Interaction of Intermediate Filaments with the Cell Surface

  • Kathleen J. Green
  • Jonathan C. R. Jones


The molecular architecture of the cytoskeleton-cell membrane complex has been a subject of intense investigation for more than a decade (for reviews see Weatherbee, 1981; Geiger, 1983; Jacobson, 1983; Bennett et. al., 1986). In general, the ultimate goal of these studies has been to understand how cytoskeletal proteins and membrane constituents act together in the formation and maintenance of cell shape, in directed cell movement, and in the transduction of signals across the plasma membrane. Although we are far from understanding these basic cellular functions, we have made some progress in identifying molecules that comprise the cytoskeleton-cell membrane complex. This is particularly so with respect to the actin-containing cytoskeleton, where several systems [the red blood cell (e.g., Bennett, 1985; Marchesi, 1985; Beaven et. al., 1985; Byers and Branton, 1985; Shen et. al., 1986), intestinal microvillus (e.g., Matsudaira and Burgess, 1979; Glenney et. al., 1982; Mooseker et. al., 1984), and focal contacts/adherens junctions (e.g., Burridge et. al., 1987; Geiger et. al., 1987)] have provided information regarding molecules involved in linking actin and actin-containing microfilaments (MF) with the cell membrane. Microtubule (MT)-membrane interactions have also been studied, although not as extensively as the MF system (see Dentier, 1981; Murray, 1984; Horst et. al., 1987). Until recently, less has been reported regarding interactions between intermediate filaments (IF) and the cell surface; with the exception of IF-desmosome interactions, this topic is often omitted in cytoskeleton-cell surface reviews. However, within the last several years a growing body of literature addressing an IF-cell surface association has developed.


Intermediate Filament Bullous Pemphigoid Membrane Skeleton Intermediate Filament Chick Embryo Fibroblast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnn, J., and Staehelin, L. A., 1981, The structure and function of spot desmosomes, Dermatology 20: 330–339.Google Scholar
  2. Ashton, F. T., Somlyo, A. V., and Somlyo, A. P., 1975, The contractile apparatus of vascular smooth muscle: Intermediate high voltage stereo electron microscopy, J. Mol. Biol. 98: 17–29.PubMedGoogle Scholar
  3. Beaven, G. H., Jean-Baptiste, L., Ungewickell, E., Baines, A. J., Shahbakhti, F., Pinder, J. C., Lux, S. E., and Gratzer, W. B., 1985, An examination of the soluble oligomeric complexes extracted from the red cell membrane and their relationship to the membrane skeleton, Eur. J. Cell Biol. 36: 299–306.PubMedGoogle Scholar
  4. Bennett, G. S., Fellini, J. A., and Holtzer, H., 1978, Immunofluorescent visualization of 100 Å filaments in different cultured chick embryo cell types, Differentiation 12: 71–81.PubMedGoogle Scholar
  5. Bennett, V., 1985, The membrane skeleton of human erythrocytes and its implications for more complex cells, Annu. Rev. Biochem. 54: 273–304.PubMedGoogle Scholar
  6. Bennett, V., Cohen, C. M., Lux, S. E., and Palek, J., eds., 1986, Membrane Skeletons and Cytoskeleton-Membrane Associations, UCLA Symp. Mol. Cell. Biol. 38.Google Scholar
  7. Bershadsky, A. D., Tint, I. S., and Svitkina, T. M., 1987, Association of intermediate filaments with vinculin-containing adhesion plaques of fibroblasts, Cell Motil. Cytoskel. 8: 274–283.Google Scholar
  8. Bloom, G. S., and Vallee, R. B., 1983, Association of microtubule-associated protein 2 (MAP 2) with microtubules and intermediate filaments in cultured brain cells, J. Cell Biol. 96: 1523–1531.PubMedGoogle Scholar
  9. Bologna, M., Allen, R., and Dulbecco, R., 1986, Organization of cytokeratin bundles by desmosomes in rat mammary cells, J. Cell Biol. 102: 560–567.PubMedGoogle Scholar
  10. Bradley, R. H., Ireland, M., and Maisel, H., 1979, The cytoskeleton of chick lens cells, Exp. Eye Res. 28: 441–453.PubMedGoogle Scholar
  11. Burnstock, G., 1970, Structure of smooth muscle and its innervation, in: Smooth Muscle (E. Bulbring, A. J. Brading, A. W. Jones, and T. Tomita, eds.), Arnold, London, pp. 1–69.Google Scholar
  12. Burridge, K., Molony, L., and Kelly, T., 1987, Adhesion plaques: Sites of transmembrane interaction between the extracellular matrix and the actin cytoskeleton, J. Cell Sei. Suppl. 8: 211–229.Google Scholar
  13. Byers, T. J., and Branton, D., 1985, Visualization of the protein associations in the erythrocyte membrane skeleton, Proc. Natl. Acad. Sci. USA 82: 6153–6157.PubMedGoogle Scholar
  14. Campbell, G. R., Campbell, J. C., Stewart, U. G., Smalll, J. V., and Andersen, P., 1979, Antibody staining of 10nm (100 Å) filaments in cultured smooth cardiac and skeletal muscle cells, J. Cell Sei. 37: 303–322.Google Scholar
  15. Celis, J. E., Small, J. V., Larsen, P. M., Fey, S. J., De Mey, J., and Celis, A., 1984, Intermediate filaments in monkey kidney TC7 cells: Focal centers and interrelationship with other cytoskeletal systems, Proc. Natl. Acad. Sci. USA 81: 1117–1121.PubMedGoogle Scholar
  16. Centonze, V. E., Ruben, G. C., and Sloboda, R. D., 1986, Structure and composition of the cytoskeleton of nucleated erythrocytes: III. Organization of the cytoskeleton of Bufo maranis erythrocytes as revealed by freeze-dried platinum carbon replicas and immunofluorescence microscopy, Cell Motil. Cytoskel. 6: 376–388.Google Scholar
  17. Cohen, S. M., Gorbsky, G., and Steinberg, M. S., 1983, Immunochemical characterization of related families of glycoproteins in desmosomes, J. Biol. Chem. 258: 2621–2627.PubMedGoogle Scholar
  18. Cooke, P., 1976, A filamentous cytoskeleton in vertebrate smooth muscle fibers, J. Cell Biol. 68: 539–556.PubMedGoogle Scholar
  19. Cooke, P., 1983, Organization of contractile fibers in smooth muscle, in: Cell and Muscle Motility, Volume 3 (R. Dowben and J. Shaw, eds.), Plenum Press, New York, pp. 57–77.Google Scholar
  20. Cooke, P. H., and Chase, R. H., 1971, Potassium chloride-insoluble myofilaments in vertebrate smooth muscle cells, Exp. Cell Res. 66: 417–425.PubMedGoogle Scholar
  21. Cowin, P., and Garrod, D. R., 1983, Antibodies to epithelial desmosomes show wide tissue and species cross reactivity, Nature 302: 148–150.PubMedGoogle Scholar
  22. Cowin, P., Mattey, D., and Garrod, D., 1984a, Distribution of desmosomal components in the tissues of vertebrates, studied by fluorescent antibody staining, J. Cell Sci. 66: 119–132.PubMedGoogle Scholar
  23. Cowin, P., Mattey, D., and Garrod, D., 1984b, Identification of desmosomal surface components (desmocollins) and inhibition of desmosome formation by specific Fab’, J. Cell Sei. 70: 41–60.Google Scholar
  24. Cowin, P., Franke, W. W., Grund, C., Kapprell, H.-P., and Kartenbeck, J., 1985a, The desmosome-intermediate filament complex, in: The Cell in Contact (G. Edelman and J. P. Thiery, eds.), Wiley, New York, pp. 427–460.Google Scholar
  25. Cowin, P., Kapprell, H.-P., and Franke, W. W., 1985b, The complement of desmosomal plaque proteins in different cell types, J. Cell Biol. 101: 1442–1454.PubMedGoogle Scholar
  26. Cowin, P., Kapprell, H.-P., Franke, W. W., Tamkun, J., and Hynes, R. O., 1986, Plakoglobin: A protein common to different kinds of intercellular adhering junctions, Cell 46: 1063–1073.PubMedGoogle Scholar
  27. Culp, L. A., Murray, B. A., and Rollins, B. J., 1979, Fibronectin and proteoglycans as determinants of cell-substratum adhesion, J. Supramol. Struct. 11: 401–427.PubMedGoogle Scholar
  28. Dale, B. A., Holbrook, K. A., and Steinert, P. M., 1978, Assembly of stratum corneum basic protein and keratin filaments in macrofibrils, Nature 276: 729–731.PubMedGoogle Scholar
  29. Dale, B. A., Resing, K. A., and Lonsdale-Eccles, J. D., 1985, Filaggrin: a keratin filament associated protein, Ann. N.Y. Acad. Sci. 455: 330–342.PubMedGoogle Scholar
  30. Dembitzer, H. M., Herz, F., Schermer, A., Wolley, R. C., and Koss, L. G., 1980, Desmosome development in an in vitro model, J. Cell Biol. 85: 695–702.PubMedGoogle Scholar
  31. Dentier, W. L., 1981, Microtubule-membrane interactions in cilia and flagella, Int. Rev. Cytol. 72: 1–47.Google Scholar
  32. Drochmans, P., Freudenstein, C., Wanson, J.-C., Laurent, T., Keenan, W., Stadler, J., Leloup, R., and Franke, W. W., 1978, Structure and biochemical composition of desmosomes and tonofilaments isolated from calf muzzle epidermis, J. Cell Biol. 79: 427–443.PubMedGoogle Scholar
  33. Duden, R., and Franke, W. W., 1988, Organization of desmosomal plaque proteins in cells growing at low calcium concentrations, J. Cell Biol. 107: 1037–1063.Google Scholar
  34. Ellison, J., and Garrod, D. R., 1984, Anchoring filaments of the amphibial epidermal-dermal junction traverse the basal lamina entirely from the plasma membrane of hemidesmosomes to the dermis, J. Cell Sci. 72: 163–172.PubMedGoogle Scholar
  35. Farquhar, M. G., and Palade, G. E., 1963, Junctional complexes in various epithelia, J. Cell Biol. 17: 375–412.PubMedGoogle Scholar
  36. Ferrans, V. J., and Roberts, W. C., 1973, Intermyofibrillar and nuclear-myofibrillar connections in human and canine myocardium: An ultrastructural study, J. Mol. Cell. Cardiol. 5: 247–257.PubMedGoogle Scholar
  37. Forbes, M. S., and Sperelakis, N., 1983, The membrane system and cytoskeletal elements of mammalian myocardial cells, in: Cell and Muscle Motility, Volume 3 (R. Dowben and J. Shaw, eds.), Plenum Press, New York, pp. 89–155.Google Scholar
  38. Franke, W. W., Moll, R., Schiller, D. L., Schmid, E., Kartenbeck, J., and Mueller, H., 1982, Desmoplakins of epithelial and myocardial desmosomes are immunologically and biochemically related, Differentiation 23: 115–127.PubMedGoogle Scholar
  39. Franke, W. W., Moll, R., Mueller, H., Schmid, E., Kuhn, C., Krepier, R., Artlieb, U., and Denk, H., 1983, Immunocytochemical identification of epithelium-derived human tumors with antibodies to desmosomal plaque proteins, Proc. Natl. Acad. Sci. USA 80: 543–547.PubMedGoogle Scholar
  40. Franke, W. W., Cowin, P., Schmelz, M., and Kapprell, H.-P., 1987, The desmosomal plaque and the cytoskeleton, Ciba Symp. 125: 26–44.Google Scholar
  41. Fuseler, J. W., Shay, J. W., and Feit, H., 1981, The role of intermediate filaments (10 nm) in the development and integration of the myofibrillar contractile apparatus in the embryonic mammalian heart, in: Cell and Muscle Motility, Volume 1 (R. Dowben and J. Shaw, eds.), Plenum Press, New York, pp. 205–259.Google Scholar
  42. Geiger, B., 1983, Membrane-cytoskeleton interaction, Biochim. Biophys. Acta 737: 305–341.PubMedGoogle Scholar
  43. Geiger, B., Volk, T., Volberg, T., and Bendori, R., 1987, Molecular interactions in adherens-type contacts, J. Cell Sci. Suppl. 8: 251–272.PubMedGoogle Scholar
  44. Georgatos, S.D., and Blobel, G., 1987a, Two distinct attachment sites for vimentin along the plasma membrane and the nuclear envelope in avian erythrocytes: A basis for vectorial assembly of intermediate filaments, J. Cell Biol. 105: 105–115.PubMedGoogle Scholar
  45. Georgatos, S. D., and Blobel, G., 1987b, Lamin B constitutes an intermediate filament attachment site at the nuclear envelope, J. Cell Biol. 105: 117–125.PubMedGoogle Scholar
  46. Georgatos, S. D., and Marchesi, V. T., 1985, The binding of vimentin to human erythrocyte membranes: A model system for the study of intermediate filament-membrane interactions, J. Cell Biol. 100: 1955–1961.PubMedGoogle Scholar
  47. Georgatos, S. D., Weaver, D. C., and Marchesi, V. T., 1985, Site specificity in vimentin-membrane interactions: Intermediate filament subunits associate with the plasma membrane via their head domains, J. Cell Biol. 100: 1962–1967.PubMedGoogle Scholar
  48. Georgatos, S. D., Weber, K., Geisler, N., and Blobel, G., 1987, Binding of two desmin derivatives to the plasma membrane and the nuclear envelope of avian erythrocytes: Evidence for a conserved site-specificity in intermediate filament-membrane interactions, Proc. Natl. Acad. Sci. USA 84: 6780–6784.PubMedGoogle Scholar
  49. Glenney, J. R., Osborn, M., and Weber, K., 1982, The intracellular localization of the microvillus 110K protein, a component considered to be involved in side-on membrane attachment of F-actin, Exp. Cell Res. 138: 199–205.PubMedGoogle Scholar
  50. Goldman, R. D., Hill, B. F., Steinert, P., Aynardi Whitman, M., and Zackroff, R. V., 1980, Intermediate filament-microtubule interactions: Evidence in support of a common organization center, in: Microtubules and Microtubule Inhibitors (M. De Brabander and J. De Mey, eds.), Elsevier/North-Holland, Amsterdam, pp. 91–102.Google Scholar
  51. Goldman, R. D., Goldman, A., Green, K., Jones, J., Lieska, N., and Yang, H.-Y., 1985, Intermediate filaments: Possible functions as cytoskeletal connecting links between the nucleus and the cell surface, Ann. N.Y. Acad. Sci. 455: 1–17.PubMedGoogle Scholar
  52. Goldman, R. D., Goldman, A. E., Green, K. J., Jones, J. C. R., Jones, S. M., and Yang, H.-Y., 1986, Intermediate filament networks: Organization and possible functions of a diverse group of cytoskeletal elements, J. Cell Sci. Suppl. 5: 69–97.PubMedGoogle Scholar
  53. Gorbsky, G., and Steinberg, M. S., 1981, Isolation of the intercellular glycoproteins of desmosomes, J. Cell Biol. 90: 243–248.PubMedGoogle Scholar
  54. Gorbsky, G. J., Cohen, S. M., Shida, H., Giudice, G. J., and Steinberg, M. S., 1985, Isolation of the non-glycosylated proteins of desmosomes and immunolocalization of a third plaque protein: Desmoplakin III, Proc. Natl. Acad. Sci. USA 82: 810–814.PubMedGoogle Scholar
  55. Granger, B. L., and Lazarides, E., 1982, Structural association of synemin and vimentin in avian erythrocytes revealed by immunoelectron microscopy, Cell 30: 263–275.PubMedGoogle Scholar
  56. Granger, B. L., and Lazarides, E., 1984, Expression of the intermediate filament-associated protein synemin in chicken lens cells, Mol. Cell. Biol. 4: 1943–1950.PubMedGoogle Scholar
  57. Granger, B. L., Repasky, E. A., and Lazarides, E., 1982, Synemin and vimentin are components of intermediate filaments in avian erythrocytes, J. Cell Biol. 92: 299–312.PubMedGoogle Scholar
  58. Green, K. J., and Goldman, R. D., 1986, Evidence for an interaction between the cell surface and intermediate filaments in cultured fibroblasts, Cell Motil. Cytoskel. 6: 389–405.Google Scholar
  59. Green, K. J., Talian, J. C., and Goldman, R. D., 1986, Relationship between intermediate filaments and microfilaments in cultured fibroblasts: Evidence for common foci during cell spreading, Cell Motil. Cytoskel. 6: 406–418.Google Scholar
  60. Green, K. J., Geiger, B., Jones, J. C. R., Talian, J. C., and Goldman, R. D., 1987, The relationship between intermediate filaments and microfilaments before and during the formation of desmosomes and adherens type junctions in mouse epidermal keratinocytes, J. Cell Biol. 104: 1389–1402.PubMedGoogle Scholar
  61. Green, K. J., Goldman, R. D., and Chisholm, R. L., 1988, Isolation of cDNAs encoding desmosomal plaque proteins: Evidence that bovine desmoplakins I and II are derived from two mRNAs and a single gene, Proc. Natl. Acad. Sci. USA 85: 2613–2617.PubMedGoogle Scholar
  62. Green, K. J., Parry, D. A. D., Steinert, P. M., Virata, M. L. A., Wagner, R. M., Angst, B. D., and Nilles, L. A., 1990, Structure of the human desmoplakins: implications for function in the desmosomal plaque, J. Biol. Chem. (in press).Google Scholar
  63. Hennings, H., and Holbrook, K. A., 1983, Calcium regulation of cell-cell contact and differentiation of epidermal cells in culture. An ultrastructural study, Exp. Cell Res. 143: 127–142.PubMedGoogle Scholar
  64. Hennings, H., Michael, D., Cheng, C., Steinert, P., Holbrook, K. A., and Yuspa, S. H., 1980, Calcium regulation of growth and differentiation of mouse epidermal cells in culture, Cell 19: 245–254.PubMedGoogle Scholar
  65. Herrmann, H., and Wiche, G., 1987, Plectin and IFAP-300K are homologous proteins binding to microtubule-associated proteins 1 and 2 and to the 240 kilodalton subunit of spectrin, J. Biol. Chem. 262: 1320–1325.PubMedGoogle Scholar
  66. Hirokawa, N., 1982, Cross-linker system between neurofilaments, microtubules and membranous organelles in frog axons revealed by quick-freeze, deep etching method, J. Cell Biol. 94: 129–142.PubMedGoogle Scholar
  67. Hirokawa, N., Tilney, L. B., Fujiwara, K., and Heuser, J. E., 1982, The organization of actin, myosin, and intermediate filaments in the brush border of intestinal epithelial cells, J. Cell Biol. 94: 425–443.PubMedGoogle Scholar
  68. Hirokawa, N., Cheney, R. E., and Willard, M., 1983, Location of a protein of the fodrin-spectrin-TW260/240 family in the mouse intestinal brush border, Cell 32: 953–965.PubMedGoogle Scholar
  69. Horst, C. J., Forestner, D. M., and Beharse, J. C., 1987, Cytoskeletal-membrane interactions: A stable interaction between cell surface glycoconjugates and doublet microtubules of the photoreceptor connecting cilium, J. Cell Biol. 105: 2973–2987.PubMedGoogle Scholar
  70. Hull, B. E., and Staehelin, L. A., 1979, The terminal web: A reevaluation of its structure and function, J. Cell Biol. 81: 67–82.PubMedGoogle Scholar
  71. Jacobson, B. S., 1983, Interaction of the plasma membrane with the cytoskeleton: An overview, Tissue Cell 15: 829–852.PubMedGoogle Scholar
  72. Jones, J. C. R., 1988, Characterization of a 125K glycoprotein associated with bovine epithelial desmosomes, J. Cell Sci. 89: 207–216.PubMedGoogle Scholar
  73. Jones, J. C. R., and Goldman, R. D., 1985, Intermediate filaments and the initiation of desmosome assembly, J. Cell Biol. 101: 506–517.PubMedGoogle Scholar
  74. Jones, J. C. R., and Grelling, K. A., 1989, Distribution of desmoplakin in normal cultured human keratinocytes and in basal cell carcinoma cells, Cell. Motil. Cytoskel. 13: 181–194.Google Scholar
  75. Jones, J. C. R., Goldman, A. E., Steinert, P. M., Yuspa, S., and Goldman, R. D., 1982, Dynamic aspects of the supramolecular organization of intermediate filament networks in cultured epidermal cells, Cell Motil. 2: 197–213.PubMedGoogle Scholar
  76. Jones, J. C. R., Yokoo, K. M., and Goldman, R. D., 1986a, Further analysis of pemphigus autoantibodies and their use in studies on the heterogeneity, structure, and function of desmosomes, J. Cell Biol. 102: 1109–1117.PubMedGoogle Scholar
  77. Jones, J. C. R., Yokoo, K. M., and Goldman, R. D., 1986b, A cell surface desmosome associated component: Identification of a tissue-specific cell adhesion molecule, Proc. Natl. Acad. Sci. USA 83: 7282–7286.PubMedGoogle Scholar
  78. Jones, J. C. R., Yokoo, K. M., and Goldman, R. D., 1986c, Is the hemidesmosome a half desmosome? An immunological comparison of mammalian desmosomes and hemidesmosomes, Cell Motil. Cytoskel. 6: 560–569.Google Scholar
  79. Jones, J. C. R., Vikstrom, K. L., and Goldman, R. D., 1987, Evidence for heterogeneity in the 160/165K glycoprotein components of desmosomes, J. Cell Sci. 88: 513–520.PubMedGoogle Scholar
  80. Jones, S. M., Jones, J. C. R., and Goldman, R. D., 1988, Fractionation of desmosomes and comparison of the polypeptide composition of desmosomes prepared from two bovine epithelial tissues, J. Cell. Biochem. 36: 223–236.PubMedGoogle Scholar
  81. Kapprell, H.-P., Cowin, P., Franke, W. W., Ponstingl, M., and Opferkuch, H. J., 1985. Biochemical characterization of desmosomal proteins isolated from bovine muzzle epidermis: Amino acid and carbohydrate composition, Eur. J. Cell Biol. 36: 217–229.PubMedGoogle Scholar
  82. Kapprell, H.-P., Owaribe, K., and Franke, W. W., 1988, Identification of a basic protein of Mr 75,000 as an accessory desmosomal plaque protein in stratified and complex epithelia, J. Cell Biol. 106: 1679–1692.PubMedGoogle Scholar
  83. Kartenbeck, J., Franke, W. W., Moser, J. G., and Stoffels, U., 1983, Specific attachment of desmin filament to desmosomal plaques in cardiac myocytes, EMBO J. 2: 735–742.PubMedGoogle Scholar
  84. Kartenbeck, J., Schrechheimer, K., Moll, R., and Franke, W. W., 1984, Attachment of vimentin filaments to desmosomal plaques in meningiomal cells and arachnoidal tissue, J. Cell Biol. 98: 1072–1081.PubMedGoogle Scholar
  85. Kelly, D. E., 1986, Fine structure of desmosomes, hemidesmosomes and an adepidermal globular layer in developing newt epidermis, J. Cell Biol. 28: 51–72.Google Scholar
  86. Kelly, D. E., and Kuda, A. M., 1981, Traversing filaments in desmosomal and hemidesmosomal attachments: Freeze fracture approaches toward their characterization, Anat. Rec. 199: 1–14.PubMedGoogle Scholar
  87. Kelly, D. E., and Shienvold, F. L., 1976, The desmosome: Fine structural studies with freeze fracture replication and tannic acid staining of sectioned epidermis, Cell Tissue Res. 172: 309–323.PubMedGoogle Scholar
  88. Keski-Oja, J., and Alitalo, K., 1985, Reorganization of plasma membrane-associated 36,000 dalton protein upon drug-induced redistribution of cytokeratin, Exp. Cell Res. 158: 86–94.PubMedGoogle Scholar
  89. Klatte, D. H., Kurpakus, M. A., Grelling, K. A., and Jones, J. C. R., 1989, Immunochemical characterization of hemidesmosomal components and their expression in cultured epithelial cells, J. Cell. Biol. (in press).Google Scholar
  90. Knapp, L. W., and Bunn, C. L., 1987, The experimental manipulation of keratin expression and organization in epithelial cells and somatic cell hybrids, Curr. Top. Dev. Biol. 22: 69–96.PubMedGoogle Scholar
  91. Knapp, L. W., O’Guinn, W. M., and Sawyer, R. H., 1983a, Rearrangement of the keratin cytoskeleton after combined treatment with microtubule and microfilament inhibitors, J. Cell Biol. 97: 1788–1794.PubMedGoogle Scholar
  92. Knapp, L. W., O’Guinn, W. M., and Sawyer, R. H., 1983b, Drug-induced alteration of cytokeratin organization in cultured epithelial cells, Science 219: 501–503.PubMedGoogle Scholar
  93. Krawczyk, W. S., and Wilgram, G. F., 1973, Hemidesmosome and desmosome morphogenesis during epidermal wound healing, J. Ultrastruct. Res. 45: 93–101.PubMedGoogle Scholar
  94. Langley, R. C., Jr., and Cohen, C. M., 1986, Association of spectrin with desmin intermediate filaments, J. Cell Biochem. 30: 101–109.PubMedGoogle Scholar
  95. Langley, R. C., Jr., and Cohen, C. M., 1987, Cell type-specific association between two types of spectrin and two types of intermediate filaments, Cell Motil. Cytoskel. 8: 165–173.Google Scholar
  96. Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature 283: 249–256.PubMedGoogle Scholar
  97. Lazarides, E., and Granger, B. L., 1978, Fluorescent localization of membrane sites in glycerinated chicken skeletal muscle fibers and the relationship of these sites to the protein composition of the Z-discs, Proc. Natl. Acad. Sci. USA 75: 3683–3687.PubMedGoogle Scholar
  98. Lazarides, E., and Hubbard, B.D., 1976, Immunological characterization of the subunit of the 100 Å filaments from muscle cells, Proc. Natl. Acad. Sci. USA 73: 4344–4348.PubMedGoogle Scholar
  99. Lehto, V.-P., 1983, 140,000 dalton surface glycoprotein: A plasma membrane component of the detergentresistant cytoskeletal preparation of cultured human fibroblasts, Exp. Cell Res. 143: 271–286.PubMedGoogle Scholar
  100. Lehto, V.-P., and Virtanen, I., 1983, Immunolocalization of a novel, cytoskeleton-associated polypeptide of Mr230,000 daltons (p230), J. Cell Biol. 96: 703–716.PubMedGoogle Scholar
  101. Lehto, V.-P., Virtanen, I., and Kurki, P., 1978, Intermediate filaments anchor the nuclei in nuclear monolayers of cultured human fibroblasts, Nature 272: 175–177.PubMedGoogle Scholar
  102. Lehto, V.-P., Vartio, T., and Virtanen, I., 1981, Fibronectin remains in the cytoskeletal preparations of cultured human fibroblasts, Cell Biol. Int. Rep. 5: 417–426.PubMedGoogle Scholar
  103. Leloup, R., Lawet, L., Ronveaux, M. F., Drochmans, P., and Wanson, J. C., 1979, Desmosomes and desmogenesis in the epidermis of calf muzzle, Biol. Cell 34: 137–152.Google Scholar
  104. Lentz, T. L., and Trinkaus, J. P., 1971, Differentiation of the junctional complex of surface cells in the developing Fundulus blastoderm, J. Cell Biol. 48: 455–472.PubMedGoogle Scholar
  105. LeTerrier, J.-F., Liem, R. K. H., and Shelanski, M. L., 1982, Interactions between neurofilaments and microtubule-associated proteins: A possible mechanism for intraorganellar bridging, J. Cell Biol. 95: 982–986.PubMedGoogle Scholar
  106. Mangeat, P. H., and Burridge, K., 1984, Immunoprecipitation of nonerythrocyte spectrin within live cells following microinjection of specific antibodies: Relation to cytoskeletal structures, J. Cell Biol. 98: 1363–1377.PubMedGoogle Scholar
  107. Marchesi, V. T., 1985, Stabilizing infrastructure of cell membranes, Annu. Rev. Cell Biol. 1: 531–561.PubMedGoogle Scholar
  108. Matsudaira, P. T., and Burgess, D. R., 1979, Identification and organization of the components in the isolated microvillus cytoskeleton, J. Cell Biol. 83: 667–673.PubMedGoogle Scholar
  109. Mattey, D. L., and Garrod, D. R., 1986, Calcium-induced desmosome formation in cultured kidney epithelial cells, J. Cell Sci. 85: 95–111.PubMedGoogle Scholar
  110. Miller, K., Mattey, D., Measures, H., Hopkins, C., and Garrod, D., 1987, Localization of the protein and glycoprotein component of bovine nasal epithelial desmosomes by immunoelectron microscopy, EMBO J. 6: 885–889.PubMedGoogle Scholar
  111. Moll, R., Cowin, P., Kapprell, H.-P., and Franke, W. W., 1986, Desmosomal proteins: New markers for identification and classification of tumors, Lab. Invest. 54: 4–25.PubMedGoogle Scholar
  112. Mooseker, M. S., Bonder, E. M., Conzelman, K. A., Fishkind, D. J., Howe, C. L., and Keller, T. C. S., III, 1984, Brush border cytoskeleton and integration of cellular functions, J. Cell. Biol. 99: 104s–112s.PubMedGoogle Scholar
  113. Mueller, H., and Franke, W. W., 1983, Biochemical and immunological characterization of desmoplakins I and II, the major polypeptides of the desmosomal plaque, J. Mol. Biol. 163: 647–671.PubMedGoogle Scholar
  114. Murray, J. M., 1984, Disassembly and reconstitution of a membrane-microtubule complex, J. Cell Biol. 98: 1481–1487.PubMedGoogle Scholar
  115. Mutasim, D. F., Takahashi, Y., Labib, R. S., Anhalt, G. J., Patel, H. P., and Diaz, L. A., 1985, A pool of bullous pemphigoid antigen(s) is intracellular and associated with the basal cell cytoskeleton-hemidesmosome complex, J. Invest. Dermatol. 84: 47–53.PubMedGoogle Scholar
  116. Nelson, W. J., and Lazarides, E., 1983, Expression of the β subunit of spectrin in nonerythroid cells, Proc. Natl. Acad. Sci. USA 80: 363–367.PubMedGoogle Scholar
  117. O’Keefe, E. J., Erickson, H.R., and Bennett, V., 1989, Desmoplakin I and desmoplakin II, J. Biol. Chem. 264: 8310–8318.PubMedGoogle Scholar
  118. Overton, J., 1962, Desmosome development in normal and reassociating cells in the early chick blastoderm, Dev. Biol. 4: 532–548.PubMedGoogle Scholar
  119. Pasdar, M., and Nelson, W. J., 1988a, Kinetics of desmosome assembly in Madin-Darby canine kidney epithelial cells: Temporal and spatial regulation of desmoplakin organization and stabilization upon cell-cell contact. I. Biochemical analysis, J. Cell Biol. 106: 677–685.PubMedGoogle Scholar
  120. Pasdar, M., and Nelson, W. J., 1988b, Kinetics of desmosome assembly in Madin-Darby canine kidney epithelial cells: Temporal and spatial regulation of desmoplakin organization and stabilization upon cell-cell contact. II. Morphological analysis, J. Cell Biol. 106: 687–695.PubMedGoogle Scholar
  121. Pease, D. C., and Molinari, S., 1960, Electron microscopy of muscular arteries; pial vessels of the cat and monkey, J. Ultrastruct. Res. 3: 447–468.PubMedGoogle Scholar
  122. Penn, E. J., Hobson, C., Rees, D. A., and Magee, A. I., 1987, Structure and assembly of desmosome junctions: Biosynthesis, processing, and transport of the major protein and glycoprotein components in cultured epithelial cells, J. Cell Biol. 105: 57–68.PubMedGoogle Scholar
  123. Perides, G., Scherbarth, A., Kuhn, S., and Traub, P., 1986, An electron microscopic study of the interaction in vitro of vimentin intermediate filaments with vesicles prepared from Ehrlich ascites of tumor cell lipids, Eur. J. Cell Biol. 41: 313–325.PubMedGoogle Scholar
  124. Pirbazari, M., and Kelly, D. E., 1985, Analysis of desmosomal intramembrane particle populations and cytoskeletal elements: Detergent extraction and freeze-fracture, Cell Tissue Res. 241: 341–351.PubMedGoogle Scholar
  125. Price, M., and Sanger, J. W., 1979, Intermediate filaments connect Z-discs in adult chicken muscle, J. Exp. Zool. 208: 263–269.PubMedGoogle Scholar
  126. Price, M. G., and Sanger, J. W., 1983, Intermediate filaments in striated muscle, in: Cell and Muscle Motility, Volume 3 (R. Dowben and J. Shay, eds.), Plenum Press, New York, pp. 1–40.Google Scholar
  127. Ramaekers, F. C. S., Dunia, I., Dodemont, H. J., Benedetti, E. L., and Bloemendal, H., 1982, Lenticular intermediate-sized filaments: Biosynthesis and interaction with plasma membrane, Proc. Natl. Acad. Sci. USA 79: 3208–3212.PubMedGoogle Scholar
  128. Rayns, D. G., Simpson, L. O., and Ledingham, J. M., 1969, Ultrastructure of desmosomes in mammalian intercalated discs: Appearances after lanthanum treatment, J. Cell Biol. 42: 322–326.PubMedGoogle Scholar
  129. Regnier, M., Vaigot, P., Michel, S., and Prunieras, M., 1985, Localization of bullous pemphigoid antigen (BPA) in isolated keratinocytes, J. Invest. Dermatol. 85: 187–190.PubMedGoogle Scholar
  130. Richardson, F. L., Stromer, M. H., Huiatt, T. W., and Robson, R. M., 1981, Immunoelectron and immunofluorescence localization of desmin in mature avian muscles, Eur. J. Cell Biol. 26: 91–101.PubMedGoogle Scholar
  131. Sakai, L. Y., Keene, D. R., Morris, N. P., and Burgeson, R. E., 1986, Type VII collagen is a major structural component of anchoring fibrils, J. Cell Biol. 103: 1577–1586.PubMedGoogle Scholar
  132. Schliwa, M., and van Blerkom, J., 1981, Structural interactions of cytoskeletal components, J. Cell Biol. 90: 222–235.PubMedGoogle Scholar
  133. Schmelz, M., Duden, R., Cowin, P., and Franke, W. W., 1986a, A constitutive transmembrane glycoprotein of Mr 165,000 (desmoglein) in epidermal and non-epidermal desmosomes. I. Biochemical identification of the polypeptide, Eur. J. Cell Biol. 42: 177–183.PubMedGoogle Scholar
  134. Schmelz, M., Duden, R., Cowin, P., and Franke, W. W., 1986b, A constitutive transmembrane of glycoprotein of Mr 165,000 (desmoglein) in epidermal and non-epidermal desmosomes. II. Immunolocalization and microinjection studies, Eur. J. Cell Biol. 42: 184–199.PubMedGoogle Scholar
  135. Schollmeyer, J. E., Furcht, L. T., Goll, D. E., Robson, R. M., and Stromer, M. H., 1976, Localization of contractile proteins in smooth muscle cells and in normal and transformed fibroblasts, in: Cell Motility, Vol. A (R. D. Goldman, T. Pollard, J. Rosenbaum, eds.), Cold Spring Harbor Laboratories, pp. 361-388.Google Scholar
  136. Shelanski, M. L., Leterrier, J.-F., Liem, R. K. H., 1981, Evidence for interactions between neurofilaments and microtubules, Neurosci. Res. Progr. Bull. 19: 32–43.Google Scholar
  137. Shen, B. W., Josephs, R., and Steck, T. L., 1986, Ultrastructure of the intact skeleton of the human erythrocyte membrane, J. Cell Biol. 102: 997–1006.PubMedGoogle Scholar
  138. Singer, I. I., 1979, The fibronexus: A transmembrane association of fibronectin-containing fibers and bundles of 5nm microfilaments in hamster and human fibroblasts, Cell 16: 675–685.PubMedGoogle Scholar
  139. Skerrow, C. J., and Matoltsy, A. G., 1974, Isolation of epidermal desmosomes, J. Cell Biol. 63: 515–523.PubMedGoogle Scholar
  140. Small, J. V., and Celis, J. E., 1978, Direct visualization of the 10nm (100 Å)-filament network in whole and enucleated cultured cells, J. Cell Sci. 31: 393–409.PubMedGoogle Scholar
  141. Small, J. V., and Celis, J. E., 1978, Direct visualization of the lonm (100 Å)-filament network in whole and enucleated cultured cells, J. Cell Sci. 31: 393–409.PubMedGoogle Scholar
  142. Small, J. V., and Sobieszek, A., 1977, Studies on the function and composition of the 10nm (100 Å) filaments of vertebrate smooth muscle, J. Cell Sci. 23: 243–268.PubMedGoogle Scholar
  143. Staehelin, L. A., 1974, Structure and function of intercellular junctions, Int. Rev. Cytol. 39: 191–278.PubMedGoogle Scholar
  144. Steinberg, M. S., Shida, H., Giudice, G. J., Shida, M., Patel, N. H., and Blaschuk, O. W., 1987, On the molecular organization, diversity and functions of desmosomal proteins, Ciba Symp. 125: 3–17.Google Scholar
  145. Steinert, P. M., and Roop, D. R., 1988, Molecular and cellular biology of intermediate filaments, Ann. Rev. Biochem. 57: 593–625.PubMedGoogle Scholar
  146. Talian, J., Khan, H., and Goldman, R., 1982, Microfilaments, intermediate filaments and adhesion plaques during movement of cultured fibroblasts, J. Cell Biol. 95: 295a.Google Scholar
  147. Thornell, L. E., Eriksson, A., Stigbrand, T., and Sjostrom, M., 1978, Structural proteins in cow Purkinje and ordinary ventricular fibers—A marked difference, J. Mol. Cell. Cardiol. 10: 605–616.PubMedGoogle Scholar
  148. Thornell, L. E., Eriksson, A., Johansson, B., Kjorell, U., Franke, W. W., I. Virtanen, I., and Lehto, V.-P., 1985, Intermediate filaments and associated proteins in heart Purkinje fiber: A membrane myofibril anchored cytoskeletal system, Ann. N.Y. Acad. Sci. 455: 213–240.PubMedGoogle Scholar
  149. Traub, P., 1985, Intermediate Filaments, Springer-Verlag, Berlin.Google Scholar
  150. Traub, P., Perides, G., Scherbarth, A., and Traub, U., 1985, Tenacious binding of lipids to vimentin during its isolation and purification from Ehrlich ascites tumor cells, FEBS Lett. 193: 217–221.PubMedGoogle Scholar
  151. Traub, P., Perides, G., Schimmel, H., and Scherbarth, A., 1986, Interaction in vitro of non-epithelial intermediate filament proteins with total cellular lipids, individual phospholipids and a phospholipid mixture, J. Biol. Chem. 261: 10558–10568.PubMedGoogle Scholar
  152. Traub, P., Perides, G., Kuhn, S., and Scherbarth, A., 1987, Efficient interaction of nonpolar lipids with intermediate filaments of the vimentin type, Eur. J. Cell Biol. 43: 55–64.PubMedGoogle Scholar
  153. Tsukita, S., and Tsukita, S., 1985, Desmocalmin: A calmodulin-binding high molecular weight protein isolated from desmosomes, J. Cell Biol. 101: 2070–2080.PubMedGoogle Scholar
  154. Uehara, Y., Campbell, G. R., and Bumstock, G., 1971, Cytoplasmic filaments in developing and adult vertebrate smooth muscle, J. Cell Biol. 50: 484–497.PubMedGoogle Scholar
  155. Wang, E., and Goldman, R. D., 1978, Functions of cytoplasmic fibers in intracellular movements in BHK-21 cells, J. Cell Biol. 79: 708–726.PubMedGoogle Scholar
  156. Watt, F. M., Mattey, D. L., and Garrod, D. R., 1984, Calcium-induced reorganization of desmosomal components in cultured human keratinocytes, J. Cell Biol. 99: 2211–2215.PubMedGoogle Scholar
  157. Weatherbee, J. A., 1981, Membranes and cell movement: Interactions of membranes with the proteins of the cytoskeleton, Int. Rev. Cytol. Suppl. 12: 113–176.PubMedGoogle Scholar
  158. Westgate, G. E., Weaver, A., and Couchman, J. R., 1985, Bullous pemphigoid antigen localization suggests an intracellular association with hemidesmosomes, J. Invest. Dermatol. 84: 218–224.PubMedGoogle Scholar
  159. Wiche, G., Krepier, R., Artlieb, U., Pytela, R., and Denk, H., 1983, Occurrence and immunolocalization of plectin in tissue, J. Cell. Biol. 97: 887–901.PubMedGoogle Scholar
  160. Yang, H.-Y., Lieska, N., Goldman, A. E., and Goldman, R. D., 1985, A 300,000-mol-wt. intermediate filament-associated protein in baby hamster kidney (BHK-21) cells, J. Cell Biol. 100: 620–631.PubMedGoogle Scholar
  161. Yang, H.-Y., Lieska, N., and Goldman, R. D., 1989, Intermediate filament associated proteins (IFAPS), in: Cellular and Molecular Biology of Intermediate Filaments (R. D. Goldman and P. M. Steinert, eds.), Plenum, New York, pp. 371–391.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Kathleen J. Green
    • 1
  • Jonathan C. R. Jones
    • 2
  1. 1.Department of PathologyNorthwestern University Medical SchoolChicagoUSA
  2. 2.Department of Cell Biology and AnatomyNorthwestern University Medical SchoolChicagoUSA

Personalised recommendations