• P. A. M. Eagles
  • H. C. Pant
  • H. Gainer


The idea of a neurofilamentous skeleton inside nerve cells is not new. Almost 100 years ago Schultze first expressed the view regarding the presence of neurofibrillar networks within neurons. Many workers doubted the existence of these structures because the methods used to visualize them were capricious, different results being found in different laboratories (see review by Parker, 1929). In the 1890s few were able to emulate the techniques of Apáthy whose skills were widely acclaimed. It was not until the development of the novel and reproducible methods for silver staining by Bielschowsky and Ramón y Cajal that neurofibrils were routinely found. With the advent of high-resolution electron microscopic techniques, we now know that the neurofibrillary structures seen by these early microscopists were composed of the 100-Å-diameter intermediate filaments characteristic of nerve cells—neurofilaments (Boycott et. al., 1961; Gray and Guillery, 1961). In this review, we discuss the more recent history regarding neurofilaments and focus on current unresolved questions regarding their architecture, enzymatic modification, and development. While being a fairly general account of the neurofilament literature, especially over the past decade, we dwell in depth on key issues—like the nature of neurofilament sidearms, and the phosphorylation dependence of many neurofilament antibodies that will be helpful for both specialist and more general readers.


Intermediate Filament Coiled Coil Stellate Ganglion Giant Axon Squid Giant Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



monoclonal antibody (MAb) that binds to intermediate filaments (Pruss et. al., 1981)


the heavy-molecular-weight component of the mammalian triplet with an apparent molecular weight on SDS-PAGE around 200k, also called NF200


the medium component of the triplet with an apparent molecular weight on SDS-PAGE around 160k, also called NF160


the light component of the triplet with an apparent molecular weight on SDS-PAGE around 70k, also called NF70.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aamodt, E. J., and Williams, Jr., R. C., 1984a, Microtubule-associated proteins connect microtubules and neurofilaments in vitro, Biochemistry 23: 6023–6031.Google Scholar
  2. Aamodt, E. J., and Williams, Jr., R. C., 1984b, Association of microtubules and neurofilaments in vitro is not mediated by ATP, Biochemistry 23: 6031–6035.PubMedGoogle Scholar
  3. Abercrombie, R. F., Gammeltoft, K., Jackson, J., and Young, L., 1986, An intracellular calcium binding site on neurofilament proteins of Myxicola giant axon, J. Gen. Physiol. 88: 9a.Google Scholar
  4. Anderson, D. R., Davis, J. L., and Carraway, K. L., 1977, Calcium-promoted changes of the human erythrocyte membrane. Involvement of spectrin, trans-glutaminase, and membrane bound protease, J. Biol. Chem. 252: 6617–6623.PubMedGoogle Scholar
  5. Anderton, B. H., Bell, C. W., Newby, B. J., and Gilbert, D. S., 1976, Neurofilaments, Biochem. Soc. Trans. 4: 544–547.PubMedGoogle Scholar
  6. Arnold, J. M., Summers, W. C., Gilbert, D. L., Manalis, R. S., Daw, N. W., and Lasek, R. J., 1974, A guide to laboratory use of the squid Loligo pealei, Marine Biological Laboratory, Woods Hole, Mass.Google Scholar
  7. Autilio-Gambetti, L., Velasco, M. E., Sipple, J., and Gambetti, P., 1981, Immunochemical characterization of antisera to rat neurofilament subunits, J. Neurochem. 37: 1260–1265.PubMedGoogle Scholar
  8. Autilio-Gambetti, L., Crane, R., and Gambetti, P., 1986, Binding of Bodian’s silver and monoclonal antibodies to defined regions of human neurofilament subunits: Bodian’s silver reacts with a highly charged unique domain of neurofilaments, J. Neurochem. 46: 366–370.PubMedGoogle Scholar
  9. Banik, N. L., McAlhaney, W. W., and Hogan, E. L., 1985, Calcium stimulated proteolysis in myelin; evidence for a calcium-activated neutral proteinase associated with purified myelin of rat CNS, J. Neurochem. 45: 581–588.PubMedGoogle Scholar
  10. Baudry, M., and Lynch, G., 1980, Regulation of hippocampal glutamate receptors: Evidence for the involvement of a calcium-activated protease, Proc. Natl. Acad. Sci. USA 77: 2298–2302.PubMedGoogle Scholar
  11. Baudry, M., Bundman, M. C., Smith, E. R., and Lynch, G. S., 1981, Micromolar calcium stimulates proteolysis and glutamate binding in rat brain synaptic membranes, Science 212: 937–938.PubMedGoogle Scholar
  12. Bear, R. S., Schmitt, F. O., and Young, J. Z., 1937a, The ultrastructure of nerve axoplasm, Proc. R. Soc. London Ser. B 123: 505–519.Google Scholar
  13. Bear, R. S., Schmitt, F. O., and Young, J. Z., 1937b, Investigation on the protein constituents of nerve axoplasm, Proc. R. Soc. London Ser. B 123: 520–529.Google Scholar
  14. Bell, C. W., 1977, Hydrodynamic properties of neurofilaments, J. Physiol. (London) 266: 83P–84P.PubMedGoogle Scholar
  15. Bell, C. W., 1978, An approach to the structure of neurofilaments using crosslinking reagents and the analytical ultracentrifuge, Ph.D. thesis, University of London.Google Scholar
  16. Bennett, G. S., and DiLullo, C., 1985a, Expression of a neurofilament protein by the precursors of a subpopulation of ventral spinal cord neurons, Dev. Biol. 107: 94–106.PubMedGoogle Scholar
  17. Bennett, G. S., and DiLullo, C., 1985b, Transient expression of a neurofilament protein by replicating neuroepithelial cells of the embryonic chick brain, Dev. Biol. 107: 107–127.PubMedGoogle Scholar
  18. Berkowitz, S. A., Katagiri, J., Binder, H. K., and Williams, Jr., R. C., 1977, Separation and characterization of microtubule proteins from calf brain, Biochemistry 16: 5610–5617.PubMedGoogle Scholar
  19. Bertolini, B., Monaco, G., and Rossi, A., 1970, Ultrastructure of a regular arrangement of microtubules and neurofilaments, J. Ultrastruct. Res. 33: 173–186.PubMedGoogle Scholar
  20. Black, M. M., and Lasek, R. J., 1980, Slow components of axonal transport: Two cytoskeletal networks, J. Cell Biol. 86: 616–623.PubMedGoogle Scholar
  21. Boycott, B. B., Gray, E. G., and Guillery, R. W., 1961, Synaptic structure and its alteration with environmental temperature: A study by light and electron microscopy of the central nervous system of lizzards, Proc. R. Soc. London Ser. B 154: 151–172.Google Scholar
  22. Brown, A., and Eagles, P. A. M., 1986, Squid neurofilaments—Phosphorylation and calcium-dependent proteolysis in situ, Biochem. J. 239: 191–197.PubMedGoogle Scholar
  23. Brown, B. A., Nixon, R. A., Strocchi, P., and Marotta, C. A., 1981, Characterisation and comparison of neurofilament proteins from rat and mouse CNS, J. Neurochem. 36: 143–165.PubMedGoogle Scholar
  24. Brown, B. A., Majocha, R. E., Staton, D. M., and Marotta, C. A., 1983, Axonal polypeptides cross-reactive with antibodies to neurofilament proteins, J. Neurochem. 40: 299–308.PubMedGoogle Scholar
  25. Calvert, R., 1982, Is polypeptide heterogeneity the key to neurofilament function? Nature 300: 580–581.PubMedGoogle Scholar
  26. Calvert, R., and Anderton, B. H., 1982, In vivo metabolism of mammalian neurofilament polypeptides in developing and adult rat brain, FEBS Lett. 145: 171–175.PubMedGoogle Scholar
  27. Carden, M. J., and Eagles, P. A. M., 1983, Neurofilaments from ox spinal nerves: Isolation, disassembly, reassembly and crosslinking properties, Biochem J. 215: 227–237.PubMedGoogle Scholar
  28. Carden, M. J., and Eagles, P. A. M., 1986, Chemical cross-linking analyses of ox neurofilaments, Biochem. J. 234: 587–591.PubMedGoogle Scholar
  29. Carden, M. J., Schlaepfer, W. W., and Lee, V. M.-Y., 1985, The structure, biochemical properties, and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state, J. Biol. Chem. 260: 9805–9817.PubMedGoogle Scholar
  30. Carden, M. J., Trojanowski, J. Q., Schlaepfer, W. W., and Lee, V. M.-Y., 1987, Two stage expression of the neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns, J. Neurosci. 7: 3489–3504.PubMedGoogle Scholar
  31. Cassell, D., and Glasser, L., 1982, Proteolytic cleavage of epidermal growth factor receptor. A calcium dependent, sulphydryl-sensitive proteolytic system in A431 cells, J. Biol. Chem. 257: 9845–9848.Google Scholar
  32. Chin, T.-K., Eagles, P. A. M., and Maggs, A., 1983, The proteolytic digestion of ox neurofilaments with trypsin and alpha-chymotrypsin, Biochem. J. 215: 239–252.PubMedGoogle Scholar
  33. Chin, T.-K., Harding, S., and Eagles, P. A. M., 1989, Characterization of two proteolytically derived soluble polypeptides from the neurofilament triplet components NFM and NFH, Biochem. J. 264: 53–60.PubMedGoogle Scholar
  34. Chiu, F.-C., and Norton, W. T., 1982, Bulk preparation of CNS cytoskeleton and the separation of individual neurofilament proteins by gel filtration: Dye binding characteristics and amino acid composition, J. Neurochem. 39: 1252–1260.PubMedGoogle Scholar
  35. Chiu, F.-C., Korey, B., and Norton, W. T., 1980, Intermediate filaments from bovine, rat and human CNS: Mapping analysis of the major proteins, J. Neurochem. 34: 1149–1159.PubMedGoogle Scholar
  36. Chiu, F.-C., Goldman, J. E., and Norton, W. T., 1983, Biochemistry of neurofilaments, in: Neurofilaments (C. A. Morotta, ed.), University of Minnesota Press, Minneapolis, pp. 27–56.Google Scholar
  37. Cohen, R. S., Pant, H. C., House, S., and Gainer, H., 1986, Characterization and distribution of phosphorylated and nonphosphorylated subunits of squid neurofilaments, 16th Annu. Meet. Soc. Neurosci. 12: 1571 (Part II).Google Scholar
  38. Cohlberg, J. A., Hajarian, H., and Sainte-Marie, S., 1987, Discrete soluble forms of middle and high molecular weight neurofilament proteins in dilute aqueous buffers, J. Biol. Chem. 262: 17009–17015.PubMedGoogle Scholar
  39. Collier, N. C., and Wang, K., 1982, Purification and properties of human platelet P235: A high molecular weight protein substrate of endogenous calcium-activated protease(s), J. Biol. Chem. 257: 6937–6943.PubMedGoogle Scholar
  40. Coolican, S.A., Haiech, J., and Hathaway, D. R., 1986, The role of subunit autolysis in activation of smooth muscle calcium-dependent proteases, J. Biol. Chem. 261: 4170–4176.PubMedGoogle Scholar
  41. Dahl, D., 1981, Isolation of neurofilament proteins and of immunologically active neurofilament degradation products from extracts of brain, spinal cord and sciatic nerve, Biochim. Biophys. Acta 668: 299–306.PubMedGoogle Scholar
  42. Dautigny, A., Pham-Dinh, D., Roussel, C., Felix, J. M., Nussbaum, J. L., and Jolies, P., 1988, The large neurofilament subunit (NF-H) of the rat: cDNA, cloning and in situ detection, Bioch. Biophys. Acta 154: 1099–1106.Google Scholar
  43. Davison, P. F., and Taylor, E. W., 1960, Physical-chemical studies of proteins of squid nerve axoplasm, with special reference to the axon fibrous protein, J. Gen. Physiol. 43: 801–823.PubMedGoogle Scholar
  44. Davison, P., and Winslow, B., 1974, The protein subunit of calf brain neurofilament, J. Neurobiol. 5: 119–133.PubMedGoogle Scholar
  45. Day, W. A., and Gilbert, D. S., 1972, X-ray diffraction patterns of axoplasm, Biochim. Biophys. Acta 285: 503–506.PubMedGoogle Scholar
  46. Dayton, W. R., Schollmeyer, J. V., Lepley, R. A., and Cortex, L. R., 1981, A calcium-activated protease possibly involved in myofibrillar protein turnover: Isolation of a low calcium requiring form of the protease, Biochim. Biophys. Acta 659: 48–61.PubMedGoogle Scholar
  47. Debus, E., Weber, K., and Osborn, M., 1983, Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides, Differentiation 25: 193–203.PubMedGoogle Scholar
  48. Delacourte, A., Plancot, M.-T., Than, K.-K., Hildebrand, H., and Biserke, G., 1977, Investigation of tubulin fibres formed during microtubule polymerisation cycles, FEBS Lett. 77: 41–46.PubMedGoogle Scholar
  49. Delacourte, A., Filliatreau, G., Boutteau, F., Biseike, G., and Schreval, J., 1980, Study of the 10nm-filament fraction isolated during the standard microtubule preparation, Biochem. J. 191: 543–546.PubMedGoogle Scholar
  50. Delacourte, A., Dousti, M., and Loucheux-Lefebvre, M.-H., 1982, Characterisation of mammalian neurofilament subunits by circular dichroism, Biochim. Biophys. Acta 709: 99–104.PubMedGoogle Scholar
  51. Drager, U. C., Edwards, D. L., and Kleinschmidt, J., 1983, Neurofilaments contain alpha-melanocyte-stimulating hormone (alpha-MSH)-like immunoreactivity, Proc. Natl. Acad. Sci. USA 80: 6408–6412.PubMedGoogle Scholar
  52. Eagles, P. A. M., 1986, Neurofilament architecture, in: Electron Microscopy and Alzheimer’s Disease (J. Metuzals, ed.), San Francisco Press, San Francisco, pp. 6–8.Google Scholar
  53. Eagles, P. A. M., and Maggs, A., 1985, The location of domains of neurofilament polypeptides, Ann N.Y. Acad. Sci. 455: 779–781.Google Scholar
  54. Eagles, P. A. M., Bell, C., Maggs, A., Wais, C., and Gilbert, D. S., 1978, Neurofilament structure and its enzymatic modification, in: The Cytoskeleton and Contractile Networks of Non-muscle Cells, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., p. 47.Google Scholar
  55. Eagles, P. A. M., Gilbert, D. S., Hopkins, J. M., Maggs, A., and Wais-Steider, C., 1980a, Neurofilament structure and enzymatic modification, Cell Biol. Int. Rep. 4: 731.Google Scholar
  56. Eagles, P. A. M., Gilbert, D. S., and Maggs, A., 1980b, Neurofilament structure and enzymic modification, Biochem. Soc. Trans. 8: 484–487.PubMedGoogle Scholar
  57. Eagles, P. A. M., Gilbert, D. S., and Maggs, A., 1981a, The polypeptide composition of axoplasm and of neurofilaments from the marine worm Myxicola infundibulum, Biochem. J. 199: 89–100.PubMedGoogle Scholar
  58. Eagles, P. A. M., Gilbert, D. S., and Maggs, A., 1981b, The location of phosphorylation sites and calcium dependent proteolytic cleavage sites on the major neurofilament polypeptides from Myxicola infundibulum, Biochem. J. 199: 101–111.PubMedGoogle Scholar
  59. Eagles, P. A. M., Hopkins, J. M., Rao, R., and Chin, T.-K., 1985, Neurofilament sidearm, proteolysis and phosphorylation, in: Proc. 43rd Annu. Meet. Electron Microsc. Soc. Am., San Francisco Press, San Francisco, pp. 744–747.Google Scholar
  60. Ellisman, M. H., and Porter, K. R., 1980, Microtrabecular structure of the axoplasmic matrix: Visualisation of cross-linking structures and their distribution, J. Cell Biol. 87: 464–479.PubMedGoogle Scholar
  61. Emori, Y., Kawasaki, H., Imajoh, S., Kawashima, S., and Suzuki, K., 1986, Isolation and sequence of cDNA clones for the small subunit of rabbit calcium-dependent protease, J. Biol. Chem. 261: 9472–9476.PubMedGoogle Scholar
  62. Frappier, T., Regnorf, F., and Pradel, L. A., 1986, Association of fodrin to the 70kDa neurofilament protein, Abstracts 15th European Congress on Muscle and Motility, p. 115.Google Scholar
  63. Friede, R. L., and Samorajski, T., 1970, Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice, Anat. Rec. 167: 379–388.PubMedGoogle Scholar
  64. Gallant, P. E., Pant, H. C., Pruss, R. M., and Gainer, H., 1986, Calcium-activated proteolysis of neurofilament proteins in the squid giant neuron, J. Neurochem. 46: 1573–1581.PubMedGoogle Scholar
  65. Gambetti, P., Autilio-Gambetti, L., and Papasozomenos, S. C., 1981, Bodian’s silver method stains neurofilament polypeptides, Science 213: 1521–1522.PubMedGoogle Scholar
  66. Gardner, E. E., Dahl, D., and Bignami, A., 1984, Formation of 10-nanometer filaments from the 150k-dalton neurofilament protein in vitro, J. Neurosci. Res. 11: 145–155.Google Scholar
  67. Geisler, N., and Weber, K., 1981, Self-assembly in vitro of the 68,000 molecular weight component of the mammalian neurofilament triplet proteins into intermediate-sized filaments, J. Mol. Biol. 151: 565–571.PubMedGoogle Scholar
  68. Geisler, N., Kaufmann, E., Fisher, S., Plessmann, U., and Weber, K., 1983, Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins, EMBO J. 2: 1295–1302.PubMedGoogle Scholar
  69. Geisler, N., Fisher, S., Vandekerckhove, J., Plessmann, U., and Weber, K., 1984, Hybrid character of a large neurofilament protein (NF-M): Intermediate filament type sequence followed by a long and acidic carboxyterminal extension, EMBO J. 3: 2701–2706.PubMedGoogle Scholar
  70. Geisler, N., Plessmann, U., and Weber, K., 1985a, The complete amino acid sequence of the major mammalian neurofilament protein (NF-L), FEBS Lett. 182: 475–478.PubMedGoogle Scholar
  71. Geisler, N., Fischer, S., Vandekerckhove, J., Van Damme, J., Plessmann, U., and Weber, K., 1985b, Proteinchemical characterisation of NF-H, the largest mammalian neurofilament component; intermediate filament-type sequences followed by a unique carboxy-terminal extension, EMBO J. 4: 57–63.PubMedGoogle Scholar
  72. Geisler, N., Vandekerckhove, J., and Weber, K., 1987, Location and sequence characterization of the major phosphorylation sites of the high molecular mass neurofilament proteins M and H, FEBS Lett. 221: 403–407.PubMedGoogle Scholar
  73. Georges, E., and Mushynski, W. E., 1987, Chemical modification of charged amino acid moieties alters the electrophoretic mobilities of neurofilament subunits on SDS-polyacrylamide gels, Eur. J. Biochem. 165: 281–287.PubMedGoogle Scholar
  74. Georges, E., Lefebre, S., and Mushynski, W. E., 1986, Dephosphorylation of neurofilaments has no effect on reassembly of subunits, J. Neurochem. 47: 477–483.PubMedGoogle Scholar
  75. Gilbert, D. S., 1972, Helical structure of Myxicola axoplasm, Nature New Biol. 237: 195–198.PubMedGoogle Scholar
  76. Gilbert, D. S., 1975a, Axoplasm architecture and physical properties as seen in the Myxicola giant axon, J. Physiol. (London) 253: 257–301.PubMedGoogle Scholar
  77. Gilbert, D. S., 1975b, Axoplasm chemical composition in Myxicola and solubility properties of its structural proteins, J. Physiol. (London) 253: 303–319.PubMedGoogle Scholar
  78. Gilbert, D. S., Newby, B. J., and Anderton, B. H., 1975, Neurofilament disguise, destruction and discipline, Nature 256: 586–589.PubMedGoogle Scholar
  79. Glicksman, M. A., and Willard, M., 1982, Separation of neurofilaments form ATPase activity by precipitation with anti-neurofilament antibodies, J. Neurochem. 38: 1774–1776.PubMedGoogle Scholar
  80. Glicksman, M. A., and Willard, M., 1985, Differential expression of the three neurofilament polypeptides, Ann N.Y. Acad. Sci. 455: 479–491.PubMedGoogle Scholar
  81. Goldman, J. E., Schaumburg, H. H., and Norton, W. T., 1978, Isolation and characterisation of glial filaments from human brain, J. Cell Biol. 78: 426–440.PubMedGoogle Scholar
  82. Gray, E. G., and Guillery, R. W., 1961, The basis for silver staining of synapses of the mammalian spinal cord: A light and electron microscope study, J. Physiol. (London) 157: 581–588.PubMedGoogle Scholar
  83. Gray, E. G., and Guillery, R. W., 1966, Synaptic morphology in the normal and degenerating nervous system, Int. Rev. Cytol. 19: 111–182.PubMedGoogle Scholar
  84. Guroff, G., 1964, A neutral, calcium-activated protease from the soluble fraction of the rat brain, J. Biol. Chem. 239: 149–155.PubMedGoogle Scholar
  85. Hamon, M., and Bourgoin, S., 1979, Characterization of the calcium-induced proteolytic activation of tryptophan hydroxylase from the rat brain stem, J. Neurochem. 32: 1837–1844.PubMedGoogle Scholar
  86. Hathaway, D. R., Werth, D. K., and Haeberle, J. R., 1982, Limited autolysis reduces the calcium requirements of a smooth muscle calcium-activated protease, J. Biol. Chem. 257: 9072–9077.PubMedGoogle Scholar
  87. Hayashi, M.L., Chiomata, M., Nakamura, M., Imahori, K., and Kawashima, S., 1985, Hydrolysis of protamine by calcium-activated neutral protease (CANP), J. Biochem. 97: 1363–1370.PubMedGoogle Scholar
  88. Heimann, R., Shelanski, M. L., and Liem, R. K. H., 1984, In vitro binding of microtubule associated proteins and neurofilaments, J. Cell Biol. 99: 190a.Google Scholar
  89. Henderson, D., Geisler, N., and Weber, K., 1982, A periodic ultrastructure in intermediate filaments, J. Mol. Biol. 155: 173–176.PubMedGoogle Scholar
  90. Hiraco, T., and Takahashi, K., 1984, Purification and characterization of a calcium-activated neutral protease from monkey brain and its action on neuropeptides, J. Biochem. 96: 775–784.Google Scholar
  91. Hirokawa, N., 1982, Cross-linker system between neurofilaments, microtubules and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method, J. Cell Biol. 94: 129–142.PubMedGoogle Scholar
  92. Hirokawa, N., Glicksman, M. A., and Willard, M. B., 1984, Organisation of mammalian neurofilament polypeptides within the neuronal cytoskeleton, J. Cell Biol. 98: 1523–1536.PubMedGoogle Scholar
  93. Hisanaga, S., and Hirokawa, N., 1988, Structure of the peripheral domains of neurofilaments revealed by low angle rotary shadowing, J. Mol. Biol. 202: 297–305.PubMedGoogle Scholar
  94. Hodge, A. J., and Adelman, Jr., W. J., 1980, The neuroplasmic network in Loligo and Hermissenda neurons, J. Ultra Struct. Res. 70: 220–241.Google Scholar
  95. Hodgkin, A. L., and Katz, B., 1949, Effect of calcium on the axoplasm of giant nerve fibres, J. Exp. Biol. 26: 292–294.PubMedGoogle Scholar
  96. Hodgkin, A. L., and Keynes, R. D., 1956, Experiments on injections of substances into squid giant axons by means of a microsyringe, J. Physiol. (London) 131: 592–616.PubMedGoogle Scholar
  97. Hoffman, P. N., and Lasek, R. J., 1975, The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons, J. Cell Biol. 66: 351–366.PubMedGoogle Scholar
  98. Hoffman, P. N., Lasek, R. J., Griffin, J. W., and Price, D. L., 1983, Slowing of the axonal transport of neurofilament proteins during development, J. Neurosci. 3: 1694–1700.PubMedGoogle Scholar
  99. Hoffman, P. N., Griffin, J. W., and Price, D. L., 1984, Control of axonal caliber by neurofilament transport, J. Cell Biol. 99: 705–714.PubMedGoogle Scholar
  100. Hogue-Angeletti, R. A., Wu, H.-L., and Schlaepfer, W. W., 1982, Preparative separation and amino acid composition of neurofilament triplet proteins, J. Neurochem. 38: 116–120.PubMedGoogle Scholar
  101. Huneeus, F. C., and Davison, P. F., 1970, Fibrillar proteins from squid axons, J. Mol. Biol. 52: 415–428.PubMedGoogle Scholar
  102. Huston, R. B., and Krebs, E. G., 1968, Activation of skeletal muscle phosphorylase kinase by calcium. II. Identification of the kinase activation factor as a proteolytic enzyme, Biochemistry 7: 2116–2121.PubMedGoogle Scholar
  103. Ip, W., 1986, Structural studies of isolated mammalian neurofilaments, in: Electron Microscopy and Alzheimer’s Disease (J. Metuzals, ed.), San Francisco Press, San Francisco.Google Scholar
  104. Ishiura, S., 1981, Calcium dependent proteolysis in living cells, Life Sci. 29: 1079–1088.PubMedGoogle Scholar
  105. Ishiura, S., Murofuishi, H., Suzuki, K., and Imahori, K., 1978, Studies of a calcium-activated protease from chicken skeletal muscle. I. Purification and characterization, J. Biochem. 84: 225–230.PubMedGoogle Scholar
  106. Jones, S. M., and Williams, Jr., R. C., 1982, Phosphate content of mammalian neurofilaments, J. Biol. Chem. 257: 9902–9905.PubMedGoogle Scholar
  107. Julien, J.-P., and Mushynski, W. E., 1981, A comparison of in vitro and in vivo-phosphorylated neurofilament polypeptides, J. Neurochem 37: 1579–1585.PubMedGoogle Scholar
  108. Julien, J.-P., and Mushynski, W. E., 1982, Multiple phosphorylation sites in mammalian neurofilament polypeptides, J. Biol. Chem. 257: 10467–10470.PubMedGoogle Scholar
  109. Julien, J.-P., and Mushynski, W. E., 1983, The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments, J. Biol. Chem. 258: 4019–4025.PubMedGoogle Scholar
  110. Julien, J.-P., Smoluk, G. D., and Mushynski, W. E., 1983, Characteristics of the protein kinase activity associated with rat neurofilament preparations, Biochim. Biophys. Acta 775: 25–31.Google Scholar
  111. Julien, J.-P., Ramachandran, K., and Grosveld, F., 1985, Cloning of a cDNA encoding the smallest neurofilament protein from the rat, Biochim. Biophys. Acta 825: 398–404.PubMedGoogle Scholar
  112. Julien, J.-P., Meyer, D., Flavell, D., Hurst, J., and Grosveld, F., 1986, Cloning and developmental expression of the murine neurofilament gene family, Mol. Brain Res. 1: 243–250.Google Scholar
  113. Kamakura, K., Ishiura, S., Suzuki, K., Sugita, H., and Toyokiera, Y. 1985, Calcium activated neutral protease in the peripheral nerve which requires micromolar calcium, and its effect on neurofilament triplet, J. Neurosci. Res. 13: 391–403.PubMedGoogle Scholar
  114. Kamakura, K., Ishiura, S., and Sugita, H., 1986, Mu-type calcium-activated neutral protease in the rat peripheral nerve, J. Neurosci. Res. 15: 167–173.PubMedGoogle Scholar
  115. Kameyama, T., and Etlinger, J. D., 1979, Calcium-dependent regulation of protein synthesis and degradation of muscle, Nature 279: 344–346.PubMedGoogle Scholar
  116. Kaspi, C., and Mushynski, W. E., 1985, Characterization of interspecies size heterogeneity of the large subunit of mammalian neurofilaments, Ann. N.Y. Acad. Sci. 455: 794–796.Google Scholar
  117. Kaufmann, E., Geisler, N., and Weber, K., 1984, SDS-PAGE strongly overestimates the molecular masses of the neurofilament proteins, FEBS Lett. 170: 81–84.PubMedGoogle Scholar
  118. Kaur, H., and Sanwal, B. D., 1981, Regulation of activity of a calcium-activated neutral protease during differentiation of skeletal myoblasts, Can. J. Biochem. 59: 743–748.PubMedGoogle Scholar
  119. Kawasaki, H., Imajoh, S., Kawashima, S., Hayashi, H., and Suzuki, K., 1986, The small subunits of calcium dependent proteases with different sensitivities are identical, J. Biochem. 99: 1525–1532.PubMedGoogle Scholar
  120. Krishnan, N., Kaiserman-Abramof, I. R., and Lasek, R. J., 1979, Helical substructure of neurofilaments isolated from Myxicola and squid giant axons, J. Cell Biol. 82: 323–335.PubMedGoogle Scholar
  121. Kubota, S., Suzuki, K., and Imahori, K., 1981, A new method for the preparation of a calcium-activated neutral protease highly sensitive to calcium ions, Biochem. Biophys. Res. Commun. 100: 1189–1194.PubMedGoogle Scholar
  122. Lasek, R. J., 1981, The dynamic ordering of neuronal cytoskeletons, Neurosci. Res. Progr. Bull. 19: 7–32.Google Scholar
  123. Lasek, R. J., and Black, M. M., 1977, How do axons stop growing? Some clues from the metabolism of the proteins in the slow component of axonal transport, in: Mechanisms, Regulations, and Special Functions of Protein Synthesis in the Brain (E. Roberts, S. Roberts, A. Lajtha, W. H. Gispen, eds.) Elsevier/North-Holland, Amsterdam, pp. 161–169.Google Scholar
  124. Lasek, R. J., and Hoffman, P. N., 1976, The neuronal cytoskeleton, axonal transport and axonal growth, in: Cell Motility, Volume 3 (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 1021–1049.Google Scholar
  125. Lasek, R. J., Krishnan, N., and Kaiserman-Abramof, I. R., 1979, Identification of the subunit proteins of 10nm neurofilaments isolated from axoplasm of squid and Myxicola giant axons, J. Cell Biol. 82: 336–346.PubMedGoogle Scholar
  126. Lasek, R. J., Metuzals, J., and Kaiserman-Abramof, I. R., 1983, Cytoskeletons reconstituted in vitro indicate that neurofilaments contribute to the helical structure of axons, in: Developing and Regenerating Vertebrate Nervous Sytems, (P. W. Coates, R. R. Mankwald, and A. D. Kenny, eds.), Liss, New York, pp. 1–18.Google Scholar
  127. Lasek, R. J., Phillips, L., Katz, M. J., and Autilio-Gambetti, L., 1985, Function and evolution of neurofilament proteins, Ann N.Y. Acad. Sci. 455: 462–478.PubMedGoogle Scholar
  128. Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature 283: 249–256.PubMedGoogle Scholar
  129. Lee, V., Wu, H. L., and Schlaepfer, W. W., 1982, Monoclonal antibodies recognize individual neurofilament triplet proteins, Proc. Natl. Acad. Sci. USA 79: 6089–6092.PubMedGoogle Scholar
  130. Lee, V. M.-Y., Carden, M. J., and Schlaepfer, W. W., 1986, Structural similarities and differences between neurofilament proteins from five different species as revealed using monoclonal antibodies, J. Neurosci. 6: 2179–2186.PubMedGoogle Scholar
  131. Lee, V. M.-Y., Carden, M. J., Schlaepfer, W. W., and Trojanowski, J. Q., 1987, Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats, J. Neurosci. 7: 3474–3488.PubMedGoogle Scholar
  132. Lee, V. M.-Y., Otvos, L., Carden, M. J., Hollosi, M., Dietzschold, B., and Lazzarini, R. A., 1988, Identification of the major multiphosphorylation site in mammalian neurofilaments, Proc. Natl. Acad. Sci. USA 85: 1998–2002.PubMedGoogle Scholar
  133. Lees, J. F., Shneidman, P. S., Skuntz, S. F., Carden, M. J., and Lazzarini, R. A., 1988, The structure and organization of the human heavy neurofilament subunit (NF-H) and the gene encoding it, EMBO J. 7: 1947–1955.PubMedGoogle Scholar
  134. Lefebvre, S., and Mushynski, W. E., 1988, Characterization of the cation-binding properties of porcine neurofilaments, Biochemistry 27: 8503–8508.PubMedGoogle Scholar
  135. Leterrier, J.-F., and Eyer, J., 1987, Properties of highly viscous gels formed by neurofilaments in vitro, Biochem. J. 245: 93–101.Google Scholar
  136. Leterrier, J.-F., Liem, R. K. H., and Shelanski, M. L., 1981, Preferential phosphorylation of the 150,000 molecular weight component of neurofilaments by a cyclic-AMP-dependent microtubule-associated kinase, J. Cell Biol. 90: 755–760.PubMedGoogle Scholar
  137. Leterrier, J.-F., Liem, R. K. H., and Shelanski, M. L., 1982, Interaction between neurofilaments and microtubule-associated proteins: A possible mechanism for intraorganelle bridging, J. Cell Biol. 95: 982–986.PubMedGoogle Scholar
  138. Leterrier, J.-F., Wong, F., Liem, R. K. H., and Shelanski, M. L., 1984, Promotion of microtubule assembly by neurofilament-associated microtubule-associated proteins, J. Neurochem. 43: 1385–1391.PubMedGoogle Scholar
  139. Levine, J., and Willard, M., 1981, Fodrin: Axonally transported polypeptides associated with the internal periphery of many cells, J. Cell Biol. 90: 631–643.PubMedGoogle Scholar
  140. Levy, E., Liem, R. K. H., D’Eustachio, P., and Cowan, N. J., 1987, Structure and evolutionary origin of the gene encoding mouse NF-M, the middle-molecular-mass neurofilament protein, Eur. J. Biochem. 166: 71–77.PubMedGoogle Scholar
  141. Lewis, S. A., and Cowan, N. J., 1985, Genetics, evolution and expression of the 68,000mol.wt. neurofilament protein: Isolation of a cloned cDNA probe, J. Cell Biol. 100: 843–850.PubMedGoogle Scholar
  142. Lewis, S. A., and Cowan, N. J., 1986, Anomalous placement of introns in a member of the intermediate filament multigene family: An evolutionary conundrum, Mol. Cell Biol. 6: 1529–1534.PubMedGoogle Scholar
  143. Liem, R. K. H., 1982, Simultaneous separation and purification of neurofilament and glial filament proteins from brain, J. Neurochem. 38: 142–149.PubMedGoogle Scholar
  144. Liem, R. K. H., and Hutchison, S. B., 1982, Purification of individual components of the neurofilament triplet: Filament assembly from the 70000-dalton subunit, Biochemistry 21: 3221–3226.PubMedGoogle Scholar
  145. Liem, R. K. H., Yen, S.-H., Loria, C. J., and Shelanski, M. L., 1977, Immunological and biochemical comparison of tubulin and intermediate brain filament protein, Brain Res. 132: 167–171.PubMedGoogle Scholar
  146. Liem, R. K. H., Yen, S.-H., Salomon, G. D., and Shelanski, M. L., 1978, Intermediate filaments in nervous tissue, J. Cell Biol. 79: 637–645.PubMedGoogle Scholar
  147. Liem, R. K. H., Pachter, J. S., Napolitano, E. W., Chin, S. S. M., Moraru, E., and Heimann, R. 1985, Associated proteins as possible cross-linkers in the neuronal cytoskeleton, Ann. N.Y. Acad. Sci. 455: 492–508.PubMedGoogle Scholar
  148. Lifsics, M. R., and Williams, Jr., R. C., 1984, Physiochemical characterisation of the 68000 dalton protein of bovine neurofilaments, Biochemistry 23: 2866–2875.PubMedGoogle Scholar
  149. Llinas, R. R., and Heuser, J. E., 1977, Depolarization-release coupling systems in neurons, Neurosci. Res. Progr. Bull. 15: 557–687.Google Scholar
  150. Lucas, R. C., Rosenberg, S., Lawrence, J., Shafig, S., and Stracher, S., 1979, The isolation of a cytoskeleton and contractile apparatus from human platelets, Cytoskel. Struct. Protides Biol. Fluids 26: 465–470.Google Scholar
  151. Malik, M. N., Myers, L. A., Iqbal, K., Sheikh, A. M., Scotto, L., and Wisniewski, H. M., 1981, Calcium activated proteolysis of fibrous proteins in the central nervous system, Life Sci. 29: 795–802.PubMedGoogle Scholar
  152. Malik, M. N., Fenko, M. D., Iqbal, K., and Wisniewski, H. M., 1983, Purification and characterization of two forms of calcium-activated neutral protease from calf brain, J. Biol. Chem. 258: 8955–8962.PubMedGoogle Scholar
  153. Malik, M. N., Fenko, M. D., and Wisniewski, H. M., 1984, Purification and partial characterization of two forms of calcium-activated neutral protease from calf brain synaptosomes and spinal cord, Neurochem. Res. 9: 233–240.PubMedGoogle Scholar
  154. Malik, M. N., Fenko, M. D., and Wisniewski, H. M., 1985, Three forms of brain calcium-activated neutral protease, Trans. Soc. Neurochem. 16: 245.Google Scholar
  155. Malik, M. N., Sheikh, A. M., Fenko, M. D., and Wisniewski, H. M., 1986, Purification and degradation of purified neurofilament proteins by the brain calcium-activated neutral proteases, Life Sci. 39: 1335–1343.PubMedGoogle Scholar
  156. Matus, A., 1988, Neurofilament protein phosphorylation—where, when and why, Trends Neurosci. 11: 291–292.PubMedGoogle Scholar
  157. Maxfield, M., 1953, Axoplasmic proteins of the squid giant nerve fiber with particular reference to the fibrous protein, J. Gen. Physiol. 37: 201–216.PubMedGoogle Scholar
  158. Maxfield, M., and Hartley, Jr., R. W., 1957, Dissociation of the fibrous protein of nerve, Biochim. Biophys. Acta 24: 83–87.PubMedGoogle Scholar
  159. Mellgren, R. L., 1980, Canine cardiac calcium-dependent proteases: Resolution of two forms with different requirements for calcium, FEBS Lett. 109: 129–133.PubMedGoogle Scholar
  160. Mellgren, R. L., Repetti, A., Muck, T. C., and Easly, J., 1982, Rabbit skeletal muscle calcium-dependent protease requiring millimolar calcium. Purification, subunit structure and calcium-dependent autolysis, J. Biol. Chem. 257: 7203–7209.PubMedGoogle Scholar
  161. Metuzals, J., 1969, Configuration of a filamentous network in the axoplasm of the squid (Loligo pealii L.) giant nerve fibre, J. Cell Biol. 43: 480–505.PubMedGoogle Scholar
  162. Metuzals, J., and Izzard, C. S., 1969, Spatial patterns of threadlike elements in the axoplasm of the giant nerve fiber of the squid (Loligo pealii L.) as disclosed by differential interference microscopy and by electron microscopy, J. Cell Biol. 43: 456–479.PubMedGoogle Scholar
  163. Metuzals, J., Hodge, A. J., Lasek, R. J., and Kaiserman-Abramof, I. R., 1983, Neurofilamentous network and filamentous matrix preserved and isolated by different techniques from squid giant axon, Cell Tissue Res. 228: 415–432.PubMedGoogle Scholar
  164. Milam, L. M., and Erickson, H. P., 1982, Visualization of a 21-nm axial periodicity in shadowed keratin filaments and neurofilaments, J. Cell Biol. 94: 592–596.PubMedGoogle Scholar
  165. Milam, L. M., and Erickson, H. P., 1985, A structural comparison of tryptic fragments of three types of intermediate filaments, J. Ultrastruct. Res. 90: 251–260.PubMedGoogle Scholar
  166. Minami, Y., and Sakai, H., 1985, Dephosphorylation suppresses the activity of neurofilaments to promote tubulin polymerization, FEBS Lett. 185: 239–242.PubMedGoogle Scholar
  167. Minami, Y., Murofushi, H., and Sakai, H., 1982, Interaction of tubulin with neurofilaments: Formation of networks by neurofilament-dependent tubulin polymerisation, J. Biochem. 92: 889–898.PubMedGoogle Scholar
  168. Minami, Y., Endo, S., and Sakai, H., 1984, Participation of 200k or 150k subunit of neurofilament in construction of the filament core with 70k subunit and promotion of tubulin polymerisation by incorporated 200k subunit, J. Biochem. 96: 1481–1490.PubMedGoogle Scholar
  169. Miyata, Y., Hoshi, M., Nishida, E., Minami, Y., and Sakai, H., 1986, Binding of microtubule-associated protein 2 and tau to the intermediate filament reassembled from neurofilament 70kDa subunit protein, J. Biol. Chem. 261: 13026–13030.PubMedGoogle Scholar
  170. Moon, H. M., Wisniewski, T., Merz, P., DeMartin, J., and Wisniewski, H. M., 1981, Partial purification of neurofilament subunits from bovine brains and studies on neurofilament assembly, J. Cell Biol. 89: 560–567.PubMedGoogle Scholar
  171. Mori, H., and Kurokawa, M., 1979, Purification of neurofilaments and their interaction with vinblastine sulphate, Cell Struct. Funct. (Jpn.) 4: 163–167.Google Scholar
  172. Mori, H., and Kurokawa, M., 1980, Morphological and biochemical characterisation of neurofilaments isolated from rat peripheral nerve, Biochem. Res. 1: 24–31.Google Scholar
  173. Morris, J. R., and Lasek, R. J., 1984, Monomer-polymer equilibria in the axon: Direct measurement of tubulin and actin as polymer and monomer in axoplasm, J. Cell Biol. 98: 2064–2076.PubMedGoogle Scholar
  174. Murachi, T., Tanaka, K., Hatanaka, M., and Murakami, T., 1981a, Intracellular calcium-dependent protease (calpain) and its high molecular weight and endogenous inhibitor (calpastatin), Adv. Enzyme Regul. 19: 407–424.Google Scholar
  175. Murachi, T., Hatanaka, M., Yasumoto, Y., Nakayama, N., and Tamaka, K., 1981b, A quantitative distribution study on calpain and calpastatin in rat tissue and cells, Biochem. Int. 2: 651–656.Google Scholar
  176. Murayama, A., Fukai, F., and Murachi, T., 1984, Action of calpain on the basic estrogen receptor molecule of porcine uterus, J. Biochem. 95:1617–1704.Google Scholar
  177. Myers, M. W., Lazzarini, R. A., Lee, V. M.-Y., Schlaepfer, W. W., and Nelson, D. L., 1987, The human midsize neurofilament subunit: A repeated protein sequence and the relationship of its gene to the intermediate filament gene family, EMBO J. 6: 1697–1626.Google Scholar
  178. Nagele, R. G., and Roisen, F. J., 1982, Ultrastructure of a new microtubule-neurofilament coupler in nerves, Brain Res. 253: 31–37.PubMedGoogle Scholar
  179. Napolitano, E. W., Chin, S. S. M., Colman, D. R., and Liem, R. K. H., 1987, Complete amino acid sequence and in vitro expression of rat NF-M, the middle molecular weight neurofilament protein, J. Neurosci. 7: 2590–2599.PubMedGoogle Scholar
  180. Nelson, W. J., and Traub, P., 1982, Purification and further characterization of the calcium activated proteinase specific for the intermediate filament proteins vimentin and desmin, J. Biol. Chem. 257: 5544–5553.PubMedGoogle Scholar
  181. Nicol, J. A. C., 1948, The giant nerve fibres in the central nervous system of Myxicola (Polychaeta sabellidae), Q. J. Microsc. Sci. 89:p.1–45.PubMedGoogle Scholar
  182. Nicol, J. A. C., and Whitteridge, D., 1955, Conduction in the giant axon of Myxicola infundibulum, Phys. Comp. Oecol. 4: 101–117.Google Scholar
  183. Nicol, J. A. C., and Young, J. Z., 1946, The giant nerve fibre of Myxicola infundibulum (Grube), Nature 158: 167–168.PubMedGoogle Scholar
  184. Nishizuki, Y., Takai, Y., Hashimoto, E., Kishimoto, A., Kuroda, Y., Sakai, K., and Yamamura, H., 1979, Regulation and functional compartment of three multifunctional protein kinase systems, Mol. Cell. Biochem. 23: 153–165.Google Scholar
  185. Nixon, R. A., 1980, Protein degradation in the mouse visual system. I. Degradation of axonally transported and retinal proteins, Brain Res. 200: 69–83.PubMedGoogle Scholar
  186. Nixon, R. A., 1983, Proteolysis of neurofilaments, in: Neurofilaments (C. A. Marotta, ed), University of Minnesota Press, Minneapolis, pp. 117–154.Google Scholar
  187. Nixon, R. A., 1986, Fodrin degradation by calcium-activated neutral proteinase (CANP) in retinal ganglion cell neurons and optic glia: Preferential localisation of CANP activities in neurons, J. Neurosci. 6: 1264–1271.PubMedGoogle Scholar
  188. Nixon, R. A., Brown, B. A., and Marotta, C., 1982, Posttranslational modification of a neurofilament protein during axoplasmic transport: Implications for regional specialization of CNS axons, J. Cell Biol. 94: 150–158.PubMedGoogle Scholar
  189. Nixon, R. A., Logvinenko, K. B., and Fisher, W. H., 1985, Evidence for a stationary non-uniform network of neurofilaments along retinal ganglion cell axons, Ann N.Y. Acad. Sci. 455: 797–800.Google Scholar
  190. Nixon, R. A., Quakenbush, R., and Vitto, A., 1986, Multiple calcium-activated neural proteinases (CANP) in mouse retinal ganglion cell neurons: Specifications for endogenous neuronal substrates and comparison to purified brain CANP, J. Neurosci. 6: 1252–1263.PubMedGoogle Scholar
  191. Noetzel, M. J., Roots, B. I., and Agrawal, H. C., 1986, Appearance and phosphorylation of the 210kd neurofilament protein in newborn rat brain, spinal cord, and sciatic nerve, Neurochem. Res. 11: 363–374.PubMedGoogle Scholar
  192. Norton, W. T., and Goldman, J. E., 1980, Neurofilaments, in: Proteins in the Nervous System, 2nded. (R. A. Bradshaw and D. M. Schneider, eds.), Raven Press, New York, pp. 301–329.Google Scholar
  193. Oblinger, M. M., and Schick, B., 1985, Posttranslational processing of neurofilament proteins in mammalian sensory neurons occurs over a slow time course in vivo, J. Cell Biol. 101: 17a.Google Scholar
  194. Ohno, S., Emori, Y., Imajoh, S., Kawasaki, H., Kisaragi, M., and Suzuki, K., 1984, Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium binding protein? Nature 312: 566–570.PubMedGoogle Scholar
  195. Orrego, F., 1971, Protein degradation in squid giant axons, J. Neurochem. 18: 2249–2254.PubMedGoogle Scholar
  196. Osborn, M., and Weber, K., 1983, Tumor diagnosis by intermediate filament typing: A novel tool for surgical pathology, Lab Invest. 48: 372–380.PubMedGoogle Scholar
  197. Pachter, J. S., and Liem, R. K. H., 1984, The differential appearance of neurofilament triplet polypeptides in the developing rat optic nerve, Dev. Biol. 103: 200–210.PubMedGoogle Scholar
  198. Pachter, J. S., and Liem, R. K. H., 1985, Alpha internexin, a 66KDa intermediate filament-binding protein from mammalian central nervous tissues, J. Cell Biol. 101: 1316–1322.PubMedGoogle Scholar
  199. Paggi, P., and Lasek, R. J., 1984, Degradation of purified neurofilament subunits by calcium-activated neutral protease: Characterization of the cleavage products, Neurochem. Int. 6: 589–597.PubMedGoogle Scholar
  200. Pant, H. C., and Gainer, H., 1980, Properties of calcium-activated protease in squid axoplasm which selectively degrades neurofilament proteins, J. Neurobiol. 11: 1–12.PubMedGoogle Scholar
  201. Pant, H. C., Schecket, G., Gainer, H., and Lasek, R. J., 1978, Neurofilament protein is phosphorylated in the squid giant axon, J. Cell Biol. 78: R23–R27.PubMedGoogle Scholar
  202. Pant, H. C., Terakawa, S., and Gainer, H., 1979a, A calcium-activated protease in squid axoplasm, J. Neurochem. 32: 99–102.PubMedGoogle Scholar
  203. Pant, H. C., Yashioka, T., Tasaki, I., and Gainer, H., 1979b, Divalent cation dependent phosphorylation of proteins in squid giant axon, Brain Res. 162: 303–314.PubMedGoogle Scholar
  204. Pant, H. C., Pollard, H. B., Pappas, G. D., and Gainer, H., 1979c, Phosphorylation of specific, distinct proteins in synaptosomes and axons from squid nervous system, Proc. Natl. Acad. Sci. USA 76: 6086–6090.Google Scholar
  205. Pant, H. C., Gallant, P. E., Gould, R., and Gainer, H., 1982, Distribution of calcium-activated protease activity and endogenous substrates in the squid nervous system, J. Neurosci. 2: 1578–1587.PubMedGoogle Scholar
  206. Pant, H. C., Gallant, P. E., and Gainer, H., 1986, Characterization of a cyclic nucleotide-and calcium-independent neurofilament protein kinase activity in axoplasm from the squid giant axon, J. Biol. Chem. 261: 2968–2977.PubMedGoogle Scholar
  207. Papasozomenos, S. C., Binder, L. I., Bender, P. K., and Payne, M. R., 1983, Microtubule-associated protein 2 within axons of spinal motor neurons: Associations with microtubules and neurofilaments in normal and β,β’-iminodipropionitrile-treated axons, J. Cell Biol. 100: 74–85.Google Scholar
  208. Parker, G. H., 1929, The neurofibril hypotheses, Q. Rev. Biol. 4: 155–178.Google Scholar
  209. Parry, D. A. D., and Fraser, R. D. B., 1985, Intermediate filament structure: Analysis of IF protein sequence data, Int. J. Biol. Macromol. 7: 203–213.Google Scholar
  210. Peters, A., 1968, Characterisation of microtubules, neurofilaments and cross-bridges in various neuronal types, Neurosci. Res. Progr. Bull. 6: 162–168.Google Scholar
  211. Peters, A., and Vaughn, J. E., 1967, Microtubules and filaments in the axons and astrocytes of early postnatal rat optic nerves, J. Cell Biol. 32: 113–119.PubMedGoogle Scholar
  212. Phillips, D. R., and Jakobova, M., 1977, Calcium-dependent protease in human platelets, J. Biol. Chem. 252: 5602–5605.PubMedGoogle Scholar
  213. Phillips, L. L., Autilio-Gambetti, L., and Lasek, R. J., 1983, Bodian’s silver method reveals molecular variations in the evolution of neurofilament proteins, Brain Res. 278: 219–223.PubMedGoogle Scholar
  214. Pruss, R. M., 1985, Efficient detection of intermediate filament proteins using a panspecific monoclonal antibody: AntiIFA, J. Neuroimmunol. 8: 293–299.PubMedGoogle Scholar
  215. Pruss, R. M., Mirsky, R., Raff, M. C., Thorpe, R., Dowding, A. J., and Anderton, B. H., 1981, All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody, Cell 27: 419–428.PubMedGoogle Scholar
  216. Puca, G. A., Nola, E., Sica, V., and Breciani, F., 1977, Estrogen binding of proteins of calf uterus. Molecular and functional characterization of the receptor transforming factor: A calcium-activated protease, J. Biol. Chem. 252: 1358–1370.PubMedGoogle Scholar
  217. Rice, R. V., Roolansky, P. F., Pascoe, N., and Houghton, S. M., 1980, Bridges between microtubules and neurofilaments visualised by stereo electron microscopy, J. Ultrastruct. Res. 71: 303–310.PubMedGoogle Scholar
  218. Richards, Jr., A. G., Steinback, H. B., and Anderson, T. F., 1943, Electron microscope studies of squid giant nerve axoplasm, J. Cell. Comp. Physiol. 21: 129–143.Google Scholar
  219. Roberts, M. B. V., 1962, The rapid response of Myxicola infundibulum (Grube),J. Mar. Biol. Assoc. U.K. 42: 527–539.Google Scholar
  220. Robinson, R. A., Wion, D., and Anderton, B. H., 1986, Isolation of a cDNA for the rat heavy neurofilament polypeptide (NF-H), FEBS Lett. 209: 203–205.PubMedGoogle Scholar
  221. Roots, B. I., 1983, Neurofilament accumulation induced in synapses by leupeptin, Science 221: 971–972.PubMedGoogle Scholar
  222. Roslansky, P. F., Cornell-Bell, A., Rice, R. V., and Adelman, Jr., W. J., 1980, Polypeptide composition of squid neurofilaments, Proc. Natl. Acad. Sci. USA 77: 404–408.PubMedGoogle Scholar
  223. Runge, M. S., El-Magbrabi, M. R., Clans, T. H., Pilkis, S. J., and Williams, Jr., R. C., 1981a, A MAP-2 stimulated protein kinase activity associated with neurofilaments, Biochemistry 20: 175–180.PubMedGoogle Scholar
  224. Runge, M. S., Laue, T. M., Yphantis, D. A., Lifsics, M. R., Saito, A., Altin, M., Reinke, K., and Williams, Jr., R. C., 1981b, ATP-induced formation of an associated complex between microtubules and neurofilaments, Proc. Natl. Acad. Sci. USAIS: 1431-1435.Google Scholar
  225. Runge, M. S., Schlaepfer, W. W., and Williams, Jr., R. C., 1981c, Isolation and characterisation of neurofilaments from mammalian brain, Biochemistry 20: 170–175.PubMedGoogle Scholar
  226. Sakihama, T., Kakidani, H., Zenita, K., Yumoto, N., Kikuchi, T., Sasaki, T., Kannagi, R., Nakanishi, S., Ohmori, M., Kohi, T., Titani, K., and Murachi, T., 1985, A putative calcium-binding protein: Structure of the light subunit of porcine calpain elucidated by molecular cloning and protein sequence analysis, Proc. Natl. Acad. Sci. USA 82: 6075–6079.PubMedGoogle Scholar
  227. Sayre, L. M., Autilio-Gambetti, L., and Gambetti, P., 1985, Pathogenesis of experimental giant neurofilamentous axonopathies: A unified hypothesis based on chemical modification of neurofilaments, Brain Res. Rev. 10: 69–83.Google Scholar
  228. Schlaepfer, W. W., 1974, Calcium-induced degeneration of axoplasm in isolated segments of rat peripheral nerve, Brain Res. 69: 203–215.PubMedGoogle Scholar
  229. Schlaepfer, W. W., 1977a, Studies on the isolation and substructure of mammalian neurofilaments, J. Ultrastruct. Res. 61: 149–157.PubMedGoogle Scholar
  230. Schlaepfer, W. W., 1977b, Immunological and ultrastructural studies of neurofilaments isolated from rat peripheral nerve, J. Cell Biol. 74: 226–240.PubMedGoogle Scholar
  231. Schlaepfer, W. W., 1977c, Structural alterations of peripheral nerve induced by the calcium ionophore A23187, Brain Res. 136: 1–9.PubMedGoogle Scholar
  232. Schlaepfer, W. W., 1978, Observations on the disassembly of isolated mammalian neurofilaments, J. Cell Biol. 76: 50–56.PubMedGoogle Scholar
  233. Schlaepfer, W. W., 1983, Neurofilaments of mammalian peripheral nerve, in: Neurofilaments (C. A. Marotta, ed.), University of Minnesota Press, Minneapolis, pp. 57–85.Google Scholar
  234. Schlaepfer, W. W., and Bunge, R. P., 1973, Effects of calcium ion concentration on the degeneration of amputated axons in tissue culture, J. Cell Biol. 59: 456–470.PubMedGoogle Scholar
  235. Schlaepfer, W. W., and Freeman, L. A., 1978, Neurofilament proteins of rat peripheral nerve and spinal cord, J. Cell Biol. 78: 653–662.PubMedGoogle Scholar
  236. Schlaepfer, W. W., and Freeman, L. A., 1980, Calcium-dependent degradation of mammalian neurofilaments by soluble tissue factor(s) from rat spinal cord, Neuroscience 5: 2305–2314.PubMedGoogle Scholar
  237. Schlaepfer, W. W., and Micko, S., 1978, Chemical and structural changes of neurofilaments in transected rat sciatic nerve, J. Cell Biol. 78: 369–378.PubMedGoogle Scholar
  238. Schlaepfer, W. W., and Zimmerman, U. J., 1985a, Calcium activated proteolysis of intermediate filaments, Ann. N.Y. Acad. Sci. 455: 552–562.PubMedGoogle Scholar
  239. Schlaepfer, W. W., and Zimmerman, U. J., 1985b, Mechanisms underlying the neuronal response to ischemic injury. Calcium-activated proteolysis of neurofilaments, Prog. Brain Res. 63: 185–196.PubMedGoogle Scholar
  240. Schlaepfer, W. W., Lee, V., and Wu, H.-L. 1981a, Assessment of immunological properties of neurofilament triplet proteins, Brain Res. 226: 259–272.PubMedGoogle Scholar
  241. Schlaepfer, W. W., Zimmerman, U. J. P., and Micko, S., 1981b, Neurofilament proteolysis in rat peripheral nerve. Homologous with calcium-activated proteolysis of other tissues, Cell Calcium 2: 235–250.Google Scholar
  242. Schlaepfer, W. W., Lee, C., Trojanowski, J. Q., and Lee, V. M.-Y., 1984, Persistence of immunoreactive neurofilament protein breakdown products in transected rat sciatic nerve, J. Neurochem. 43: 857–864.PubMedGoogle Scholar
  243. Schlaepfer, W. W., Lee, C., Lee, V. M.-Y., and Zimmerman, U. J. P., 1985, An immunoblot study of neurofilament degradation in situ and during calcium-activated proteolysis, J. Neurochem. 44: 502–509.PubMedGoogle Scholar
  244. Schmitt, F. O., 1950, The structure of the axon filaments of the giant nerve fibers of Loligo and Myxicola, J. Exp. Zool. 113: 499–515.Google Scholar
  245. Schmitt, F. O., 1968a, The molecular biology of neuronal fibrous proteins, Neurosci. Res. Progr. Bull. 6: 119–144.Google Scholar
  246. Schmitt, F. O., 1968b, Fibrous proteins—Neuronal organelles, Proc. Natl. Acad. Sci. USA 60: 1092–1101.PubMedGoogle Scholar
  247. Schnapp, B. J., and Reese, T. S., 1982, Cytoplasmic structure in rapid-frozen axons, J. Cell Biol. 94: 667–679.PubMedGoogle Scholar
  248. Scott, D., Smith, K. E., O’Brien, B. J., and Angelides, K. J., 1985, Characterisation of mammalian neurofilament triplet proteins, subunit stoichiometry and morphology of native and reconstituted filaments, J. Biol. Chem. 260: 10736–10747.PubMedGoogle Scholar
  249. Sharp, G. A., Shaw, G., and Weber, K., 1982, Immunoelectronmicroscopical localization of the three neurofilament triplet proteins along neurofilaments of cultured dorsal root ganglion neurones, Exp. Cell Res. 137: 403–413.PubMedGoogle Scholar
  250. Shaw, G., and Bray, D., 1977, Movement and extension of isolated growth cones, Exp. Cell Res. 104: 55–62.PubMedGoogle Scholar
  251. Shaw, G., and Weber, K., 1981, The distribution of the neurofilament triplet proteins within individual neurones, Exp. Cell Res. 136: 119–125.PubMedGoogle Scholar
  252. Shaw, G., and Weber, K., 1982, Differential expression of neurofilament triplet proteins in brain development, Nature 298: 277–279.PubMedGoogle Scholar
  253. Shaw, G., Osborn, M., and Weber, K., 1981, An immunofluorescence microscopical study of the neurofilament triplet proteins, vimentin and glial fibrillary acidic protein within the adult rat brain, Eur. J. Cell Biol. 26: 68–82.PubMedGoogle Scholar
  254. Shaw, G., Debus, E., and Weber, K., 1984, The immunological relatedness of neurofilament proteins of higher vertebrates, Eur. J. Cell Biol. 34: 130–136.PubMedGoogle Scholar
  255. Shecket, G., and Lasek, R. J., 1980, Preparation of neurofilament protein from guinea pig peripheral nerve and spinal cord, J. Neurochem. 35: 1335–1344.PubMedGoogle Scholar
  256. Shecket, G., and Lasek, R. J., 1982, Neurofilament protein phosphorylation: Species generality and reaction characteristics, J. Biol Chem. 257: 4788–4795.PubMedGoogle Scholar
  257. Shelanski, M. L., Albert, S., DeVries, G. H., and Norton, W. T., 1971, Isolation of filaments from brain, Science 174: 1242–1245.PubMedGoogle Scholar
  258. Shelanski, M. L., Leterrier, J.-F., and Liem, R. K. H., 1981, Evidence for interactions between neurofilaments and microtubules, Neurosci. Res. Progr. Bull. 19: 32–43.Google Scholar
  259. Siman, R., Baudry, M., and Lynch, G., 1984, Brain fodrin: Substrate for calpain I, an endogenous calcium-activated protease, Proc. Natl. Acad. Sci. USA 81: 3572–3576.PubMedGoogle Scholar
  260. Smith, D. E., 1973, The location of neurofilaments and microtubules during the postnatal development of Clarke’s nucleus in the kitten, Brain Res. 55: 41–53.PubMedGoogle Scholar
  261. Smith, R. S., 1973, Microtubule and neurofilament densities in amphibian spinal root nerve fibres: Relationship to axoplasmic transport, Can. J. Physiol. Pharmacol. 51: 798–806.PubMedGoogle Scholar
  262. Stefansson, K., Marton, L. S., Dierpefink, M. E., Molnar, G. K., Schlaepfer, W. W., and Helgason, C. M., 1985, Circulating autoantibodies to the 200,000-dalton protein of neurofilaments in the serum of healthy individuals, Science 228: 1117–1119.PubMedGoogle Scholar
  263. Steiner, J. P., Ling, E., and Bennet, V., 1987, Nearest neighbour analysis for brain synapsin 1, J. Biol. Chem. 262: 905–914.PubMedGoogle Scholar
  264. Steinert, P. M., 1981, Intermediate filaments, in: Electron Microscopy of Proteins I (J. R. Harris, ed.), Academic Press, New York, pp. 125–166.Google Scholar
  265. Steinert, P. M., and Parry, D. A. D., 1985, Intermediate filaments, Annu. Rev. Cell Biol. 1: 41–65.PubMedGoogle Scholar
  266. Steinert, P. M., Wantz, M. L., and Idler, W. W., 1982, O-phosphoserine content of intermediate subunits, Biochemistry 21: 177–183.PubMedGoogle Scholar
  267. Steinert, P. M., Rice, R. H., Roop, D. R., Trus, B. L., and Steven, A. C., 1983, Complete amino acid sequence of a mouse epidermal keratin subunit and implications for the structure of intermediate filaments, Nature 302: 794–800.PubMedGoogle Scholar
  268. Sternberger, L. A., and Sternberger, N. H., 1983, Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ, Proc. Natl. Acad. Sci. USA 80: 6126–6130.PubMedGoogle Scholar
  269. Sternberger, L. A., Harwell, L. W., and Sternberger, N. H., 1982, Neurotypy: Regional individuality in rat brain detected by immunocytochemistry with monoclonal antibodies, Proc. Natl. Acad. Sci. USA 79: 1326–1330.PubMedGoogle Scholar
  270. Suzuki, K., Tsuji, S., Kubota, S., Kimura, Y., and Imahora, K., 1981, Limited autolysis of calcium-activated neutral protease (CANP) changes its sensitivity to calcium ions, J. Biochem. 90: 275–278.PubMedGoogle Scholar
  271. Tashiro, T., and Ishizaki, Y., 1982, A calcium-dependent protease selectively degrading the 160,000 Mr component of neurofilaments is associated with the cytoskeletal preparation of the spinal cord and has an endogenous inhibitory factor, FEBS Lett. 141: 41–44.PubMedGoogle Scholar
  272. Tashiro, T., Kurokawa, M., and Komiya, Y., 1984, Two populations of axonally transported tubulin differentiated by their interactions with neurofilaments, J. Neurochem. 43: 1220–1225.PubMedGoogle Scholar
  273. Thorpe, R., Delacourte, A., Ayers, M., Bullock, G., and Anderton, B. H., 1979, The polypeptides of isolated brain 10nm filaments and their association with polymerised tubulin, Biochem. J. 181: 275–284.PubMedGoogle Scholar
  274. Togari, A., Ichikawa, S., and Nagatsu, T., 1986, Activation of tyrosine hydroxylase by calcium-dependent neutral protease, calpain, Biochem. Biophys. Res. Commun. 134: 749–754.PubMedGoogle Scholar
  275. Tokutake, S., 1984, Complete separation of the triplet components of neurofilaments by DE-52 column chromatography depends on urea concentration, Anal. Biochem. 140: 203–207.PubMedGoogle Scholar
  276. Tokutake, S., Liem, R. K. H., and Shelanski, M. L., 1984, Each component of neurofilament assembles itself to make component-specific filament, Biomed. Res. 5: 235–238.Google Scholar
  277. Toru-Delbauffe, D., and Pierre, M., 1983, A rat brain protein kinase phosphorylating specifically neurofilaments, FEBS Lett. 162: 230–234.PubMedGoogle Scholar
  278. Traub, P., 1984, Large scale isolation, purification and partial characterization of the intermediate filament-specific calcium-activated proteinase from porcine kidney and Ehrlich ascites tumour cells: A comparative study, Arch. Biochem. Biophys. 228: 120–132.PubMedGoogle Scholar
  279. Traub, P., 1985, Are intermediate filament proteins involved in gene expression? Ann. N.Y. Acad. Sci. 455: 68–78.Google Scholar
  280. Traub, P., and Nelson, W. J., 1981, Occurrence in various mammalian cells and tissues of the calcium-activated protease specific for the intermediate-sized filament proteins vimentin and desmin, Eur. J. Cell Biol. 26: 61–67.PubMedGoogle Scholar
  281. Triplett. R. B., Wingate, J. M., and Carraway, K. L., 1972, Calcium effects on erythrocyte membrane proteins, Biochem. Biophys. Res. Commun. 49: 1014–1020.PubMedGoogle Scholar
  282. Trojanowski, J. Q., Obrocka, M. A., and Lee, V. M.-Y., 1985, Distribution of bovine neurofilament subunits in neurons and neuronal processes: Immunohistochemical studies of bovine cerebellum with subunit specific monoclonal antibodies, J. Histochem. Cytochem. 33: 557–563.PubMedGoogle Scholar
  283. Truglia, J. A., and Stracher, A., 1981, Purification and characterization of a calcium dependent sulphydryl protease from human platelets, Biochem. Biophys. Res. Commun. 100: 814–822.PubMedGoogle Scholar
  284. Tsukita, S., and Ishikawa, H., 1979, Morphological evidence for the involvement of the smooth endoplasmic reticulum in axonal transport, Brain Res. 174: 315–318.PubMedGoogle Scholar
  285. Tsukita, S., and Ishikawa, H., 1981, The cytoskeleton in myelinated axons: Serial section study, Biomed. Res. 2: 424–437.Google Scholar
  286. Tsukita, S., Usukura, J., Tsukita, S., and Ishikawa, H., 1982, The cytoskeleton in myelinated axons: A freezeetch replica study, Neuroscience 7: 2135–2147.PubMedGoogle Scholar
  287. Tsung, P. K., and Lombardini, J. B., 1985, Identification of low calcium and high calcium-requiring neutral proteases in rat retina, Exp. Eye Res. 41: 97–103.PubMedGoogle Scholar
  288. Vargas, V., Greenbaum, L., and Costa, E., 1980, Participation of cysteine proteinase in the high affinity calcium-dependent binding of glutamate to hippocampal synaptic membranes, Neuropharmacology 19: 791–794.PubMedGoogle Scholar
  289. Vedeckis, W. V., Freeman, M. R., Schrader, W. T., and O’Malley, B. W., 1980, Progesterone-binding components of chick oviduct: Partial purification and characterization of a calcium-activated protease which hydrolyses the progesterone receptor, Biochemistry 19: 335–343.PubMedGoogle Scholar
  290. Vitadello, M., Triban, C., Fabris, M., Gorio, A., and Schiaffino, S., 1986, Heterogeneity of rat neurofilament polypeptides revealed by a monoclonal antibody, J. Neurochem. 46: 665–670.PubMedGoogle Scholar
  291. Vitto, A., and Nixon, R. A., 1986, Calcium-activated neutral proteinase of human brain: Subunit structure and enzymatic properties of multiple molecular forms, J. Neurochem. 47: 1039–1051.PubMedGoogle Scholar
  292. Wais-Steider, C., Eagles, P. A. M., Gilbert, D. S., and Hopkins, J., 1983, Structural similarities and differences amongst neurofilaments, J. Mol. Biol. 165: 393–400.PubMedGoogle Scholar
  293. Wais-Steider, C., White, N. S., Gilbert, D. S., and Eagles, P. A. M., 1987, X-ray diffraction patterns from microtubules and neurofilaments in axoplasm, J. Mol. Biol. 197: 205–218.PubMedGoogle Scholar
  294. Wallach, D. P., Davies, J. A., and Pastan, I. 1978, Purification of mammalian filamin, J. Biol. Chem. 253: 3328–3335.Google Scholar
  295. Weber, K., and Geisler, N., 1985, Intermediate filaments: Structural conservation and divergence, Ann N.Y. Acad. Sci. 455: 126–143.PubMedGoogle Scholar
  296. Weiss, P. A., and Mayr, R., 1971, Organelles and neuroplasmic (axonal) flow: Neurofilaments, Proc. Natl. Acad. Sci. USA 68: 846–850.PubMedGoogle Scholar
  297. Wells, J. A., Besso, J. A., Jr., Boldosser, W. G., and Parsons, R. L., 1972, The fine structure of the nerve cord of Myxicola infundibulum (Annelida, Polychaeta), Z. Zellforsch. Mikrosk. Anat. 131: 141–148.PubMedGoogle Scholar
  298. Willard, M., 1983, Neurofilaments and axonal transport, in: Neurofilaments (C. A. Marotta, ed.), University of Minnesota Press, Minneapolis, pp. 86–116.Google Scholar
  299. Willard, M., and Simon, C., 1981, Antibody decoration of neurofilaments, J. Cell Biol. 89: 198–205.PubMedGoogle Scholar
  300. Willard, M., and Simon, C., 1983, Modulations of neurofilament axonal transport during the development of rabbit retinal ganglion cells, Cell 35: 551–559.PubMedGoogle Scholar
  301. Williams, Jr., R. C., and Aamodt, E. J., 1985, Interactions between microtubules and neurofilaments in vitro, Ann. N.Y. Acad. Sci. 455: 462–478.Google Scholar
  302. Williams, Jr., R. C., and Runge, M. S., 1983, Biochemistry and structure of mammalian neurofilaments, in: Cell and Muscle Motility, Volume 3 (R. M. Dowber and J. W. Shay, eds.), Plenum Press, New York, pp. 41–56.Google Scholar
  303. Wong, J., Hutchison, S. B., and Liem, R. K. H., 1984, An isoelectric variant of the 150,000-dalton neurofilament polypeptide: Evidence that phosphorylation state affects its association with the filament, J. Biol. Chem 259: 10867–10874.PubMedGoogle Scholar
  304. Wuerker, R. B., 1970, Neurofilaments and glial filaments, Tissue Cell 2: 1–9.PubMedGoogle Scholar
  305. Wuerker, R. B., and Kirkpatrick, J. B., 1972, Neuronal microtubules, neurofilaments and microfilaments, Int. Rev. Cytol. 33: 45–75.PubMedGoogle Scholar
  306. Yamada, M., Spooner, B. S., and Wessells, N. K., 1971, Ultrastructure and function of growth cones and axons of cultured nerve cells, J. Cell Biol. 49: 614–635.PubMedGoogle Scholar
  307. Yoshimura, N., Hatanaka, M., Kitahara, A., Kawaguchi, N., and Murachi, T., 1984, Intracellular localization of two distinct calcium-proteases (calpain I and calpain II) as demonstrated by using discriminative antibodies, J. Biol. Chem. 259: 9847–9852.PubMedGoogle Scholar
  308. Zackroff, R. V., and Goldman, R. D., 1980, In vitro reassembly of squid brain intermediate filaments (neurofilaments): Purification by assembly-disassembly, Science 208: 1152–1154.PubMedGoogle Scholar
  309. Zackroff, R. V., Idler, W. W., Steinert, P. M., and Goldman, R. D., 1982, In vitro reconstruction of intermediate filaments from mammalian neurofilament triplet polypeptides, Proc. Natl. Acad. Sci. USA 79: 754–757.PubMedGoogle Scholar
  310. Zackroff, R. V., Hill, W. D., and Tytell, M., 1984, Assembly and organization of neurofilaments in the squid giant axon, J. Cell Biol. 99: 323a.Google Scholar
  311. Zimmerman, U. J., and Schlaepfer, W. W., 1984a, Calcium-activated neutral protease (CANP) in brain and other tissues, Prog. Neurobiol. 23: 63–78.PubMedGoogle Scholar
  312. Zimmerman, U. J., and Schlaepfer, W. W., 1984b, Multiple forms of calcium-activated protease from rat brain and muscle, J. Biol. Chem. 259: 3210–3218.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • P. A. M. Eagles
    • 1
  • H. C. Pant
    • 2
  • H. Gainer
    • 3
    • 4
  1. 1.Department of BiophysicsKing’s College LondonLondonUK
  2. 2.Laboratory of Preclinical Studies, National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleUSA
  3. 3.Laboratory of Neurochemistry and NeuroimmunologyNational Institute of Child HealthBethesdaUSA
  4. 4.Human DevelopmentNational Institutes of HealthBethesdaUSA

Personalised recommendations