, T. P., 1973b, Conformation in Fibrous Proteins, Academic Press, New York.

    Google Scholar 

  • Fraser, R. D. B., and MacRae, T. P., 1982, The fine structure of keratin fibers, in: Milton Harris: Chemist, Innovator, and Entrepreneur (M. M. Breuer, ed.), American Chemical Society, Washington, D.C., pp. 109–137.

    Google Scholar 

  • Fraser, R. D. B., and MacRae, T. P., 1983, The structure of the α-keratin microfibril, Biosci. Rep. 3: 517–525.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, R. D. B., MacRae, T. P., and Suzuki, E., 1976, Structure of the α-keratin microfibril, J. Mol. Biol. 108: 435–452.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, R. D. B., MacRae, T. P., Suzuki, E., and Parry, D. A. D., 1985, Intermediate filament structure: 2. Molecular interactions in the filament, Int. J. Biol. Macromol. 7: 258–274.

    Article  CAS  Google Scholar 

  • Geisler, N., Kaufmann, E., and Weber, K., 1982, Protein-chemical characterization of three structurally distinct domains along the protofilament unit of desmin 10nm filaments, Cell 30: 277–286.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, N., Plessmann, U., and Weber, K., 1983a, The complete amino-acid sequence of the major mammalian neurofilament protein, FEBS Lett. 182: 475–478.

    Article  Google Scholar 

  • Geisler, N., Kaufmann, E., Fischer, S., Plessmann, U., and Weber, K., 1983b, Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins, EMBO J. 2: 1295–1302.

    PubMed  CAS  Google Scholar 

  • Geisler, N., Kaufmann, E., and Weber, K., 1985, Antiparallel orientation of the two double-stranded coiled-coils in the tetrameric protofilament unit in intermediate filaments, J. Mol. Biol. 182: 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Hanukoglu, I., and Fuchs, E., 1982, The cDNA sequence of a human epidermal keratin: Divergence of sequence but conservation of structure among intermediate filament proteins, Cell 31: 243–252.

    Article  PubMed  CAS  Google Scholar 

  • Hanukoglu, I., and Fuchs, E., 1983, The cDNA sequence of a Type II cytoskeletal keratin reveals constant and variable structural domains among keratins, Cell 33: 915–924.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, W. F., Burke, M., and Barton, J. S., 1972, Association of myosin to form contractile system, Cold Spring Harbor Symp. Quant. Biol. 37: 77–85.

    Article  Google Scholar 

  • Hatzfeld, M., and Franke, W. W., 1985, Pair formation and promiscuity of cytokeratins: Formation in vitro of heterotypic complexes and intermediate-sized filaments by homologous and heterologous recombinations of purified polypeptides, J. Cell Biol. 101: 1826–1841.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, D., Geisler, N., and Weber, K., 1982, A periodic ultrastructure in intermediate filaments, J. Mol. Biol. 155: 173–176.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa, N., Glicksman, M. A., and Willard, M. B., 1984, Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton, J. Cell Biol. 98: 1523–1536.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E., 1963, Electron microscopic studies on the structure of natural and synthetic protein filaments from striated muscle, J. Mol. Biol. 7: 281–308.

    Article  PubMed  CAS  Google Scholar 

  • Ip, W., Hartzer, M. K., Pang, V.-Y. S., and Robson, R. M., 1985a, Assembly of vimentin in vitro and its implications concerning the structure of intermediate filaments, J. Mol. Biol. 183: 365–376.

    Article  PubMed  CAS  Google Scholar 

  • Ip, W., Hartzer, M. K., Pang, Y.-Y. S., and Robson, R. M., 1985b, Subunit structure of desmin and vimentin protofilaments and how they assemble into intermediate filaments, Ann. N.Y. Acad. Sci. 455: 185–199.

    Article  PubMed  CAS  Google Scholar 

  • Kaminer, B., Szonyi, E., and Belcher, C. D., 1976, “Hybrid” myosin filaments from smooth and striated muscle, J. Mol. Biol. 100: 379–386.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann, E., Geisler, N., and Weber, K., 1984, SDS-PAGE strongly overestimates the molecular masses of neurofilament proteins, FEBS Lett. 170: 81–84.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann, E., Geisler, N., and Weber, K., 1985, Intermediate filament forming ability of desmin derivatives lacking either the amino-terminal 67 or the carboxy-terminal 27 residues, J. Mol. Biol. 185: 733–742.

    Article  PubMed  CAS  Google Scholar 

  • Knapp, A. C., Franke, W. W., Heid, H., Hatzfeld, M., Jorcano, J. L., and Moll, R., 1986, Cytokeratin No. 9, an epidermal type I keratin characteristic of a special program of keratinocyte differentiation, J. Cell Biol. 103: 657–667.

    Article  PubMed  CAS  Google Scholar 

  • Knapp, B., Rentrop, M., Schweizer, J., and Winter, H., 1986, Nonepidermal members of the keratin multigene family: cDNA sequence and in situ localization of the mRNAs, Nucleic Acids Res. 14: 751–763.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, N., Kaiserman-Abramof, I. R., and Lasek, R. J., 1979, Helical substructure of neurofilaments isolated from Myxicola and squid giant axons, J. Cell Biol. 82: 323–335.

    Article  PubMed  CAS  Google Scholar 

  • Lasek, R. J., Phillip, L., Katz, M. J., and Autilio-Gambetti, L., 1985, Function and evolution of neurofilament proteins, Ann. N.Y. Acad. Sci. 455: 462–478.

    Article  PubMed  CAS  Google Scholar 

  • Lieska, N., Maisel, H., and Romero-Herrera, A. E., 1981, Electron microscopy supports a fibrous substructure for lens intermediate filaments, Curr. Eye Res. 1: 339–350.

    Article  PubMed  CAS  Google Scholar 

  • McKeon, F. D., Kirschner, M. W., and Caput, D., 1986, Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins, Nature 319: 463–468.

    Article  PubMed  CAS  Google Scholar 

  • McLachlan, A. D., and Karn, J., 1983, Periodic features in the amino-acid sequence of nematode myosin rod, J. Mol. Biol. 164: 605–626.

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow, E., Thomas, J., and Cohen, C., 1977, Microtubule structure at low resolution by x-ray diffraction, Proc. Natl. Acad. Sci. USA 74: 3370–3374.

    Article  PubMed  CAS  Google Scholar 

  • Mau, M. C., and Rowe, A. J., 1980, Fraying of A-filaments into three subfilaments, Nature 286: 412–414.

    Article  Google Scholar 

  • Milam, L. A., and Erickson, H. P., 1982, Visualization of a 21-nm axial periodicity in shadowed keratin filaments and neurofilaments, J. Cell Biol. 94: 592–596.

    Article  PubMed  CAS  Google Scholar 

  • Millward, G. R., 1970, The substructure of α-keratin microfibrils, J. Ultrastruct. Res. 31: 349–355.

    Article  PubMed  CAS  Google Scholar 

  • Misell, D. L., 1978, Image Analysis, Enhancement and Interpretation, North-Holland, Amsterdam.

    Google Scholar 

  • Parry, D. A. D., Steven, A. C., and Steinert, P. M., 1985, The coiled-coil molecules of intermediate filaments consist of two parallel chains in axial register, Biochem. Biophys. Res. Commun. 127: 1012–1018.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, T. D., and Cooper, J. A., 1986, Actin and actin-binding proteins: A critical evaluation of mechanisms and function, Annu. Rev. Biochem. 55: 987–1035.

    Article  PubMed  CAS  Google Scholar 

  • Pruss, R. M., Mirsky, R., Raff, M. C., Thorpe, R., Dowding, A. J., and Anderton, B. H., 1981, All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody, Cell 27: 419–428.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan, R. A., Cohlberg, J. A., Schiller, D. L., Hatzfeld, M., and Franke, W. W., 1984, Heterotypic tetramer (A2D2) complexes of non-epidermal keratins isolated from cytoskeletons of rat hepatocytes and hepatoma cells, J. Mol. Biol. 178: 365–388.

    Article  PubMed  CAS  Google Scholar 

  • Renner, W., Franke, W. W., Schmid, E., Geisler, N., Weber, K., and Mandelkow, E., 1981, Reconstitution of intermediate-sized filaments from denatured monomeric vimentin, J. Mol. Biol. 149: 285–306.

    Article  PubMed  CAS  Google Scholar 

  • Roop, D. R., Cheng, C. K., Titterington, L., Meyers, C. A., Stanley, J. R., Steinert, P. M., and Yuspa, S. H., 1984, Synthetic peptides corresponding to keratin subunits elicit highly specific antibodies, J. Biol. Chem. 259: 8037–8040.

    PubMed  CAS  Google Scholar 

  • Sauk, J. J., Krumweide, M., Cocking-Johnson, D., and White, J. G., 1984, Reconstitution of cytokeratin filaments in vitro: Further evidence for the role of nonhelical peptides in filament assembly, J. Cell Biol. 99: 1590–1597.

    Article  PubMed  CAS  Google Scholar 

  • Squire, J., 1981, The Structural Basis of Muscular Contraction, Plenum, New York.

    Book  Google Scholar 

  • Steinert, P. M., 1977, The mechanism of assembly of bovine epidermal keratin filaments in vitro, in: Biochemistry of Cutaneous Epidermal Differentiation (M. Seiji and I. A. Bernstein, eds.), University of Tokyo Press, Tokyo, pp. 444–464.

    Google Scholar 

  • Steinert, P. M., 1980, Structural changes of human epidermal α-keratin in disorders of keratinization, in: Biochemistry of Normal and Abnormal Epidermal Differentiation (I. A. Bernstein and M. Seiji, eds.), University of Tokyo Press, Tokyo, pp. 391–405.

    Google Scholar 

  • Steinert, P. M., and Idler, W. W., 1975, The polypeptide composition of bovine epidermal α-keratin, Biochem. J. 151: 603–614.

    PubMed  CAS  Google Scholar 

  • Steinert, P. M., and Steven, A. C., 1985, Splitting hairs and other intermediate filaments, Nature 316: 767.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., Idler, W. W., and Zimmerman, S. B., 1976, Self-assembly of bovine epidermal keratin filaments in vitro, J. Mol. Biol. 108: 547–567.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., Idler, W. W., Cabrai, F., Gottesman, M. G., and Goldman, R. D., 1981, In vitro assembly of homopolymer and copolymer filaments from intermediate filament subunits of muscle and fibroblastic cells, Proc. Natl. Acad. Sci. USA 78: 3692–3696.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P., Idler, W., Aynardi-Whitman, M., Zackroff, R., and Goldman, R. D., 1982, Heterogeneity of intermediate filaments assembled in vitro, Cold Spring Harbor Symp. Quant. Biol. 46: 465–474.

    Article  PubMed  Google Scholar 

  • Steinert, P. M., Rice, R. H., Roop, D. R., Trus, B. L., and Steven, A. C., 1983, Complete amino-acid sequence of a mouse epidermal keratin subunit and implications for the structure of intermediate filaments, Nature 302: 794–800.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., Parry, D. A. D., Racoosin, E. L., Idler, W. W., Steven, A. C., Trus, B. L., and Roop, D. R., 1984, The complete cDNA and deduced amino-acid sequence of a Type II mouse epidermal keratin of 60,000 Da: Analysis of sequence differences between Type I and Type II keratins, Proc. Natl. Acad. Sci. USA 78: 3692–3696.

    Article  Google Scholar 

  • Steinert, P. M., Steven, A. C., and Roop, D. R., 1985a, The molecular biology of intermediate filaments, Cell 42: 411–419.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., Parry, D. A. D., Idler, W. W., Johnson, L. D., Steven, A. C., and Roop, D. R., 1985b, Amino-acid sequences of mouse and human epidermal Type II keratins of Mr 67,000 provide a systematic basis for the structural and functional diversity of the end-domains of keratin intermediate filament subunits, J. Biol. Chem. 260: 7142–7149.

    PubMed  CAS  Google Scholar 

  • Steven, A. C., Wall, J., Hainfeld, J. F., and Steinert, P. M., 1982, Structure of fibroblastic intermediate filaments: Analysis by scanning transmission electron microscopy, Proc. Natl. Acad. Sci. USA 79: 3101–3105.

    Article  PubMed  CAS  Google Scholar 

  • Steven, A. C., Hainfeld, J. F., Trus, B. L., Wall, J. S., and Steinert, P. M., 1983a, The distribution of mass in heteropolymer intermediate filaments assembled in vitro, J. Biol. Chem. 258: 8323–8329.

    PubMed  CAS  Google Scholar 

  • Steven, A. C., Hainfeld, J. F., Trus, B. L., Wall, J. S., and Steinert, P. M., 1983b, Epidermal keratin filaments assembled in vitro have masses per unit length that scale according to average subunit mass, J. Cell Biol. 97: 1939–1944.

    Article  PubMed  CAS  Google Scholar 

  • Steven, A. C., Hainfeld, J. F., Trus, B. L., Wall, J. S., and Steinert, P. M., 1984, Radial distributions of density within macromolecular complexes determined from dark-field electron micrographs, Proc. Natl. Acad. Sci. USA 81: 6363–6367.

    Article  PubMed  CAS  Google Scholar 

  • Steven, A. C., Hainfeld, J. F., Trus, B. L., Wall, J. S., and Steinert, P. M., 1985a, Conformity and diversity in the structures of intermediate filaments, Ann. N.Y. Acad. Sci. 455: 371–380.

    Article  PubMed  CAS  Google Scholar 

  • Steven, A. C., Stall, R., Steinert, P. M., and Trus, B. L., 1985b, Computational straightening of images of curved macromolecular helices by cubic spline interpolation facilitates structural analysis by Fourier methods, Proc. 43rd Annu. Meet. EMSA, pp. 738-739.

    Google Scholar 

  • Steven, A. C., Simpson, T. A., Trus, B. L., Furcinitti, P. S., Hainfeld, J. F., and Wall, J. S., 1986, Radial density profiles of macromolecular filaments determined from dark-field STEM micrographs: Improvements in technique and some applications, Ann. N.Y. Acad. Sci., 483: 188–201.

    Article  PubMed  CAS  Google Scholar 

  • Sun, T.-T., Tseng, S. C. G., Huang, A. J.-W., Cooper, D., Schermer, A., Lynch, M. H., Weiss, R., and Eichner, R., 1985, Monoclonal antibody studies of mammalian and epithelial keratins, a review, Ann. N.Y. Acad. Sci. 455: 307–329.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, E., Crewther, W. G., Fraser, R. D. B., MacRae, T. P., and McKern, N. M., 1973, X-ray diffraction and infrared studies of an α-helical fragment from α-keratin, J. Mol. Biol. 73: 275–278.

    Article  PubMed  CAS  Google Scholar 

  • Thaler, M., Fukuyama, K., Epstein, W. L., and Fisher, K. A., 1980, Comparative studies of keratins isolated from psoriasis and atopic psoriasis, J. Invest. Dermatol. 75: 156–158.

    Article  PubMed  CAS  Google Scholar 

  • Trachtenberg, S., Steinert, P. M., Trus, B. L., and Steven, A. C., 1986, Electron microscopy and image analysis of paracrystalline bundles obtained from psoriatic epidermal keratin, in: Electron Microscopy and Alzheimer’s Disease (J. Metuzals, ed.), San Francisco Press, San Francisco, pp. 56–59.

    Google Scholar 

  • Traub, P., and Vorgias, C. E., 1983, Involvement of the N-terminal polypeptides of vimentin in the formation of intermediate filaments, J. Cell. Sci. 63: 43–67.

    PubMed  CAS  Google Scholar 

  • Trinick, J., Cooper, J., Seymour, J., and Egelman, E. H., 1986, Cryo-electron microscopy and three-dimensional reconstruction of actin filaments, J. Microsc. 141: 349–360.

    Article  PubMed  CAS  Google Scholar 

  • Tzaphlidou, M., Chapman, J. A., and Al-Samman, M. H., 1982, A study of positive staining for electron microscopy using collagen as a model system, Micron 13: 133–146.

    CAS  Google Scholar 

  • Wais-Steider, C., Eagles, P. A. M., Gilbert, D. S., and Hopkins, J. M., 1983, Structural similarities and differences among neurofilaments, J. Mol. Biol. 165: 393–400.

    Article  PubMed  CAS  Google Scholar 

  • Weeds, A., 1982, Actin-binding proteins—Regulators of cell architecture and motility, Nature 296: 811–815.

    Article  PubMed  CAS  Google Scholar 

  • Woods, E. F., and Inglis, A. S., 1984, Organization of the coiled-coils in the wool microfibril, Int. J. Biol. Macromol. 6: 277–283.

    Article  CAS  Google Scholar 

  • Wray, J., 1979, Structure of the backbone in myosin filaments of muscle, Nature 277: 37–40.

    Article  PubMed  CAS  Google Scholar 

  • Yu, L. C., Steven, A. C., Naylor, G. R. S., Gamble, R. C., and Podolsky, R. J., 1985, Distribution of mass in relaxed frog skeletal muscle and its redistribution upon activation, Biophys. J. 47: 311–321.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Steven, A.C. (1990). Intermediate Filament Structure. In: Goldman, R.D., Steinert, P.M. (eds) Cellular and Molecular Biology of Intermediate Filaments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9604-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9604-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9606-3

  • Online ISBN: 978-1-4757-9604-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics