Intermediate (10-nm) Filaments in Muscle

  • Marvin H. Stromer

Abstract

The purpose of this chapter is to provide an overview of 10-nm filaments in smooth, skeletal, and cardiac muscle with an emphasis on newer developments. The intent was not to provide an exhaustive literature review but, instead, to include a sampling of research from different laboratories. In this way, the reader can easily track research on a particular topic or from a certain laboratory. More detail is provided on 10-nm filaments from smooth muscle because that has been the tissue of choice for the majority of studies on 10-nm filaments from muscle. The sections on 10-nm filaments from skeletal and from cardiac muscle emphasize both unique properties and comparisons with the smooth muscle system.

Keywords

Intermediate Filament Dense Body Thin Filament Coiled Coil Vimentin Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashton, F., Somlyo, A. V., and Somlyo, A. P., 1975, The contractile apparatus of vascular smooth muscle: Intermediate high voltage stereo electron microscopy, J. Mol. Biol. 98: 17–29.PubMedCrossRefGoogle Scholar
  2. Behrendt, H., 1977, Effect of anabolic steroids on rat heart muscle cells. I. Intermediate filaments, Cell Tissue Res. 180: 303–315.PubMedCrossRefGoogle Scholar
  3. Bennett, G., Fellini, S., Toyama, Y., and Holtzer, H., 1979, Redistribution of intermediate filament subunits during skeletal myogenesis and maturation in vitro, J. Cell Biol. 82: 577–584.PubMedCrossRefGoogle Scholar
  4. Bond, M., and Somlyo, A. V., 1982, Dense bodies and actin polarity in vertebrate smooth muscle, J. Cell Biol. 95: 403–413.PubMedCrossRefGoogle Scholar
  5. Breckler, J., and Lazarides, E., 1982, Isolation of a new high molecular weight protein associated with desmin and vimentin filaments from avian embryonic skeletal muscle, J. Cell Biol. 92: 795–806.PubMedCrossRefGoogle Scholar
  6. Campbell, G., Uehara, Y., Mark, G. and Burnstock, G., 1971, Fine structure of smooth muscle cells grown in tissue culture, J. Cell Biol. 49: 21–34.PubMedCrossRefGoogle Scholar
  7. Capetanaki, Y., Ngai, J., and Lazarides, E., 1984, Characterization and regulation in the expression of a gene coding for the intermediate filament protein desmin, Proc. Natl. Acad. Sci. USA 81: 6909–6913.PubMedCrossRefGoogle Scholar
  8. Carlson, E., Kjorell, U., and Thorneil, L.-E., 1982, Differentiation of the myofibrils and the intermediate filament system during postnatal development of the rat, Eur. J. Cell Biol. 27: 62–73.Google Scholar
  9. Cooke, P., 1976, A filamentous cytoskeleton in vertebrate smooth muscle fibers, J. Cell Biol. 68: 539–556.PubMedCrossRefGoogle Scholar
  10. Cooke, P., and Chase, R., 1971, Potassium chloride insoluble myofilaments in vertebrate smooth muscle cells, Exp. Cell Res. 66: 417–426.PubMedCrossRefGoogle Scholar
  11. Cooke, P., and Fay, F., 1972, Correlation between fiber length, ultrastructure, and the length-tension relationship of mammalian smooth muscle, J. Cell Biol. 52: 105–116.PubMedCrossRefGoogle Scholar
  12. Dale, B., Resing, K., and Lonsdale-Eccles, J., 1985, Filaggrin: A keratin filament associated protein, Proc. Natl. Acad. Sci. USA 82: 330–342.CrossRefGoogle Scholar
  13. Fay, F., Fujiwara, K., Rees, D., and Fogarty, K., 1983, Distribution of alpha-actinin in single isolated smooth muscle cells, J. Cell Biol. 96: 783–795.PubMedCrossRefGoogle Scholar
  14. Fellini, S., Bennett, G., Toyama, Y., and Holtzer, H., 1978, Biochemical and immunological heterogeneity of 100Å filament subunits from different chick cell types, Differentiation 12: 59–69.PubMedCrossRefGoogle Scholar
  15. Ferrans, V., and Roberts, W., 1973, Intermyofibrillar and nucleomyofibrillar connections in human and canine myocardium. An ultrastructural study, J. Mol. Cell. Cardiol. 5: 247–257.PubMedCrossRefGoogle Scholar
  16. Forbes, M., and Sperelakis, N., 1983, The membrane systems and cytoskeletal elements of mammalianmyocardial cells, in: Cell and Muscle Motility, Volume 3 (R. M. Dowben and J. W. Shay, eds.), Plenum Press, New York, pp. 89–155.CrossRefGoogle Scholar
  17. Frank, E., and Warren, L., 1981, Aortic smooth muscle cells contain vimentin instead of desmin, Proc. Natl. Acad. Sci. USA 78: 3020–3024.PubMedCrossRefGoogle Scholar
  18. Franke, W., Zerban, H., Grund, C., and Schmid, E., 1981, Electron microscopy of vimentin filaments and associated whisker structures in thin sections and freeze-fractures, Biol. Cell 41: 173–178.Google Scholar
  19. Fraser, R., Mac Rae, T., Suzuki, E., Parry, D., Trajstman, A., and Lucas, I., 1985, Intermediate filament structure: 2. Molecular interactions in the filament, Int. J. Biol. Macromol. 7: 258–274.CrossRefGoogle Scholar
  20. Fuseler, J., and Shay, J., 1982, The association of desmin with the developing myofibrils of cultured embryonic rat heart myocytes, Dev. Biol. 91: 448–457.PubMedCrossRefGoogle Scholar
  21. Gabbiani, G., Schmid, E., Winter, S., Chaponnier, C., de Chastonay, C., Vandekerckhove, J., Weber, K., and Franke, W., 1982, Vascular smooth muscle cells differ from other smooth muscle cells: Predominance of vimentin filaments and a specific alpha-type actin, Proc. Natl. Acad. Sci. USA 78: 298–302.CrossRefGoogle Scholar
  22. Gard, D., and Lazarides, E., 1980, The synthesis and distribution of desmin and vimentin during myogenesis in vitro, Cell 19: 263–275.PubMedCrossRefGoogle Scholar
  23. Garfield, R., and Somlyo, A. P., 1985, Structure of smooth muscle, in Calcium and Contractility: Smooth Muscle (A. K. Grover and E. E. Daniel, eds.), Humana Press, Clifton, N.J., pp. 1–36.CrossRefGoogle Scholar
  24. Geisler, N., and Weber, K., 1981, Comparison of the proteins of two immunologically distinct intermediatesized filaments by amino acid sequence analysis: Desmin and vimentin, Proc. Natl. Acad. Sci. USA 78: 4120–4123.PubMedCrossRefGoogle Scholar
  25. Geisler, N., and Weber, K., 1982, The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins, EMBO J. 1: 1649–1656.PubMedGoogle Scholar
  26. Geisler, N., and Weber, K., 1983, Amino acid sequence data on glial fibrillary acidic protein (GFA): Implications for the subdivision of intermediate filaments into epithelial and non-epithelial members, EMBO J. 2: 2059–2063.PubMedGoogle Scholar
  27. Geisler, N., and Weber, K., 1988, Phosphorylation of desmin in vitro inhibits formation of intermediate filaments; identification of three kinase A sites in the aminoterminal head domain, EMBO J. 7: 15–20.PubMedGoogle Scholar
  28. Geisler, N., Kaufmann, E., and Weber, K., 1982, Proteinchemical characterization of three structurally distinct domains along the protofilament unit of desmin 10-nm filaments, Cell 30: 277–286.PubMedCrossRefGoogle Scholar
  29. Geisler, N., Kaufmann, E., and Weber, K., 1985, Antiparallel orientation of the two double-stranded coiled-coils in the tetrameric protofilament unit of intermediate filaments, J. Mol. Biol. 182: 173–177.PubMedCrossRefGoogle Scholar
  30. Goldman, R., Goldman, A., Green, K., Jones, J., Jones, S., and Yang, H.-Y., 1986, Intermediate filament networks: Organization and possible functions of a diverse group of cytoskeletal elements, J. Cell Sci. Suppl. 5: 69–97.PubMedCrossRefGoogle Scholar
  31. Granger, B., and Lazarides, E., 1980, Synemin: A new high molecular weight protein associated with desmin and vimentin filaments in muscle, Cell 22: 727–738.PubMedCrossRefGoogle Scholar
  32. Hartzer, M., 1984, Purification and properties of porcine cardiac desmin and vascular smooth muscle vimentin, Ph.D. dissertation, Iowa State University, Ames (Microfilm No. DA8505825, University Microfilms, Ann Arbor).Google Scholar
  33. Henderson, D., Geisler, N., and Weber, K., 1982, A periodic ultrastructure in intermediate filaments, J. Mol. Biol. 155: 173–176.PubMedCrossRefGoogle Scholar
  34. Hubbard, B., and Lazarides, E., 1979, Co-purification of actin and desmin from chicken smooth muscle and their copolymerization in vitro to intermediate filaments, J. Cell Biol. 80: 166–182.PubMedCrossRefGoogle Scholar
  35. Huiatt, T., Robson, R., Arakawa, N., and Stromer, M., 1980, Desmin from avian smooth muscle, J. Biol. Chem. 255: 6981–6989.PubMedGoogle Scholar
  36. Ip, W., 1988, Modulation of desmin intermediate filament assembly by a monoclonal antibody, J. Cell Biol. 106: 735–745.PubMedCrossRefGoogle Scholar
  37. Ip, W., Hartzer, M., Pang, Y., and Robson, R., 1985a, Assembly of vimentin in vitro and its implications concerning the structure of intermediate filaments, J. Mol. Biol. 183: 365–375.PubMedCrossRefGoogle Scholar
  38. Ip, W., Heuser, J., Pang, Y., Hartzer, M., and Robson, R., 1985b, Subunit structure of desmin and vimentin protofilaments and how they assemble into intermediate filament, Ann. N.Y. Acad. Sci. 455: 185–199.PubMedCrossRefGoogle Scholar
  39. Ishikawa, H., Bischoff, R., and Holtzer, H., 1968, Mitosis and intermediate-sized filaments in developing skeletal muscle, J. Cell Biol. 38: 538–555.PubMedCrossRefGoogle Scholar
  40. Izant, J., and Lazarides, E., 1977, Invariance and heterogeneity in the major structural and regulatory proteins of chick muscle cells revealed by two dimensional gel electrophoresis, Proc. Nad. Acad. Sci. USA 74: 1450–1454.CrossRefGoogle Scholar
  41. Kaufmann, E., Weber, K., and Geisler, N., 1985, Intermediate filament forming ability of desmin derivatives lacking either the amino-terminal 67 or the carboxy-terminal 27 residues, J. Mol. Biol. 185: 733–742.PubMedCrossRefGoogle Scholar
  42. Kelly, D., 1969, Myofibrillogenesis and Z-band differentiation, Anat. Rec. 163: 403–426.PubMedCrossRefGoogle Scholar
  43. Kjorell, U., Thornell, L.-E., Lehto, V.-P., Virtanen, I., and Whalen, R. G., 1987, A comparative analysis of intermediate filament proteins in bovine heart Purkinje fibers and gastric smooth muscle, Eur. J. Cell Biol. 44: 68–78.PubMedGoogle Scholar
  44. Langley, R., and Cohen, C., 1986, Association of spectrin with desmin intermediate filaments, J. Cell. Biochem. 30: 101–109.PubMedCrossRefGoogle Scholar
  45. Lazarides, E., and Granger, B., 1978, Fluorescent localization of membrane sites in glycerinated chicken skeletal muscle fibers and the relationship of these sites to the protein composition of the Z disc, Proc. Natl. Acad. Sci. USA 75: 3683–3687.PubMedCrossRefGoogle Scholar
  46. McLachlan, A., and Stewart, M., 1982, Periodic charge distribution and the intermediate filament proteins desmin and vimentin, J. Mol. Biol. 162: 693–698.PubMedCrossRefGoogle Scholar
  47. Milam, L., and Erickson, H., 1984, Structural characteristics of the desmin protofilament, J. Ultrastruct. Res. 89: 179–186.PubMedCrossRefGoogle Scholar
  48. Nelson, W., and Traub, P., 1983, Proteolysis of vimentin and desmin by the Ca2+-activated proteinase specific for these intermediate filament proteins, Mol. Cell. Biol. 3: 1146–1156.PubMedGoogle Scholar
  49. Nonomura, Y., and Ebashi, S., 1975, Isolation and identification of smooth muscle contractile proteins, in: Methods in Pharmacology (E. Daniel and E. Paton, eds.), Plenum Press, New York, pp. 141–162.Google Scholar
  50. O’Farrell, P., 1975, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem. 250: 4007–4021.PubMedGoogle Scholar
  51. Osborn, M., Caselitz, J., and Weber, K., 1981, Heterogeneity of intermediate filament expression in vascular smooth muscle: A gradient in desmin positive cells from the rat aortic arch to the level of the arteria iliaca communis, Differentiation 20: 196–202.PubMedCrossRefGoogle Scholar
  52. Osborn, M., Geisler, N., Shaw, G., Sharp, G., and Weber, K., 1982, Intermediate filaments, Cold Spring Harbor Symp. Quant. Biol. 46: 413–429.PubMedCrossRefGoogle Scholar
  53. O’Shea, J., Robson, R., Huiatt, T., Hartzer, M., and Stromer, M., 1979, Purified desmin from adult mammalian skeletal muscle: A peptide mapping comparison with desmins from adult mammalian and avian smooth muscle, Biochem. Biophys. Res. Commun. 89: 972–980.PubMedCrossRefGoogle Scholar
  54. O’Shea, J., Robson, R., Hartzer, M., Huiatt, T., Rathbun, W., and Stromer, M., 1981, Purification of desmin from adult mammalian skeletal muscle, Biochem. J. 195: 345–356.PubMedGoogle Scholar
  55. Pang, Y., 1985, Subunit structure of the protofilament building blocks of intermediate filaments, Ph.D. dissertation, Iowa State University, Ames (Microfilm No. 85-24685, University Microfilms, Ann Arbor).Google Scholar
  56. Pang, Y., Robson, R., Hartzer, M., and Stromer, M., 1983, Subunit structure of the desmin and vimentin protofilament units, J. Cell Biol. 97: 226a.Google Scholar
  57. Parry, D., and Fraser, R., 1985, Intermediate filament structure: 1. Analysis of IF protein sequence data, Int. J. Biol. Macromol. 7: 203–213.CrossRefGoogle Scholar
  58. Potschka, M., 1986, Structure of intermediate filaments, Biophys. J. 49: 129–130.PubMedCrossRefGoogle Scholar
  59. Price, M., 1984, Molecular analysis of intermediate filament cytoskeleton—A putative load-bearing structure, Am. J. Physiol. 246: H566–H572.PubMedGoogle Scholar
  60. Price, M., and Lazarides, E., 1983, Expression of intermediate filament-associated proteins paranemin and synemin in chicken development, J. Cell Biol. 97: 1860–1874.PubMedCrossRefGoogle Scholar
  61. Price, M., and Sanger, J., 1983, Intermediate filaments in striated muscles. A review of structural studies in embryonic and adult skeletal and cardiac muscle, in: Cell and Muscle Motility, Volume 3 (R. M. Dowben and J. W. Shay, eds.), Plenum Press, New York, pp. 1–40.CrossRefGoogle Scholar
  62. Price, M., and Sanger, J., 1984, Reduction of density and anisotropic distribution of intermediate filaments occur during avian skeletal myogenesis, Am. J. Anat. 171: 427–440.PubMedCrossRefGoogle Scholar
  63. Quax, W., van den Heuvel, R., Egberts, W., Vree, W., Quax-Jeuken, Y., and Bloemendal, H., 1984, Intermediate filament cDNAs from BHK-21 cells: Demonstration of distinct genes for desmin and vimentin in all vertebrate classes, Proc. Natl. Acad. Sci. USA 81: 5970–5974.PubMedCrossRefGoogle Scholar
  64. Quax-Jeuken, Y., Quax, W., and Bloemendal, H., 1983, Primary and secondary structure of hamster vimentin predicted from the nucleotide sequence, Proc. Natl. Acad. Sci. USA 80: 3548–3552.PubMedCrossRefGoogle Scholar
  65. Rappaport, L., Samuel, J., Bertier-Savalle, B., Manotte, F., and Schwartz, K., 1985, Microtubules and desmin filaments during the onset of heart growth in the rat, Basic Res. Cardiol. 80: 129–132.PubMedGoogle Scholar
  66. Rash, J., Shay, J., and Biesele, J., 1969, A third class of filaments in early cardiac myocytes, J. Cell Biol. 43: 112a.Google Scholar
  67. Rash, J., Biesele, J., and Gey, G., 1970, Three classes of filaments in cardiac differentiation, J. Ultrastruct. Res. 33: 408–435.PubMedCrossRefGoogle Scholar
  68. Renner, W., Franke, W., Schmid, E., Geisler, N., Weber, K., and Mandelkow, E., 1981, Reconstitution of intermediate-sized filaments from denatured monomeric vimentin, J. Mol. Biol. 149: 285–306.PubMedCrossRefGoogle Scholar
  69. Richardson, F., Stromer, M., Huiatt, T., and Robson, R., 1981, Immunoelectron and immunofluorescence localization of desmin in mature avian muscles, Eur. J. Cell Biol. 26: 91–101.PubMedGoogle Scholar
  70. Runge, M., Lane, T., Yphantis, D., Lifsics, M., Saito, A., Altin, M., Reinke, K., and Williams, R., Jr., 1981, ATP-induced formation of an associated complex between microtubules and neurofilaments, Proc. Natl. Acad. Sci. USA 78: 1431–1435.PubMedCrossRefGoogle Scholar
  71. Samuel, J., Bertier, B., Bugaisky, L., Marotte, F., Swynghedauw, B., Schwartz, K., and Rappaport, L., 1984, Different distributions of microtubules, desmin filaments and isomyosins during the onset of cardiac hypertrophy in the rat, Eur. J. Cell Biol. 34: 300–306.PubMedGoogle Scholar
  72. Sandoval, I., Colaco, C., and Lazarides, E., 1983, Purification of the intermediate filament-associated protein, synemin, from chicken smooth muscle, J. Biol. Chem. 258: 2568–2576.PubMedGoogle Scholar
  73. Schmid, E., Osborn, M., Rungger-Brandle, E., Gabbiani, G., Weber, K., and Franke, W., 1982, Distribution of vimentin and desmin filaments in smooth muscle tissue of mammalian and avian aorta, Exp. Cell Res. 137: 329–340.PubMedCrossRefGoogle Scholar
  74. Schollmeyer, J., Furcht, L., Goll, D., Robson, R., and Stromer, M., 1976, Localization of contractile proteins in smooth muscle cells and in normal and transformed fibroblasts, in: Cell Motility, Cold Spring Harbor Conferences on cell Proliferation, Volume 3 (R. D. Goldman, T. D. Pollard, and J. Rosenbaum, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 361–388.Google Scholar
  75. Small, J., 1977, Studies on isolated smooth muscle cells: The contractile apparatus, J. Cell Sci. 24: 327–349.PubMedGoogle Scholar
  76. Small, J., and Sobieszek, A., 1977, Studies on the function and composition of the 10-nm (100 Å) filaments of vertebrate smooth muscle, J. Cell Sci. 23: 243–268.PubMedGoogle Scholar
  77. Small, J., and Sobieszek, A., 1980, The contractile apparatus of smooth muscle, Int. Rev. Cytol. 64: 241–306.PubMedCrossRefGoogle Scholar
  78. Somlyo, A. V., and Franzini-Armstrong, C., 1985, New views of smooth muscle structure using freezing, deepetching and rotary shadowing, Experientia 41: 841–856.PubMedCrossRefGoogle Scholar
  79. Somlyo, A. V., Bond, M., Berner, P., Ashton, F., Holtzer, H., and Somlyo, A. P., 1984, The contractile apparatus of smooth muscle: An update, in: Smooth Muscle Contraction (N. L. Stephens, ed.), Dekker, New York, pp. 1–20.Google Scholar
  80. Steinert, P., Contieri, P., Teller, D., Lonsdale-Eccles, J., and Dale, B., 1981, Characterization of a class of cationic proteins that specifically interact with intermediate filaments, Proc Natl. Acad. Sci. USA 78: 4094–4101.Google Scholar
  81. Steinert, P., Wantz, M., and Idler, W., 1982, O-Phosphoserine content of intermediate filament subunits, Biochemistry 21: 177–183.PubMedCrossRefGoogle Scholar
  82. Steinert, P., Steven, A., and Roop, D., 1985, The molecular biology of intermediate filaments, Cell 42: 411–419.PubMedCrossRefGoogle Scholar
  83. Steven, A., Wall, J., Hainfeld, J., and Steinert, P., 1982, Structure of fibroblastic intermediate filaments: Analysis by scanning transmission electron microscopy, Proc. Natl. Acad. Sci. USA 79: 3101–3105.PubMedCrossRefGoogle Scholar
  84. Steven, A., Hainfeld, J., Trus, B., Wall, J., and Steinert, P., 1983, The distribution of mass in heteropolymer intermediate filaments assembled in vitro J. Biol. Chem. 258: 8323–8329.PubMedGoogle Scholar
  85. Stigbrand, T., Eriksson, A., and Thorneil, L., 1979, Isolation and partial characterization of intermediate filament protein (skeletin) from cow heart Purkinje fibers, Biochim. Biophys. Acta 577: 52–60.PubMedCrossRefGoogle Scholar
  86. Stromer, M., and Bendayan, M., 1988, Arrangement of desmin intermediate filaments in smooth muscle cells as shown by high resolution immunocytochemistry, Cell Motil. Cytoskel. 11: 117–125.CrossRefGoogle Scholar
  87. Stromer, M., Huiatt, T., Richardson, F., and Robson, R., 1979, Studies of disassembly and antibody decoration of synthetic 10-nm desmin filaments from smooth muscle, J. Cell Biol. 83: 384a.Google Scholar
  88. Stromer, M., Huiatt, T., Richardson, F., and Robson, R., 1981, Disassembly of synthetic 10-nm filaments from smooth muscle into protofilaments, Eur. J. Cell Biol. 25: 136–143.PubMedGoogle Scholar
  89. Stromer, M., Ritter, Y., Pang, Y., and Robson, R., 1987, Effect of cations and temperature on kinetics of desmin assembly, Biochem. J. 246: 75–81.PubMedGoogle Scholar
  90. Thornell, L.-E., and Eriksson, A., 1981, Filament systems in the Purkinje fibers of the heart, Am. J. Physiol. 241: H291–H305.PubMedGoogle Scholar
  91. Thornell, L.-E., Eriksson, A., Johansson, B., Kjorell, U., Franke, W., Virtanen, I., and Lehto, V.-P. 1985, Intermediate filament and associated proteins in heart Purkinje fibers: A membrane-myofibril anchored cytoskeletal system, Ann N.Y. Acad. Sci. 455: 213–240.PubMedCrossRefGoogle Scholar
  92. Tokuyasu, K., 1983, Visualization of longitudinally oriented intermediate filaments in frozen sections of chicken cardiac muscle by a new staining method, J. Cell Biol. 97: 562–565.PubMedCrossRefGoogle Scholar
  93. Tokuyasu, K., Dutton, A., and Singer, S., 1983a, Immunoelectron microscopic studies of desmin (skeletin) localization and intermediate filament organization is chicken skeletal muscle, J. Cell Biol. 96: 1727–1735.PubMedCrossRefGoogle Scholar
  94. Tokuyasu, K., Dutton, A., and Singer, S., 1983b, Immunoelectron microscopic studies of desmin (skeletin) localization and intermediate filament organization in chicken cardiac muscle, J. Cell Biol. 96: 1736–1742.PubMedCrossRefGoogle Scholar
  95. Tokuyasu, K., Maher, P., and Singer, S., 1984, Distributions of vimentin and desmin in developing chick myotubes in vivo. I. Immunofluorescence study, J. Cell Biol. 98: 1961–1972.PubMedCrossRefGoogle Scholar
  96. Tokuyasu, K., Maher, P., and Singer, S., 1985a, Distribution of vimentin and desmin in developing chick myotubes in vivo. II. Immunoelectron microscopic study, J. Cell Biol. 100: 1157–1166.PubMedCrossRefGoogle Scholar
  97. Tokuyasu, K., Maher, P., Dutton, A., and Singer, S., 1985b, Intermediate filaments in skeletal and cardiac muscle tissue in embryonic and adult chicken, Ann N.Y. Acad. Sci. 455: 200–212.PubMedCrossRefGoogle Scholar
  98. Traub, P., and Vorgias, C., 1983, Involvement of the N-terminal polypeptide of vimentin in the formation of intermediate filaments, J. Cell Sci. 63: 43–67.PubMedGoogle Scholar
  99. Wang, K., and Ramirez-Mitchell, R., 1983, A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle, J. Cell Biol. 96: 562–570.PubMedCrossRefGoogle Scholar
  100. Weber, K., and Osborn, M. 1969, The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis, J. Biol. Chem. 244: 4406–4412.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Marvin H. Stromer
    • 1
  1. 1.Muscle Biology Group, Department of Animal ScienceIowa State UniversityAmesUSA

Personalised recommendations