The Proteins of Hair and Other Hard α-Keratins

  • J. M. Gillespie

Abstract

The mammalian hard α-keratins constitute a homologous group of epidermal appendages comprising wool, hair, hoof, the horns of cattle, goats, sheep, and rhinoceros, claw, baleen, and the quills of porcupine, echidna, and hedgehog. Although of common embryological origin and sharing a common structure, they cover a very large range in amino acid compositions. Some examples are given in Table I where it can be seen that there is a large variation in the proportion of nearly every amino acid. This precludes a simple compositional definition for hard α-keratins and instead requires a detailed list of chemical and structural characteristics, which can be summarized as follows:
  1. 1.

    Epidermal appendages, usually cystine-rich, which are insoluble in usual protein solvents except at extremes of pH, due primarily to an extensive network of disulfide bonding.

     
  2. 2.

    After solubilization following fission of disulfide bonds, hard α-keratins yield two or three characteristic and unique families of constituent proteins, named because of peculiarities in composition, low-sulfur, high-sulfur, and high-tyrosine proteins.

     
  3. 3.

    X-ray diffraction analysis and electron microscopy show that these tissues have a unique arrangement of the constituent proteins, comprising intermediate filaments (IFs) traditionally termed microfibrils, usually aligned in the growth direction, surrounded by a nonfilamentous matrix of IF-associated protein (IFAP).

     

Keywords

Hair Follicle Hair Growth Human Hair Wool Fiber Keratin Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmadi, B., Boston, N. M., Dobb, M. G., and Speakman, P. T., 1980, Possible four chain repeating unit in the microfibril of wool, in: Fibrous Proteins: Scientific, Industrial and Medical Aspects, Volume 2 (D. A. D. Parry and L. K. Creamer, eds.), Academic Press, New York, pp. 161–166.Google Scholar
  2. Amiya, T., Kawaguchi, A., Miyamoto, T., and Inagaki, H., 1980, Ordered structure of high-glycine proteins from reduced Merino wool, Sen i Gakkaishi 36: T479–T483.CrossRefGoogle Scholar
  3. Astbury, W. T., and Street, A., 1931, X-ray studies of the structure of hair, wool and related fibers, Philos. Trans. R. Soc. London Ser. A 230: 75–101.Google Scholar
  4. Beach, L. R., Spencer, D., Randall, P. J., and Higgins, T. J. V., 1985, Transcriptional and post-transcriptional regulation of storage protein gene expression in sulfur-deficient pea seeds, Nucleic Acids Res. 13: 999–1013.PubMedCrossRefGoogle Scholar
  5. Birbeck, M. S. C., and Mercer, E. H., 1957, The electron microscopy of the human hair follicle, J. Biophys. Biochem. Cytol. 3: 203–214.PubMedCrossRefGoogle Scholar
  6. Bradfield, R. B., Bailey, M. A., and Margen, S., 1967, Morphological changes in human scalp hair roots during deprivation of protein, Science 157: 438–439.PubMedCrossRefGoogle Scholar
  7. Chapman, R. E., and Gemmell, R. T., 1971, Stages in the formation and keratinization of the cortex of the wool fiber, J. Ultrastruct. Res. 36: 342–354.PubMedCrossRefGoogle Scholar
  8. Chapman, R. E., and Gemmell, R. T., 1973, An ultrastructural autoradiographic study of the incorporation of [35S]cystine in the wool fiber cortex, J. Cell Sci. 13: 811–819.PubMedGoogle Scholar
  9. Conway, J. F., Fraser, R. D. B., MacRae, T. P., and Parry, D. A. D., 1989, Protein chains in wool and epidermal keratin IF: Structural features and spatial arrangement, in: The Biology of Wool and Hair (G. E. Rogers, P. J. Reis, K. A. Ward, and R. C. Marshall, eds.), Chapman & Hall, London, pp. 127–144.Google Scholar
  10. Danks, D.M., 1983, Copper deficiency and the skin, in: Biochemistry and Physiology of the Skin, Volume 2 (L. A. Goldsmith, ed.), Oxford University Press, London, pp. 1102–1112.Google Scholar
  11. Darskus, R. L., Gillespie, J. M., and Lindley, H., 1969, The possibility of common amino acid sequences in high-sulfur protein fractions from wool, Aust. J. Biol. Sci. 22: 1197–1204.Google Scholar
  12. Dhouailly, D., 1973, Dermo-epidermal interactions between birds and mammals: Differentiation of cutaneous appendages, J. Embryol. Exp. Morphol. 30: 587–603.PubMedGoogle Scholar
  13. Dopheide, T. A. A., 1973, The primary structure of a protein component, 0.62, rich in glycine and aromatic amino acids, obtained from wool keratin, Eur. J. Biochem. 34: 120–124.PubMedCrossRefGoogle Scholar
  14. Dowling, L. M., Gough, K. H., Inglis, A. S., and Sparrow, L. G., 1979, Comparison of some microfibrillar proteins from wool, Aust. J. Biol. Sci. 32: 437–442.Google Scholar
  15. Dowling, L. M., Parry, D. A. D., and Sparrow, L. G., 1983, Structural homology between hard α-keratin and the intermediate filament proteins, desmin and vimentin, Biosci. Rep. 3: 73–78.PubMedCrossRefGoogle Scholar
  16. Dowling, L. M., Crewther, W. G., and Inglis, A. S., 1986, The primary structure of component 8c-1, a sub-unit protein of intermediate filaments in wool keratin, Biochem. J. 236: 695–703.PubMedGoogle Scholar
  17. Downes, A. M., Sharry, L. F., and Rogers, G. E., 1963, Separate synthesis of fibrillar and matrix proteins in the formation of keratin, Nature 199: 1059–1061.PubMedCrossRefGoogle Scholar
  18. Downes, A. M., Ferguson, K. A., Gillespie, J. M., and Harrap, B. S., 1966, A study of the proteins of the wool follicle, Aust. J. Biol. Sci. 19: 319–333.Google Scholar
  19. Downes, A. M., Reis, P. J., and Hemsley, J. A., 1976, Proteins and amino acids for wool growth, in: From Plant to Animal Protein, Reviews in Rural Science No. 2, University of New England, pp. 143-148.Google Scholar
  20. Ebling, F. J., 1965, Systemic factors affecting the periodicity of hair follicles, in: Biology of the Skin and Hair Growth (A. G. Lyne and B. F. Short, eds.), Angus & Robertson, Sydney, pp. 507–524.Google Scholar
  21. Ebling, F. J., and Hale, P. A., 1983, Hormones and hair growth, in: Biochemistry and Physiology of the Skin, Volume 1 (L. A. Goldsmith, ed.), Oxford University Press, London, pp. 522–552.Google Scholar
  22. Eldjarn, L., and Pihl, A., 1957, The equilibrium constants and oxidation-reduction potentials of some thiol-disulfide systems, J. Am. Chem. Soc. 79: 4589–4593.CrossRefGoogle Scholar
  23. Elleman, T. C., 1972, The amino acid sequence of protein SCMK-B2A from the high-sulfur fraction of wool keratin, Biochem. J. 130: 833–845.PubMedGoogle Scholar
  24. Fraser, I. E. B., 1965, Cellular proliferation in the wool follicle bulb, in: Biology of the Skin and Hair Growth (A. G. Lyne and B. F. Short, eds.), Angus & Robertson, Sydney, pp. 427–445.Google Scholar
  25. Fraser, R. D. B., and MacRae, T. P., 1980, Molecular structure and mechanical properties of keratins, in: The Mechanical Properties of Biological Material (J. F. V. Vincent and J. D. Currey, eds.), Society for Experimental Biology Symposium 34, pp. 211–246.Google Scholar
  26. Fraser, R. D. B., and MacRae, T. P., 1983, The structure of the α-keratin microfibril, Biosci. Rep. 3: 517–525.PubMedCrossRefGoogle Scholar
  27. Fraser, R. D. B., MacRae, T. P., and Rogers, G. E., 1972, Keratins, Their Composition, Structure and Biosynthesis, Thomas, Springfield, Ill.Google Scholar
  28. Fraser, R. D. B., Gillespie, J. M., and MacRae, T. P., 1973, Tyrosine-rich proteins in keratins, Comp. Biochem. Physiol. 44B: 943–947.Google Scholar
  29. Fraser, R. D. B., MacRae, T. P., Sparrow, L. G., and Parry, D. A. D., 1988, Disulfide bonding in α-keratin, Int. J. Biol. Macromol. 10: 106–112.CrossRefGoogle Scholar
  30. Frenkel, M. J., and Gillespie, J. M., 1976, The proteins of the keratin component of birds’ beaks, Aust. J. Biol. Sci. 29: 467–479.PubMedGoogle Scholar
  31. Friedman, M., and Orraca-Tetteh, R., 1978, Hair as an index of protein malnutrition, in: Nutritional Improvement of Food and Feed Proteins (M. Friedman, ed.), Plenum Press, New York, pp. 132–154.CrossRefGoogle Scholar
  32. Gillespie, J. M., 1962, The isolation of the high-sulfur protein SCMKB1, Aust. J. Biol. Sci. 15: 572–588.Google Scholar
  33. Gillespie, J. M., 1963, The isolation of the high-sulfur protein SCMKB2, Aust. J. Biol. Sci. 16: 241–251.Google Scholar
  34. Gillespie, J. M., 1968, The dietary regulation of the synthesis of hair keratin, in: Symposium on Fibrous Proteins (W. G. Crewther, ed.), Butterworths, Australia, pp. 362–363.Google Scholar
  35. Gillespie, J. M., 1983, The structural proteins of hair: Isolation characterization, and regulation of biosynthesis, in: Biochemistry and Physiology of the Skin, Volume 1 (L. A. Goldsmith, ed.), Oxford University Press, London, pp. 475–510.Google Scholar
  36. Gillespie, J. M., and Broad, A., 1972, Ultra-high-sulfur proteins in the hairs of the artiodactyla, Aust. J. Biol. Sci. 25: 139–145.Google Scholar
  37. Gillespie, J. M., and Marshall, R. C., 1977, Proteins of the hard keratins of echidna, hedgehog, rabbit, ox and man, Aust. J. Biol. Sci. 30: 401–409.PubMedGoogle Scholar
  38. Gillespie, J. M., and Marshall, R. C., 1983, A comparison of the proteins of normal and trichothiodystrophic hair, J. Invest. Dermatol. 80: 195–202.PubMedCrossRefGoogle Scholar
  39. Gillespie, J. M., and Marshall, R. C., 1989, Effect of mutations on the proteins of wool and hair, in: The Biology of Wool and Hair (G. E. Rogers, P. J. Reis, K. A. Ward, and R. C. Marshall, eds.), Chapman & Hall, London, pp. 257–273.Google Scholar
  40. Gillespie, J. M., and Reis, P. J., 1966, The dietary-regulated biosynthesis of high-sulfur wool proteins, Biochem. J. 98: 669–677.PubMedGoogle Scholar
  41. Gillespie, J. M., Frenkel, M. J., and Reis, P. J., 1980, Changes in the matrix proteins of wool and mouse hair following the administration of depilatory compounds, Aust. J. Biol. Sei. 33: 125–136.Google Scholar
  42. Gillespie, J. M., Marshall, R. C., and Woods, E. F., 1982a, A comparison of lizard claw keratin proteins with those of avian beak and claw, J. Mol. Evol. 18: 121–129.PubMedCrossRefGoogle Scholar
  43. Gillespie, J. M., Marshall, R. C., Moore, G. P. M., Panaretto, B. A., and Robertson, D. M., 1982b, Changes in the proteins of wool following treatment of sheep with epidermal growth factor, J. Invest. Dermatol. 79: 197–200.PubMedCrossRefGoogle Scholar
  44. Gillespie, J. M., Marshall, R. C., and Rogers, M., 1988, Trichothiodystrophy: Biochemical and Clinical Studies, Australas. J. Dermatol. 29: 85–93.PubMedCrossRefGoogle Scholar
  45. Gregg, K., Wilton, S. D., Parry, D. A. D., and Rogers, G. E., 1984, A comparison of genomic coding sequences for feather and scale keratins: Structural and evolutionary implications, EMBO J. 3: 175–178.PubMedGoogle Scholar
  46. Hardy, M. H., 1969, The differentiation of hair follicles and hairs in organ culture, in: Advances in Biology of the Skin, IX, Hair Growth (W. Montagna and R. L. Dobson, eds.), Pergamon Press, New York, pp. 35–60.Google Scholar
  47. Hewish, D. R., Robinson, C. P., and Sparrow, L. G., 1984, Monoclonal antibody studies of α-keratin low-sulfur proteins, Aust. J. Biol. Sci. 37: 17–23.PubMedGoogle Scholar
  48. Inglis, A. S., Gillespie, J. M., Roxburgh, C. M., Whittaker, L. A., and Casagranda, F., 1988, Sequence of a glycine-rich protein from lizard claw: Unusual dilute acid and heptafluorobutyric acid cleavages, in: Protein: Structure and Function (J. L. L’Italien, ed.), Plenum Press, New York, pp. 767–774.Google Scholar
  49. IUPAC-IUB Tentative Rules, 1969, A one letter notation for amino acid sequence, Biochem. J. 113: 1–4.Google Scholar
  50. Johnson, E., 1965, Inherent rhythms of activity in the hair follicle and their control, in: Biology of the Skin and Hair Growth (A. G. Lyne and B. F. Short, eds.), Angus & Robertson, Sydney, pp. 491–505.Google Scholar
  51. Jones, L. N., 1976, Studies on microfibrils from a-keratin, Biochim. Biophys. Acta 446: 515–524.PubMedCrossRefGoogle Scholar
  52. Jones, L. N., and Pope, F. M., 1985, Isolation of intermediate filament assemblies from human hair follicles, J. Cell Biol. 101: 1569–1577.PubMedCrossRefGoogle Scholar
  53. Kawasaki, H., Sato, H., and Suzuki, M., 1971, Structural proteins in silkworm egg-shells, Insect Biochem. 1: 130–148.CrossRefGoogle Scholar
  54. Lindley, H., 1977, The chemical composition and structure of wool, in: Chemistry of Natural Protein Fibres (R. S. Asquith, ed.), Plenum Press, New York, pp. 147–191.CrossRefGoogle Scholar
  55. MacKinnon, P. J., 1989, Molecular analysis of the ultra-high-sulfur keratin proteins, Ph.D. Thesis, University of Adelaide.Google Scholar
  56. Malkinson, F. D., and Griem, M. L., 1965, Effects on hair of radiation, alone or in combination with radio-sensitizing or radio-protective agents, in: Biology of the Skin and Hair Growth (A. G. Lyne and B. F. Short, eds.), Angus & Robertson, Sydney, pp. 755–779.Google Scholar
  57. Marshall, R. C., 1983, Characterization of the proteins of human hair and nail by electrophoresis, J. Invest. Dermatol. 80: 519–524.PubMedCrossRefGoogle Scholar
  58. Marshall, R. C., 1985, Hair comparison by protein analysis, in: Proceedings International Symposium on Forensic Hair Comparisons, U.S. Government Printing Office, Washington, D.C., pp. 71–87.Google Scholar
  59. Marshall, R. C., 1986, Nail, claw, hoof and horn keratin, in: Biology of the Integument, Volume 2 (J. Bereiter-Hahn, A. G. Matoltsy, and K. Sylvia Richards, eds.), Springer-Verlag, Berlin, pp. 722–738.CrossRefGoogle Scholar
  60. Marshall, R. C., and Gillespie, J. M., 1976, High-sulfur proteins from α-keratins, Aust. J. Biol. Sci. 29: 1–20.PubMedGoogle Scholar
  61. Marshall, R. C., and Gillespie, J. M., 1978, Heterogeneity and incomplete reduction in the high-sulfur proteins of wool, Aust. J. Biol. Sci. 31: 219–229.Google Scholar
  62. Marshall, R. C., and Gillespie, J. M., 1981, Changes in wool protein components following chemical defleecing, in: Proc. Second National Wool Harvesting Research and Development Conference (P. R. W. Hudson, ed.), Australian Wool Corp., Sydney, pp. 117–121.Google Scholar
  63. Marshall, R. C., and Gillespie, J. M., 1989, Variations in the proteins of wool and hair, in: The Biology of Wool and Hair (G. E. Rogers, P. J. Reis, K. A. Ward, and R. C. Marshall, eds.), Chapman & Hall, London, pp. 117–125.Google Scholar
  64. Marshall, R. C., Gillespie, J. M., Inglis, A. S., and Frenkel, M. J., 1980, High-tyrosine proteins of wool. Heterogeneity and biosynthetic regulation, Proc. Sixth Int. Wool Text. Res. Conf. II: 147–158.Google Scholar
  65. Marshall, R. C., Gillespie, J. M., and Klement, V., 1985, Methods and future prospects for forensic identification of hair by electrophoresis, J. Forensic Sci. Soc. 25: 57–66.PubMedCrossRefGoogle Scholar
  66. Mercer, E. H., 1961, Keratin and Keratinization, Pergamon Press, New York.Google Scholar
  67. Moore, G. M., Panaretto, B. A., and Robertson, D., 1982, Inhibition of wool growth in Merino sheep following administration of mouse epidermal growth factor and a derivative, Aust. J. Biol. Sci. 35: 163–172.PubMedGoogle Scholar
  68. Orwin, D. F. G., 1979a, The cytology and cytochemistry of the wool follicle, Int. Rev. Cytol. 60: 331–374.PubMedCrossRefGoogle Scholar
  69. Orwin, D. F. G., 1979b, Cytological studies on keratin fibres, in: Fibrous Proteins: Scientific, Industrial and Medical Aspects, Volume 1 (D. A. D. Parry and L. K. Creamer, eds.), Academic Press, New York, pp. 271–297.Google Scholar
  70. Orwin, D. F. G., and Woods, J. L., 1982, Number changes and developmental potential of wool follicle cells in the early stages of fiber differentiation, J. Ultrastruct. Res. 80: 312–322.PubMedCrossRefGoogle Scholar
  71. Orwin, D. F. G., Woods, J. L., and Ranford, S. L., 1984, Cortical cell types and their distribution in wool fibers, Aust. J. Biol. Sci. 37: 237–255.Google Scholar
  72. Parry, D. A. D., Fraser, R. D. B., and MacRae, T. P., 1979, Repeating patterns of amino acid residues in the sequences of some high-sulfur proteins from α-keratins, Int. J. Biol. Macromol. 1: 17–22.CrossRefGoogle Scholar
  73. Parry, D. A. D., Fraser, R. D. B., MacRae, T. P., and Suzuki, E., 1987, Intermediate filaments, in: Fibrous Protein Structure (J. M. Squire and P. J. Vibert, eds.), Academic Press, New York, pp. 193–214.Google Scholar
  74. Powell, B. C., and Rogers, G. E., 1986, Hair keratin: Composition, structure and biogenesis, in: Biology of the Integument, Volume 2 (J. Bereiter-Hahn, A. G. Matoltsy, and K. Sylvia Richards, eds.), Springer-Verlag, Berlin, pp. 695–721.CrossRefGoogle Scholar
  75. Raphael, K. A., Marshall, R. C., and Pennycuik, P. R., 1984, Protein and amino acid composition on hair from mice carrying the naked (N) gene, Genet. Res. 44: 29–38.PubMedCrossRefGoogle Scholar
  76. Reed, L. J., 1957, The chemistry and function of lipoic acid, Adv. Enzymol. 18: 319–347.Google Scholar
  77. Reis, P. J., 1979, Effects of amino acids on the growth and properties of wool, in: Physiological and Environmental Limitations to Wool Growth (J. L. Black and P. J. Reis, eds.), University of New England Publishing Unit, pp. 223-242.Google Scholar
  78. Reis, P. J., and Panaretto, B. A., 1979, Chemical defleecing as a method of harvesting wool from sheep, World Anim. Rev. 30: 36–42.Google Scholar
  79. Reis, P. J., and Schinckel, P. G., 1963, Some effects of sulfur-containing amino acids on the growth and composition of wool, Aust. J. Biol. Sci. 16: 218–230.Google Scholar
  80. Reis, P. J., Tunks, D. A., Rigby, R. D. G., Morton, T. C., and Munro, S. G., 1983, Investigation of some amino acid analogues and metabolites as inhibitors of wool and hair growth, Aust. J. Biol. Sci. 36: 157–170.PubMedGoogle Scholar
  81. Rogers, G. E., 1964, Structural and biochemical features of the hair follicle, in: The Epidermis (W. Montagna and W. C. Lobitz, eds.), Academic Press, New York, pp. 179–236.Google Scholar
  82. Sauk, J. J., Krumweide, M., Cocking-Johnson, D., and White, J. G., 1984, Reconstitution of cytokeratin filaments in vitro: Further evidence for the role of non-helical peptides in filament assembly, J. Cell Biol. 99: 1590–1597.PubMedCrossRefGoogle Scholar
  83. Sengel, P., 1983, Epidermal-dermal interactions during formation of skin and cutaneous appendages, in: Biochemistry and Physiology of the Skin, Volume 1 (L. A. Goldsmith, ed.), Oxford University Press, London, pp. 102–131.Google Scholar
  84. Short, B. F., Wilson, P. A., and Schinckel, P. G., 1965, Proliferation of follicle matrix cells in relation to wool growth, in: Biology of the Skin and Wool Growth (A. G. Lyne and B. F. Short, eds.), Angus and Robertson, Sydney, pp. 409–426.Google Scholar
  85. Sparrow, L. G., Dowling, L. M., Loke, V. Y., and Strike, P. M., 1989, Amino acid sequences of wool keratin IF proteins, in: The Biology of Wool and Hair (G. E. Rogers, P. J. Reis, K. A. Ward, and R. C. Marshall, eds.), Chapman & Hall, London, pp. 145–155.Google Scholar
  86. Spearman, R. I. C., 1982, The biochemistry of skin disease, Mol. Aspects Med. 5: 63–126.CrossRefGoogle Scholar
  87. Spei, M., and Zahn, H., 1979, X-ray small angle examination of swollen fiber keratin, Melliand Textilber. 60: 523–525.Google Scholar
  88. Steinert, P. M., Steven, A. C., and Roop, D. R., 1983, Structural features of epidermal keratin filaments assembled in vitro, J. Invest. Dermatol. 81: 86s–90s.PubMedCrossRefGoogle Scholar
  89. Swart, L. S., Joubert, F. J., and Parris, D., 1975, Homology in the amino acid sequences of the high-sulfur proteins from keratins, Proc. Fifth Int. Wool Text. Res. Conf. 2: 254–264.Google Scholar
  90. Tenenhouse, H. S., and Gold, R. J. M., 1976, Loss of a homologous group of proteins in a dominantly inherited ectodermal malformation, Biochem. J. 159: 149–160.PubMedGoogle Scholar
  91. Thomas, H., Conrads, A., Phan, K. H., Van de Locht, M., and Zahn, H., 1986, The in vitro reconstitution of wool intermediate filaments, Int. J. Biol. Macromol. 8: 258–264.CrossRefGoogle Scholar
  92. Van Neste, D., Gillespie, J. M., and Marshall, R. C., 1987, Heterogeneity of trichothiodystrophy: Preliminary biochemical results, in: Pediatrie Dermatology: Advances in Diagnosis and Treatment (R. Happle and E. Grosshans, eds.), Springer, Berlin, pp. 170–174.CrossRefGoogle Scholar
  93. Wallace, A. L. C., 1979, The effects of hormones on wool growth, in: Physiological and Environmental Limitations to Wool Growth (J. L. Black and P. J. Reis, eds.), University of New England Publishing Unit, pp. 257-268.Google Scholar
  94. Woods, E. F., 1979, Microfibrillar proteins of wool: Partial specific volumes and molecular weights in denaturing solvents, Aust. J. Biol. Sci. 32: 423–435.Google Scholar
  95. Woods, E. F., and Inglis, A. S., 1984, Organization of the coiled coils in the wool microfibril, Int. J. Biol. Macromol. 6: 277–283.CrossRefGoogle Scholar
  96. Woods, J. L., and Orwin, D. F. G., 1982, The cytology of cuticle scale pattern formation in the wool follicle, J. Ultrastruct. Res. 80: 230–242.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. M. Gillespie
    • 1
  1. 1.Division of Wool TechnologyCSIROParkvilleAustralia

Personalised recommendations