The Nuclear Lamina

An Intermediate Filament Protein Structure of the Cell Nucleus
  • George N. Dessev


During interphase, eukaryotic cells are physically separated into a nuclear and a cytoplasmic compartment by a complex organelle, the nuclear envelope. The innermost layer of the nuclear envelope is a polymeric protein network (Fawcett, 1966; Fawcett, 1981) termed the nuclear lamina (NL) (Fig. 1), which is tightly associated with the nuclear pore complexes. Apposed to the cytoplasmic surface of the NL is the membrane component of the nuclear envelope, which consists of two lipid bilayers, containing intrinsic membrane proteins. It is likely that the NL is a ubiquitous feature found in all eukaryotic cells, although it is not always equally prominent by electron microscopy.


Nuclear Envelope Intermediate Filament Nuclear Membrane Xenopus Laevis Nuclear Pore Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaronson, R. P., and Blobel, G., 1974, Isolation of a nuclear pore complex in association with a lamina, Proc. Natl. Acad. Sci. USA 72: 1007–1011.CrossRefGoogle Scholar
  2. Aebi, U., Cohn, J., Buhle, L., and Gerace, L., 1986, The nuclear lamina is a meshwork of intermediate-type filaments, Nature 323: 560–564.PubMedCrossRefGoogle Scholar
  3. Allen, R. D., 1953, Fertilization and artificial activation in the egg of the surf clam, Spisula solidissima, Biol. Bull. 105: 213–239.CrossRefGoogle Scholar
  4. Arion, D., Meijer, L., Brizuella, L., and Beach, D., 1988, cdc2 is a component of the M-phase-specific histone Hl kinase: Evidence for identity with MPF, Cell 55: 371–378.PubMedCrossRefGoogle Scholar
  5. Benavente, R., and Krohne, G., 1985, Change of karyoskeleton during spermatogenesis of Xenopus: Expression of lamin LIV, a nuclear lamina protein specific for the male germ line, Proc. Natl. Acad. Sci. USA 82: 6176–6180.PubMedCrossRefGoogle Scholar
  6. Benavente, R., and Krohne, G., 1986, Involvement of nuclear lamins in postmitotic reorganization of chromatin as demonstrated by microinjection of lamin antibodies, J. Cell Biol. 100: 1847–1854.CrossRefGoogle Scholar
  7. Benavente, R., Krohne, G., and Franke, W. W., 1985, Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis, Cell 41: 177–190.PubMedCrossRefGoogle Scholar
  8. Bornens, M., and Courvalin, J. C., 1978, Isolation of nuclear envelopes with polyanions, J. Cell Biol. 76: 191–206.PubMedCrossRefGoogle Scholar
  9. Boulikas, T., 1986, Protein-protein and protein-DNA interactions in calf thymus nuclear matrix using crosslinking by ultraviolet irradiation, Biochem. Cell Biol. 64: 474–484.PubMedCrossRefGoogle Scholar
  10. Burke, B., and Gerace, L., 1986, A cell free system to study reassembly of the nuclear envelope at the end of mitosis, Cell 44: 639–652.PubMedCrossRefGoogle Scholar
  11. Burke, B., Tooze, J., and Warren, G., 1983, A monoclonal antibody which recognizes each of the nuclear lamin polypeptides in mammalian cells, EMBO J. 2: 361–367.PubMedGoogle Scholar
  12. Chai, L. S., Weinfeld, H., and Sandberg, A. A., 1974, Ultrastructural changes on the nuclear envelope during mitosis of Chinese hamster cells: A proposed model of nuclear envelope reformation, J. Natl. Cancer Inst. 53: 1033–1050.PubMedGoogle Scholar
  13. Chaly, N., Bladon, T., Setterfield, G., Little, J. E., Kaplan, J., and Brown, D. L., 1984, Changes in distribution of nuclear matrix antigens during the mitotic cell cycle, J. Cell Biol. 99: 661–670.PubMedCrossRefGoogle Scholar
  14. Chelsky, D., Olson, J. F., and Koshland, D. E., Jr., 1987, Cell cycle-dependent methyl esterification of lamin B, J. Biol. Chem. 262: 4303–4309.PubMedGoogle Scholar
  15. Chou, Y.-H., Rosevear, E., and Goldman, R., 1989, Phosphorylation and disassembly of intermediate filaments in mitotic cells, Proc. Natl. Acad. Sci. USA, 86: 1885–1889.PubMedCrossRefGoogle Scholar
  16. Dagenais, A., Bibor-Hardy, V., Laliberte, J.-F., Royal, A., and Simard, R., 1985, Detection in BHK cells of a precursor form for lamin A, Exp. Cell Res. 161: 269–276.PubMedCrossRefGoogle Scholar
  17. Davis, L. I., and Blobel, G., 1986, Identification and characterization of a nuclear pore complex protein, Cell 45: 699–709.PubMedCrossRefGoogle Scholar
  18. Dessev, G., Iovcheva, C., Tasheva, B., and Goldman, R., 1988, Protein kinase activity associated with the nuclear lamina, Proc. Natl. Acad. Sci. USA 85: 2994–2998.PubMedCrossRefGoogle Scholar
  19. Dessev, G., and Goldman, R., 1988, Meiotic breakdown of nuclear envelope in oocytes of Spisula solidissima involves phosphorylation and release of nuclear lamin, Dev. Biol. 130: 543–550.PubMedCrossRefGoogle Scholar
  20. Dessev, G., Palazzo, R., Rebhun, L., and Goldman, R., 1989, Disassembly of the nuclear envelope of Spisula oocytes in a cell free system, Dev. Biol. 131: 496–504.PubMedCrossRefGoogle Scholar
  21. Dunphy, W., Brizuella, L., Beach, D., and Newport, J., 1988, The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis, Cell 54: 423–431.PubMedCrossRefGoogle Scholar
  22. Dwyer, N., and Blobel, G., 1976, A modified procedure for the isolation of a pore complex-lamina fraction from rat liver nuclei, J. Cell Biol. 70: 581–591.PubMedCrossRefGoogle Scholar
  23. Evan, G. I., and Hancock, D. C., 1985, Studies on the interaction of the human c-myc protein with cell nuclei: p62c−myc as a member of a discrete subset of nuclear proteins, Cell 43: 253–261.PubMedCrossRefGoogle Scholar
  24. Evans, R. M., 1984, Peptide mapping of phosphorylated vimentin; evidence for a site-specific alteration in mitotic cells, J. Biol. Chem. 259: 5372–5375.PubMedGoogle Scholar
  25. Fawcett, D. W., 1966, On the occurrence of a fibrous lamina on the inner aspect of the nuclear envelope in certain cells of vertebrates, Am. J. Anat. 119: 129–146.PubMedCrossRefGoogle Scholar
  26. Fawcett, D. W., 1981, The Cell, W. B. Saunders Co., Philadelphia.Google Scholar
  27. Fey, E. G., Won, K. M., and Penman, S., 1984, Epithelial cytoskeletal frame work and nuclear matrix-intermediate filament scaffold: Three dimensional organization and protein composition, J. Cell Biol. 98: 1973–1984.PubMedCrossRefGoogle Scholar
  28. Fisher, D. Z., Chaudhary, N., and Blobel, G., 1986, cDNA sequencing of nuclear lamin A and C reveals primary and secondary structural homology to intermediate filament proteins, Proc. Natl. Acad. Sci. USA 83: 6450–6454.PubMedCrossRefGoogle Scholar
  29. Flockhart, D. A., and Corbin, J. D., 1982, Regulatory mechanisms in the control of protein kinases, CRC Crit. Rev. Biochem. 12: 133–186.PubMedCrossRefGoogle Scholar
  30. Forbes, D. J., Kirschner, M. W., and Newport, J. W., 1983, Spontaneous formation of nucleus-like structures around bacteriophage DNA microinjected into Xenopus eggs, Cell, 34: 13–23.PubMedCrossRefGoogle Scholar
  31. Franke, W. W., 1987, Nuclear lamins and cytoplasmic intermediate filament proteins: A growing multigene family, Cell 48: 3–4.PubMedCrossRefGoogle Scholar
  32. Franke, W. W., Scheer, U., Krohne, G., and Jarasch, E., 1981, The nuclear envelope and the architecture of the nuclear periphery, J. Cell Biol. 91: 39s–50s.PubMedCrossRefGoogle Scholar
  33. Friedman, D. L., and Ken, R., 1988, Insulin stimulates incorporation of 32Pi into nuclear lamins A and C in quiescent BHK-21 cells, J. Biol. Chem. 263: 1103–1106.PubMedGoogle Scholar
  34. Galcheva-Gargova, Z., Petrov, P., and Dessev, G., 1982, Effect of chromatin decondensation on the intranuclear matrix, Eur. J. Cell Biol. 28: 155–159.PubMedGoogle Scholar
  35. Galcheva-Gargova, Z., and Dessev, G., 1987, Crosslinking of DNA to nuclear lamina proteins by UV-irradiation in vivo, J. Cell Biochem. 34: 163–168.PubMedCrossRefGoogle Scholar
  36. Gautier, J., Norbury, C., Lohka, M., Nurse, P., and Maller, J., 1988, Purified maturation promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+, Cell 54: 433–439.PubMedCrossRefGoogle Scholar
  37. Gehring, W. J., 1985, The homeo box: A key to the understanding of development? Cell 40: 3–5.PubMedCrossRefGoogle Scholar
  38. Geisler, N., and Weber, K., 1988, Phosphorylation of desmin in vitro inhibits formation of intermediate filaments: Identification of three kinase A sites in the aminoterminal head domain, EMBO J. 7: 15–20.PubMedGoogle Scholar
  39. Georgatos, S. D., and Blobel, G., 1987, Two distinct attachment sites for vimentin along the plasma membrane and the nuclear envelope in avian erythrocytes: A basis for a vectorial assembly of intermediate filaments, J. Cell Biol. 105: 105–115.PubMedCrossRefGoogle Scholar
  40. Georgatos, S. D., and Blobel, G., 1987b, Lamin B constitutes an intermediate filament attachment site at the nuclear envelope, J. Cell Biol. 105: 117–125.PubMedCrossRefGoogle Scholar
  41. Georgatos, S. D., Weber, K., Geisler, N., and Blobel, G., 1987, Binding of two desmin derivatives to the plasma membrane and the nuclear envelope of avian erythrocytes: Evidence for a conserved site-specificity in intermediate filament-membrane interactions, Proc. Natl. Acad. Sci. USA 84: 6780–6784.PubMedCrossRefGoogle Scholar
  42. Gerace, L., 1986, Nuclear lamina and organization of nuclear architecture, Trends Biochem. Sci. 11: 443–446.CrossRefGoogle Scholar
  43. Gerace, L., and Blobel, G., 1980, The nuclear lamina is depolymerized during mitosis, Cell 19: 277–287.PubMedCrossRefGoogle Scholar
  44. Gerace, L., and Blobel, G., 1982, Nuclear lamina and the structural organization of the nuclear envelope, Cold Spring Harbor Symp. Quant. Biol. 46: 967–978.PubMedCrossRefGoogle Scholar
  45. Gerace, L., Ottaviano, Y., and Kondor-Koch, C., 1982, Identification of a major polypeptide of the nuclear pore complex, J. Cell Biol. 95: 826–837.PubMedCrossRefGoogle Scholar
  46. Gerace, L., Comeau, C., and Benson, M., 1984, Organization and modulation of nuclear lamina structure, J. Cell Sei. Suppl. 1, 137–160.CrossRefGoogle Scholar
  47. Goldman, A. E., Maul, G., Steinert, P. M., Yang, H.-Y., and Goldman, R., 1986, Keratin-like proteins that coisolate with intermediate filaments of BHK-21 cells are nuclear lamins, Proc. Natl. Acad. Sei. USA 83: 3839–3843.CrossRefGoogle Scholar
  48. Goldman, R. D., Goldman, A. E., Green, K. J., Jones, J. C. R., Jones, S. M., and Yang, H.-Y., 1986, Intermediate filament networks: Organization and possible functions of a diverse group of cytoskeletal elements, J. Cell Sci. Suppl. 5, 69–97.CrossRefGoogle Scholar
  49. Guilly, M. N., Bensussan, A., Bourge, J. F., Bornens, M., and Courvalin, J. C., 1987, A human T lympho-blastic cell line lacks lamins A and C, EMBO J. 6: 3795–3799.PubMedGoogle Scholar
  50. Hancock, R., 1982, Topological organization of interphase DNA: The nuclear matrix and other skeletal structures, Biol. Cell 46: 105–122.Google Scholar
  51. Hancock, R., and Boulikas, T., 1982, Functional organization in the nucleus, Int. Rev. Cytol, 79: 165–214.PubMedCrossRefGoogle Scholar
  52. Hancock, R., and Hughes, M. E., 1982, Organization of DNA in the interphase nucleus, Biol. Cell 44: 201–212.Google Scholar
  53. Havre, P., and Evans, D., 1983, Disassembly and characterization of the nuclear pore complex-lamina fraction from bovine liver nuclei, Biochemistry 22: 2852–2860.PubMedCrossRefGoogle Scholar
  54. Hochstrasser, M., Mathog, D., Gruenbaum, Y., Saumweber, H., and Sedat, J. W., 1986, Spacial organization of chromosomes in the salivary gland of Drosophila melanogaster, J. Cell Biol. 102: 112–123.PubMedCrossRefGoogle Scholar
  55. Hornbeck, P., Huang, K. P., and Paul, W. E., 1988, Lamin B is rapidly phosphorylated in lymphocytes after activation of protein kinase C, Proc. Natl. Acad. Sci. USA 85: 2279–2283.PubMedCrossRefGoogle Scholar
  56. Hughes, A., 1952, The Mitotic Cycle: The Cytoplasm and Nucleus during Interphase and Mitosis, Academic Press, New York, p. 79.Google Scholar
  57. Hunter, T., and Cooper, J. A., 1985, Protein tyrosine kinases, Ann. Rev. Biochem. 54: 897–930.PubMedCrossRefGoogle Scholar
  58. Inagaki, M., Nishi, Y., Nishizawa, K., Matsuyama, M., and Sato, C., 1987, Site-specific phosphorylation induces disassembly of vimentin filaments in vitro, Nature 328: 649–652.PubMedCrossRefGoogle Scholar
  59. Jones, J. C. R., Goldman, A. E., Yang, H.-Y., and Goldman, R., 1985, The organizational fate of intermediate filament networks in two epithelial cell types during mitosis, J. Cell Biol. 100: 93–102.PubMedCrossRefGoogle Scholar
  60. Jones, K. W., 1970, Chromosomal and nuclear location of mouse satellite DNA in individual cells, Nature 225: 912–915.PubMedCrossRefGoogle Scholar
  61. Katsuma, Y., Swierenga, S. H. H., Marceau, N., and French, S. W., 1987, Connections of intermediate filaments with the nuclear lamina and the cell periphery, Biol. Cell 59: 193–204.PubMedCrossRefGoogle Scholar
  62. Kaufmann, S. H., Gibson, W., and Shaper, J. H., 1983, Characterization of the major polypeptides of the rat liver nuclear envelope, J. Biol. Chem. 258: 2710–2719.PubMedGoogle Scholar
  63. Krachmarov, C., Tasheva, B., Markov, D., Hancock, R., and Dessev, G., 1986a, Isolation and characterization of nuclear lamina from Ehrlich ascites tumor cells, J. Cell. Biochem. 30: 351–359.PubMedCrossRefGoogle Scholar
  64. Krachmarov, C., Iovcheva, C., Hancock, R., and Dessev, G., 1986b, Association of DNA with the nuclear lamina in Ehrlich ascites tumor cells, J. Cell Biochem. 31: 59–74.PubMedCrossRefGoogle Scholar
  65. Krachmarov, C., and Dessev, G., 1988, Reversible contractility of the nuclear lamina, Comptes rendus de l’Academy Bulgare des Sciences 41: 119–122.Google Scholar
  66. Krohne, G., and Benavente, R., 1986a, The nuclear lamins: A multigene family of proteins in evolution and differentiation, Exp. Cell Res. 162: 1–10.PubMedCrossRefGoogle Scholar
  67. Krohne, G., and Benavente, R., 1986b, A pool of soluble nuclear lamins in eggs and embryos of Xenopus laevis, in: Nucleocytoplasmic transport (R. Peters and M. Trendelenburg, eds.), Springer-Verlag, Berlin, pp. 135–141.CrossRefGoogle Scholar
  68. Krohne, G., Dabauvalle, M.-C., and Franke, W. W., 1981, Cell type-specific differences in protein composition of nuclear pore complex-lamina structures in oocytes and erythrocytes of Xenopus laevis, J. Mol. Biol. 151: 121–141.PubMedCrossRefGoogle Scholar
  69. Krohne, G., Wolin, S. L., McKeon, F. D., Franke, W. W., and Kirschner, M. W., 1987, Nuclear lamin LI of Xenopus laevis: cDNA cloning, aminoacid sequence and binding specificity of a member of the lamin B subfamily, EMBO J. 6: 3801–3808.PubMedGoogle Scholar
  70. Laliberte, J.-F., Dagenais, A., Filion, M., Bibor-Hardy, V., Simard, R., and Royal, A., 1984, Identification of distinct messenger RNAs for nuclear lamin C and a putative precursor of nuclear lamin A, J. Cell Biol. 98: 980–985.PubMedCrossRefGoogle Scholar
  71. Laskey, R. A., Mills, A. D., and Morris, N. R., 1977, Assembly of SV40 chromatin in a cell-free system from Xenopus eggs, Cell 10: 237–243.PubMedCrossRefGoogle Scholar
  72. Lebel, S., and Raymond, Y., 1984, Lamin B from rat nuclei exists both as a lamina protein and as an intrinsic membrane protein, J. Biol. Chem. 259: 2693–2696.PubMedGoogle Scholar
  73. Lebel, S., and Raymond, Y., 1987, Lamin A is not synthesized as a larger precursor polypeptide, Biochem. Biophys. Res. Commun. 149: 417–423.PubMedCrossRefGoogle Scholar
  74. Lebel, S., Lampron, C., Royal, A., and Raymond, Y., 1987, Lamins A and C appear during retinoic acid-induced differentiation of mouse embryonal carcinoma cells, J. Cell Biol. 105: 1099–1104.PubMedCrossRefGoogle Scholar
  75. Lebkowski, J., and Laemmli, U., 1982, Non-histone proteins and long-range organization of HeLa interphase DNA, J. Mol. Biol. 156: 325–344.PubMedCrossRefGoogle Scholar
  76. Lehner, C. F., Furstenberger, G., Eppenberger, H. M., and Nigg, E. A., 1986a, Biogenesis of the nuclear lamina: In vivo synthesis and processing of nuclear protein precursors, Proc. Natl. Acad. Sci. USA 83: 2096–2099.PubMedCrossRefGoogle Scholar
  77. Lehner, C. F., Kurer, V., Eppenberger, H. M., and Nigg, E. A., 1986b, The nuclear lamin protein family in higher vertebrates: Identification of quantitatively minor lamin protein by monoclonal antibodies, J. Biol. Chem. 261: 13293–13301.PubMedGoogle Scholar
  78. Lehner, C. F., Stick, R., Eppenberger, H. M., and Nigg, E. A., 1987, Differential expression of nuclear lamin protein during chicken development, J. Cell Biol. 105: 577–587.PubMedCrossRefGoogle Scholar
  79. Lohka, M. J., Hayes, M. K., and Mailer, J. L., 1988, Purification of maturation-promoting factor, an intra-cellular regulator of early mitotic events, Proc. Natl. Acad. Sci. USA 85: 3009–3013.PubMedCrossRefGoogle Scholar
  80. McKeon, F. D., Tuffanelli, D. L., Kobayashi, S., and Kirschner, M. W., 1984, The redistribution of a conserved nuclear envelope protein during the cell cycle suggests a pathway for chromosome condensation, Cell 36: 83–96.PubMedCrossRefGoogle Scholar
  81. McKeon, F. D., Kirschner, M. W., and Caput, D., 1986, Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins, Nature 319: 463–468.PubMedCrossRefGoogle Scholar
  82. Mailer, J. L., 1985, Regulation of amphibian oocyte maturation, Cell Differ. 16: 211–221.CrossRefGoogle Scholar
  83. Masui, Y., and Clarke, H. J., 1979, Oocyte maturation, Int. Rev. Cytol. 57: 185–282.PubMedCrossRefGoogle Scholar
  84. Maul, G. G., 1977a, Nuclear pore complexes: Elimination and reconstitution during mitosis, J. Cell Biol. 74: 492–500.PubMedCrossRefGoogle Scholar
  85. Maul, G. G., 1977b, The nuclear and the cytoplasmic pore complex: Structure, dynamics, distribution and evolution, Int. Rev. Cytol. Suppl. 6, 75–186.Google Scholar
  86. Maul, G. G., 1980, Determination of newly synthesized and phosphorylated nuclear proteins in mass-isolated germinal vesicle of Spisula solidissima, Exp. Cell Res., 129: 431–438PubMedCrossRefGoogle Scholar
  87. Maul, G. G., and Avdalovic, N., 1980, Nuclear envelope proteins from Spisula solidissima germinal vesicles, Exp. Cell Res. 130: 229–240.PubMedCrossRefGoogle Scholar
  88. Maul, G. G., Baglia, F. A., Newmeyer, D. D., and Ohlsson-Wilhelm, B. M., 1984, The major 67,000 molecular weight protein of the clam oocyte nuclear envelope is lamin-like, J. Cell Sci. 67: 69–85.PubMedGoogle Scholar
  89. Miake-Lye, R., and Kirschner, M. W., 1985, Induction of early mitotic events in a cell-free system, Cell 41: 165–175.PubMedCrossRefGoogle Scholar
  90. Newport, J., 1987, Nuclear reconstitution in vitro: Stages of assembly around protein-free DNA, Cell 48: 205–217.PubMedCrossRefGoogle Scholar
  91. Newport, J., and Spann, T., 1987, Disassembly of the nucleus in mitotic extracts: Membrane vesicularization, lamin disassembly, and chromosome condensation are independent processes, Cell 48: 219–230.PubMedCrossRefGoogle Scholar
  92. Ottaviano, Y., and Gerace, L., 1985, Phosphorylation of the nuclear lamins during interphase and mitosis, J. Biol. Chem. 260: 624–632.PubMedGoogle Scholar
  93. Paddock, S. W., and Albrecht-Buehler, G., 1986, Distribution of microfilament bundles during rotation of the nucleus in 3T3 cells treated with monensin, Exp. Cell Res. 163: 525–538.PubMedCrossRefGoogle Scholar
  94. Pardue, M. L., and Gall, J. G., 1970, Chromosome localization of mouse satellite DNA, Science 168: 1356–1358.PubMedCrossRefGoogle Scholar
  95. Parry, D. A. D., Conway, J. F., Goldman, A. E., Goldman, R. D., and Steinert, P. M., 1987, Nuclear lamin proteins: Common structures for paracrystalline, filamentous and lattice forms, Int. J. Biol. Macromol. 9: 137–145.CrossRefGoogle Scholar
  96. Puvion-Dutilleul, F., and Puvion, E., 1980, New aspects of intranuclear structures following partial decondensation of chromatin: A cytochemical and high-resolution autoradiographic study, J. Cell Sci. 42: 305–321.PubMedGoogle Scholar
  97. Senior, A., and Gerace, L., 1988, Integral membrane proteins specific to the inner nuclear membrane and associated with the nuclear lamina, J. Cell Biol. 107: 2029–2036.PubMedCrossRefGoogle Scholar
  98. Shelton, K. R., Higgins, L. L., Cochran, D. L., Ruffolo, J. J., Jr., and Egle, P. M., 1980, Nuclear lamins of erythrocyte and liver, J. Biol. Chem. 255: 10978–10983.PubMedGoogle Scholar
  99. Skaer, R. J., Whytock, S., and Emmines, J. P., 1976, Intracellular electrophoresis of chromatin of living cells, J. Cell Sci. 21: 470–496.Google Scholar
  100. Smith, L. D., and Eckert, R. E., 1971, The interaction of steroids with Rana pipiens oocytes in the induction of maturation, Dev. Biol. 25: 233–247.Google Scholar
  101. Steinert, P. M., and Roop, D. R., 1988, Molecular and cellular biology of intermediate filaments, Annu. Rev. Biochem. 57: 539–625.CrossRefGoogle Scholar
  102. Stewart, C., and Burke, B., 1987, Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin B, Cell 51: 383–392.PubMedCrossRefGoogle Scholar
  103. Stick, R., 1988, cDNA cloning of the developmentally regulated lamin LIII of Xenopus laevis, EMBO J. 7: 3189–3197.PubMedGoogle Scholar
  104. Stick, R., and Hausen, P., 1985, Changes in the nuclear lamina composition during development of Xenopus laevis, Cell 41: 191–200.PubMedCrossRefGoogle Scholar
  105. Stick, R., and Schwartz, H., 1983, Disappearance and reformation of the nuclear lamina structure during specific stages of meiosis in oocytes, Cell 33: 949–958.PubMedCrossRefGoogle Scholar
  106. Suprynowicz, F. A., and Gerace, L., 1986, A fractionated cell-free system for analysis of prophase nuclear disassembly, J. Cell Biol. 103: 2073–2981.PubMedCrossRefGoogle Scholar
  107. Wedrychowski, A., Steven Ward, W., Schmidt, W. N., and Hnilica, L. S., 1985, Chromium-induced cross-linking of nuclear proteins and DNA, J. Biol. Chem. 260: 7150–7155.PubMedGoogle Scholar
  108. Wilson, K. L., and Newport, J., 1988, A trypsin-sensitive receptor on membrane vesicles is required for nuclear envelope formation in vitro, J. Cell Biol. 107: 57–68.PubMedCrossRefGoogle Scholar
  109. Wolin, S. L., Krohne, G., and Kirschner, M. W., 1987, A new lamin in Xenopus somatic tissues displays strong homology to human lamin A, EMBO J. 6: 3809–3818.PubMedGoogle Scholar
  110. Wu, M., and Gerhart, J. C., 1980, Partial purification and characterization of the maturation-promoting factor from eggs of Xenopus laevis, Dev. Biol. 79: 465–477.PubMedCrossRefGoogle Scholar
  111. Zeeman, E. C., 1976, Catastrophe theory, Sci. Am. 234:(4)65–83.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • George N. Dessev
    • 1
  1. 1.Department of Cell, Molecular, and Structural BiologyNorthwestern University Medical SchoolChicagoUSA

Personalised recommendations