Expression, Organization, and Involvement of Intermediate Filaments in Disease Processes

  • Omar Skalli
  • Giulio Gabbiani


Cytoskeletal and cytocontractile elements are involved in many cell physiological processes such as maintenance of cell shape, locomotion, mitosis, and secretion (for review see Alberts et. al., 1989). Moreover, the study of these structures may contribute to the understanding of cellular alteration during pathological situations (for review see Rungger-Brändle and Gabbiani, 1983). Different types of cytoskeletal changes may cause pathological situations. In some instances, a disease is due to the presence of an abnormal cytoskeletal protein. A well-documented example of this is the immotile cilia syndrome, characterized by an impaired mucociliary transport leading to chronic infections of airways (Camner et. al., 1975; Eliasson et. al., 1977); here, the basic defect is due to abnormal or missing dynein arms (Afzelius, 1985; Neustein et. al., 1980; Pedersen and Mygind, 1976). In other situations the primary defect affects a noncytoskeletal cellular component but leads to typical changes of the cytoarchitecture, as is the case for sickle-cell anemia where the primary defect is a mutant β-globin molecule leading to an altered organization of the cytoskeleton during the sickling process (Lux, 1979). In most instances, however, changes in the organization of cytoskeletal elements associated with pathological conditions reflect the degree of cellular adaptation to pathological stimuli (Rungger-Brändle and Gabbiani, 1983). Thus, cytoskeletal organization can be profoundly modified by pathological processes affecting cell activities such as migration or proliferation. Moreover, certain important pathological processes, such as tumor invasion, may at least in part depend on altered cytoskeletal organization (for review see Boschek, 1982).


Smooth Muscle Cell Primary Biliary Cirrhosis Intermediate Filament Alcoholic Liver Disease Mallory Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afzelius, B. A., 1985, The immotile-cilia syndrome: A microtubule-associated defect, CRC Crit. Rev. Biochem. 19: 63–87.PubMedCrossRefGoogle Scholar
  2. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D., 1989, Molecular Biology of the Cell, Garland Publishing, New York, Chapter 11, pp. 613–681.Google Scholar
  3. Alroy, J., Pauli, B. U., and Weinstein, R. S., 1981, Correlation between numbers of desmosomes and the aggressiveness of transitional cell carcinoma in human urinary bladder, Cancer 47: 104–112.PubMedCrossRefGoogle Scholar
  4. Altmannsberger, M., Osborn, M., Hölscher, A., Schauer, A., and Weber, K., 1981, The distribution of keratin type intermediate filaments in human breast cancer. An immunohistological study, Virchows Arch. B 37: 277–284.PubMedCrossRefGoogle Scholar
  5. Altmannsberger, M., Osborn, M., Treuner, J., Hölscher, A., Weber, K., and Schauer, A., 1982a, Diagnosis of human childhood rhabdomyosarcoma by antibodies to desmin, the structural protein of muscle specific intermediate filaments, Virchows Arch. B 39: 203–215.PubMedCrossRefGoogle Scholar
  6. Altmannsberger, M., Weber, K., Hölscher, A., Schauer, A., and Osborn, M., 1982b, Antibodies to intermediate filaments as diagnostic tools. Human gastrointestinal carcinomas express prekeratin, Lab. Invest. 46: 520–526.PubMedGoogle Scholar
  7. Altmannsberger, M., Osborn, M., Schäfer, H., Schauer, A., and Weber, K., 1984, Distinction of nephroblastomas from other childhood tumors using antibodies to intermediate filaments, Virchows Arch. B 45: 113–124.PubMedCrossRefGoogle Scholar
  8. Altmannsberger, M., Weber, K., Droste, R., and Osborn, M., 1985, Desmin is a specific marker for rhabdomyosarcomas of human and rat origin, Am. J. Pathol. 118: 85–95.Google Scholar
  9. Alvarez, F. E., 1980, Intracytoplasmic fibrillary inclusions in bronchial carcinoid, Cancer 46: 144–151.CrossRefGoogle Scholar
  10. An, T., 1978, Cytoplasmic inclusions in bronchial carcinoid, Hum. Pathol. 9: 241–242.PubMedCrossRefGoogle Scholar
  11. Asmussen, I., 1980, Intermediate filaments arranged in bundles in human vascular smooth muscle cells, J. Submicrosc. Cytol. 12: 673–680.Google Scholar
  12. Babaï, F., Skalli, O., Schüren, W., Seemayer, T. A., and Gabbiani, G., 1988, Chemically induced rhabdomyosarcomas in rats. Ultrastructural, immunohistochemical, biochemical features and expression of α-actin isoforms, Virchows Arch. B 55: 263–277.PubMedGoogle Scholar
  13. Ball, E. H., and Singer, J., 1981, Association of microtubules and intermediate filaments in normal fibroblasts and its disruption upon transformation by a temperature-sensitive mutant of Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 78: 6986–6990.PubMedCrossRefGoogle Scholar
  14. Bannasch, P., Zerban, H., Schmid, E., and Franke, W. W., 1980, Liver tumors distinguished by immunofluorescence microscopy with antibodies to proteins of intermediate-sized filaments, Proc. Natl. Acad. Sci. USA 77: 4948–4952.PubMedCrossRefGoogle Scholar
  15. Barritault, D., Courtois, Y., and Paulin, D., 1980, Biochemical evidence that vimentin is the only in vivo constituent of the intermediate-sized filaments in adult bovine epithelial lens cells, Biol. Cell 39: 335–338.Google Scholar
  16. Battifora, H., Sun, T. T., Bahu, R. M., and Rao, S., 1980, The use of antikeratin antiserum as a diagnostic tool: Thymoma versus lymphoma, Hum. Pathol. 11: 635–640.PubMedCrossRefGoogle Scholar
  17. Baumgartner, H. R., and Studer, A., 1966, Folgen des Gefässkatheterismus am normo-und hypercholesterinaemischen Kaninchen, Pathol. Microbiol. 29: 393–405.Google Scholar
  18. Behrendt, H., 1977, Effect of anabolic steroids on rat heart muscle cells. I. Intermediate filaments, Cell Tissue Res. 180: 303–315.PubMedCrossRefGoogle Scholar
  19. Bennett, G. S., Fellini, S. A., Croop, J. M., Otto, J. J., Bryan, J., and Holtzer, H., 1978, Differences among 100 Å filament subunits from different cell types, Proc. Natl. Acad. Sci. USA 75: 4364–4368.PubMedCrossRefGoogle Scholar
  20. Ben-Ze’ev, A., Zöller, M., and Raz, A., 1986, Differential expression of intermediate filament proteins in metastatic and nonmetastatic variants of the BSp73 tumor, Cancer Res. 46: 785–790.Google Scholar
  21. Berger, G., Berger, F., Bejui, F., Bouvier, R., Rochet, M., and Feroldi, J., 1984, Bronchial carcinoid with fibrillary inclusions related to cytokeratins: An immunohistochemical and ultrastructural study with subsequent investigation of 12 foregut APUDomas, Histopathology 8: 245–257.PubMedCrossRefGoogle Scholar
  22. Berner, P. F., Frank, E., Holtzer, H., and Somlyo, A. P., 1981a, The intermediate filament proteins of rabbit vascular smooth muscle: Immunofluorescent studies of desmin and vimentin, J. Muscle Res. Cell Motil. 2: 439–452.CrossRefGoogle Scholar
  23. Berner, P. F., Somlyo, A. V., and Somlyo, A. P., 1981b, Hypertrophy-induced increase of intermediate filaments in vascular smooth muscle, J. Cell Biol. 88: 96–101.PubMedCrossRefGoogle Scholar
  24. Bird, A. G., and Britton, S., 1979, A new approach to the study of human B lymphocyte function using an indirect plaque assay and a direct B cell activator, Immunol. Rev. 45: 41–67.PubMedCrossRefGoogle Scholar
  25. Blobel, G. A., Moll, R., Franke, W. W., Kayser, K. W., and Gould, V. E., 1985, The intermediate filament cytoskeleton of malignant mesotheliomas and its diagnostic significance, Am. J. Pathol. 121: 235–247.PubMedGoogle Scholar
  26. Böhme, M. W. J., Evans, D. A., Miles, M. A., and Holborow, E. J., 1986, Occurrence of autoantibodies to intermediate filament proteins in human visceral leishmaniasis and their induction by experimental polyclonal B-cell activation, Immunology 59: 583–588.PubMedGoogle Scholar
  27. Borenfreund, E., and Bendich, A., 1978, In vitro demonstration of Mallory body formation in liver cells from rats fed diethylnitrosamine, Lab. Invest. 38: 295–303.PubMedCrossRefGoogle Scholar
  28. Borenfreund, E., Higgins, P. J., Steinglass, M., and Bendich, A., 1979, Carcinogen-induced abnormalities in rat liver cells and their modification by chemical agents, Cancer Res. 39: 800–807.PubMedGoogle Scholar
  29. Borenfreund, E., Higgins, P. J., and Peterson, E., 1980a, Intermediate-sized filaments in cultured rat liver tumor cells with Mallory body-like cytoplasm abnormalities, J. Natl. Cancer Inst. 64: 323–333.PubMedGoogle Scholar
  30. Borenfreund, E., Higgins, P. J., and Bendich, A., 1980b, In vivo-in vitro rat liver carcinogenesis: Modification in protein synthesis and ultrastructure, Ann. N.Y. Acad. Sci. 349: 357–372.PubMedCrossRefGoogle Scholar
  31. Borenfreund, E., Schmid, E., Bendich, A., and Franke, W. W., 1980c, Constitutive aggregates of intermediate-sized filaments of the vimentin and cytokeratin type in cultured hepatoma cells and their dispersal by butyrate, Exp. Cell Res. 127: 215–235.PubMedCrossRefGoogle Scholar
  32. Borenfreund, E., DeHarven, E., and Garra, L., 1981, Mallory body-like abnormalities in carcinomas induced by cultured transformed rat liver cells, Hepatology 1: 408–415.PubMedCrossRefGoogle Scholar
  33. Boschek, C. B., 1982, Organizational changes of cytoskeletal proteins during cell transformation, in: Advances in Viral Oncology, Volume 1 (G. Klein, ed.), Raven Press, New York, pp. 173–187.Google Scholar
  34. Bourgeade, M. M., Rousset, S., Paulin, D., and Chany, C., 1981, Reorganization of the cytoskeleton by interferon in MSV-transformed cells, J. Interferon Res. 1: 323–332.PubMedCrossRefGoogle Scholar
  35. Bretherton, L., and Toh, B. H., 1981, IgM autoantibody to intermediate filaments in infectious mononucleosis, J. Clin. Lab. Immunol. 5: 7–10.PubMedGoogle Scholar
  36. Bretherton, L., Toh, B. H., and Jack, I., 1981, IgM autoantibody to intermediate filaments in Mycoplasma pneumoniae infections, Clin. Immunol, lmmunopathol. 18: 425–430.CrossRefGoogle Scholar
  37. Brown, D. T., Anderton, B. H., and Wylie, C. C., 1983a, The organization of intermediate filaments in normal human colonie epithelium and colonie carcinoma cells, Int. J. Cancer 32: 163–169.PubMedCrossRefGoogle Scholar
  38. Brown, D. T., Anderton, B. H., and Wylie, C. C., 1983b, Alterations in the organization of cytokeratin filaments in normal and malignant human colonie epithelial cells during mitosis, Cell Tissue Res. 233: 619–628.PubMedCrossRefGoogle Scholar
  39. Brown, D. C., Theaker, J. M., Banks, P. M., Gatter, K. C., and Mason, D. Y., 1987, Cytokeratin expression in smooth muscle and smooth muscle tumors, Histopathology 11: 477–486.PubMedCrossRefGoogle Scholar
  40. Bülow, M. V., and Klingmüller, G., 1971, Elektronenmikroskopische Untersuchungen des Keratoakanthoms. Vorkommen intracytoplasmatischer Desmosomen, Arch. Dermatol. Forsch. 241: 292–304.CrossRefGoogle Scholar
  41. Butchko, G. M., Armstrong, R. B., Martin, W. J., and Ennis, F. A., 1978, Influenza A viruses of the H2N2 subtype are lymphocyte mitogens, Nature 271: 66–67.PubMedCrossRefGoogle Scholar
  42. Cafruny, W. A., and Plagemann, P. G. W., 1982, Immune response to lactate dehydrogenase-elevating virus: Serologically specific rabbit neutralizing antibody to the virus, Infect. Immun. 37: 1007–1012.PubMedGoogle Scholar
  43. Cain, H., and Kraus, B., 1977, Asteroid bodies: Derivatives of the cytosphere. An electron microscopic contribution to the pathology of the cytocentre, Virchows Arch. B 26: 119–132.Google Scholar
  44. Cain, H., and Kraus, B., 1983, Immunofluorescence microscopic demonstration of vimentin filaments in asteroid bodies of sarcoidosis. A comparison with electron microscopic findings, Virchows Arch. B 42: 213–226.PubMedGoogle Scholar
  45. Cain, H., Kraus, B., Krauspe, R., Osborn, M., and Weber, K., 1983, Vimentin filaments in peritoneal macrophages at various stages of differentiation and with altered function, Virchows Arch. B 42: 65–81.PubMedGoogle Scholar
  46. Camner, P., Mossberg, B., and Afzelius, B. A., 1975, Evidence for congenitally nonfunctioning cilia in the tracheobronchial tract in two subjects, Am. Rev. Resp. Dis. 112:807–809.PubMedGoogle Scholar
  47. Caputo, R., and Prandi, G., 1972, Intracytoplasmic desmosomes, J. Ultrastruct. Res. 41: 358–368.PubMedCrossRefGoogle Scholar
  48. Carstens, P. H. B., and Broghamer, W. L., Jr., 1978, Duodenal carcinoid with cytoplasmic whorls of microfilaments, J. Pathol. 124: 235–238.PubMedCrossRefGoogle Scholar
  49. Caselitz, J., Osborn, M., Seifert, G., and Weber, K., 1981, Intermediate-sized filament proteins (prekeratin, vimentin, desmin) in the normal parotid gland and parotid gland tumours. Immunofluorescence study, Virchows Arch. A 393: 273–286.Google Scholar
  50. Chamley-Campbell, J., Campbell, G. R., and Ross, R., 1979, The smooth muscle cell in culture, Physiol. Rev. 59: 1–61.PubMedGoogle Scholar
  51. Chaponnier, C., Köhler, L., and Gabbiani, G., 1977, Fixation of human anti-actin autoantibodies on skeletal muscle fibres, Clin. Exp. Immunol. 27: 278–284.PubMedGoogle Scholar
  52. Choe, B. K., and Rose, N. R., 1976, In vitro senescence of mammalian cells, Gerontology 22: 89–108.PubMedCrossRefGoogle Scholar
  53. Christensen, T. G., Burke, B., Dexter, D. L., and Zamcheck, N., 1985, Ultrastructural evidence of dimethylformamide-induced differentiation of cultured human colon carcinoma cells, Cancer 56: 1559–1565.PubMedCrossRefGoogle Scholar
  54. Coindre, J. M., De Mascarel, A., Trojani, M., De Mascarel, I., and Pages, A., 1988, Immunohistochemical study of rhabdomyosarcoma. Unexpected staining with S100 protein and cytokeratin, J. Pathol. 155:127–132.PubMedCrossRefGoogle Scholar
  55. Cooper, D., Schermer, A., and Sun, T. T., 1985, Classification of human epithelia and their neoplasms using monoclonal antibodies to keratins: Strategies, applications, and limitations, Lab. Invest. 52: 243–256.PubMedGoogle Scholar
  56. Cremer, M., Treiss, I., Cremer, T., Hager, D., and Franke, W. W., 1981, Characterization of cells of amniotic fluids by immunological identification of intermediate-sized filaments: Presence of cells of different tissue origin, Hum. Genet. 59: 373–379.PubMedCrossRefGoogle Scholar
  57. Czernobilsky, B., Moll, R., Levy, R., and Franke, W. W., 1985, Co-expression of cytokeratin and vimentin filaments in mesothelial, granulosa and rete ovarii cells of the human ovary, Eur. J. Cell Biol. 37: 175–190.PubMedGoogle Scholar
  58. Damsky, C. H., Sheffield, J. B., Tuszynski, G. P., and Warren, L., 1977, Is there a role for actin in virus budding? J. Cell Biol. 75: 593–605.PubMedCrossRefGoogle Scholar
  59. Darmon, M., Delescluse, C., Semat, A., Bernard, B., Bailly, J., and Prunieras, M., 1984, A keratin of fetal skin is reexpressed in human keratinocytes transformed by SV40 virus or treated with the tumor promoter TPA, Exp. Cell Res. 154: 315–319.PubMedCrossRefGoogle Scholar
  60. David, R., and Büchner, A., 1978, Amyloid stroma in a tubular carcinoma of palatal salivary gland. A histochemical and ultrastructural study, Cancer 41: 1836–1844.PubMedCrossRefGoogle Scholar
  61. Davis, J. M. G., 1974, Ultrastructure of human mesotheliomas, J. Natl. Cancer Inst. 52: 1715–1725.PubMedGoogle Scholar
  62. Dellagi, K., Brouet, J. C., Perreau, J., and Paulin, D., 1982, Human monoclonal IgM with autoantibody activity against intermediate filaments, Proc. Natl. Acad. Sci. USA 79: 446–450.PubMedCrossRefGoogle Scholar
  63. Dellagi, K., Vainchenker, W., Vinci, G., Paulin, D., and Brouet, J. C., 1983, Alteration of vimentin intermediate filament expression during differentiation of human hemopoietic cells, EMBO J. 2: 1509–1514.PubMedGoogle Scholar
  64. Dellagi, K., Brouet, J. C., and Seligmann, M., 1984, Antivimentin autoantibodies in angioimmunoblastic lymphadenopathy, N. Engl. J. Med. 310: 215–218.PubMedCrossRefGoogle Scholar
  65. Denk, H., and Eckerstorfer, R., 1977, Colchicine-induced Mallory body formation in the mouse, Lab. Invest. 36: 563–565.PubMedGoogle Scholar
  66. Denk, H., and Franke, W. W., 1981, Rearrangement of the hepatocyte cytoskeleton after toxic damage: Involution, dispersal and peripheral accumulation of Mallory body material after drug withdrawal, Eur. J. Cell Biol. 23: 241–249.PubMedGoogle Scholar
  67. Denk, H., Eckerstorfer, R., Gschnait, F., Konrad, K., and Wolff, K., 1976, Experimental induction of hepatocellular hyalin (Mallory bodies) in mice by griseofulvin treatment. 1. Light microscopic observations, Lab. Invest. 35: 377–382.PubMedGoogle Scholar
  68. Denk, H., Franke, W. W., Kerjaschki, D., and Eckerstorfer, R., 1979a, Mallory bodies in experimental animals and man, Int. Rev. Exp. Pathol. 20: 77–121.PubMedGoogle Scholar
  69. Denk, H., Franke, W. W., Eckerstorfer, R., Schmid, E., and Kerjaschki, D., 1979b, Formation and involution of Mallory bodies (“alcoholic hyalin”) in murine and human liver revealed by immunofluorescence microscopy with antibodies to prekeratin, Proc. Natl. Acad. Sei. USA 76: 4112–4116.CrossRefGoogle Scholar
  70. Denk, H., Franke, W. W., and Kerjaschki, D., 1981a, Mallory bodies: New facts and findings, in: Frontiers in Liver Disease (P. D. Berk and T. C. Chalmers, eds.), Thieme Stratton, Stuttgart, pp. 93–105.Google Scholar
  71. Denk, H., Ranke, W. W., Dragosics, B., and Zeiler, I., 1981b, Pathology of cytoskeleton of liver cells: Demonstration of Mallory bodies (alcoholic hyalin) in murine and human hepatocytes by immunofluorescence microscopy using antibodies to cytokeratin polypeptides from hepatocytes, Hepatology 1: 9–20.PubMedCrossRefGoogle Scholar
  72. Denk, H., Krepier, R., Lackinger, E., Artlieb, U., and Franke, W. W., 1982, Biochemical and immunocytochemical analysis of the intermediate filament cytoskeleton in human hepatocellular carcinomas and in hepatic neoplastic nodules of mice, Lab. Invest. 46: 584–596.PubMedGoogle Scholar
  73. Denk, H., Krepier, R., Artlieb, U., Gabbiani, G., Rungger-Brändle, E., Leoncini, P., and Franke, W. W., 1983, Proteins of intermediate filaments. An immunohistochemical and biochemical approach to the classification of soft tissue tumors, Am. J. Pathol. 110: 193–208.PubMedGoogle Scholar
  74. Denk, H., Lackinger, E., Cowin, P., and Franke, W. W., 1985, Maintenance of desmosomes in mouse hepatocytes after drug-induced rearrangement of cytokeratin filament material, Exp. Cell Res. 161: 161–171.PubMedCrossRefGoogle Scholar
  75. Dighiero, G., Guilbert, B., and Avrameas, S., 1982, Naturally occurring antibodies against nine common antigens in human sera. II. High incidence of monoclonal Ig exhibiting antibody activity against actin and tubulin and sharing antibody specificities with natural antibodies, J. Immunol. 128: 2788–2792.PubMedGoogle Scholar
  76. Doglioni, C., Dell’Orto, P., Coggi, G., Iuzzolino, P., Bontempini, L., and Viale, G., 1987, Choroid plexus tumors. An immunocytochemical study with particular reference to the coexpression of intermediate filament proteins, Am. J. Pathol. 127: 519–529.PubMedGoogle Scholar
  77. Edström, L., Thornell, L.-E., and Eriksson, A., 1980, A new type of hereditary distal myopathy with characteristic sarcoplasmic bodies and intermediate (skeletin) filaments, J. Neurol. Sci. 47: 171–190.PubMedCrossRefGoogle Scholar
  78. Eliasson, R., Mossberg, B., Camner, P., and Afzelius, B. A., 1977, The immotile-cilia syndrome: A congenital ciliary abnormality as an etiologic factor in chronic airway infections and male sterility, N. Engl. J. Med. 297: 1–6.PubMedCrossRefGoogle Scholar
  79. Eto, H., Hashimoto, K., Kobayashi, H., Fukaya, T., Matsumoto, M., and Sun, T. T., 1984, Differential staining of cytoid bodies and skin-limited amyloids with monoclonal anti-keratin antibodies, Am. J. Pathol. 116: 473–481.PubMedGoogle Scholar
  80. Fagraeus, A., Örvell, C., Norberg, R., and Norrby, E., 1983, Monoclonal antibodies to epitopes shared by actin and vimentin obtained by paramyxovirus immunization, Exp. Cell Res. 145: 425–432.PubMedCrossRefGoogle Scholar
  81. Farrow, L. J., Holborow, E. J., and Brighton, W. D., 1971, Reaction of human smooth muscle antibody with liver cells, Nature 232: 186–187.Google Scholar
  82. Ferrans, V. J., and Roberts, W. C., 1973a, Intermyofibrillar and nuclear-myofibrillar connections in human and canine myocardium. An ultrastructural study, J. Mol. Cell. Cardiol. 5: 247–257.PubMedCrossRefGoogle Scholar
  83. Ferrans, V. J., and Roberts, W. C., 1973b, Structural features of cardiac myxomas. Histology, histochemistry, and electron microscopy, Hum. Pathol. 4: 111–146.PubMedCrossRefGoogle Scholar
  84. Fetissof, F., Boivin, F., Jobard, P., Arbeille-Brassard, B., Romet, J. L., and Maillet, M. Y., 1982, Microfilamentous carcinoid of the thymus: Correlation of ultrastructural study with Grimelius stain, Ultrastruct. Pathol. 3: 9–15.PubMedCrossRefGoogle Scholar
  85. Fidzianska, A., Goebel, H. H., Osborn, M., Lenard, H. G., Osse, G., and Langenbeck, U., 1983, Mallory body-like inclusions in a hereditary congenital neuromuscular disease, Muscle Nerve 6: 195–200.PubMedCrossRefGoogle Scholar
  86. Fisher, E. R., and Sharkey, D. A., 1962, The ultrastructure of colonie polyps and cancer with special reference to the epithelial inclusion bodies of Leuchtenberger, Cancer 15: 160–170.PubMedCrossRefGoogle Scholar
  87. Fleming, K. A., Morton, J. A., Barbatis, C., Burns, J., Canning, S., and McGee, J. O., 1981, Mallory bodies in alcoholic and non-alcoholic liver disease contain a common antigenic determinant, Gut 22: 341–344.PubMedCrossRefGoogle Scholar
  88. Frank, E. D., and Warren, L., 1981, Aortic smooth muscle cells contain vimentin instead of desmin, Proc. Natl. Acad. Sci. USA 78: 3020–3024.PubMedCrossRefGoogle Scholar
  89. Franke, W. W., and Moll, R., 1987, Cytoskeletal components of lymphoid organs. I. Synthesis of cytokeratins 8 and 18 and desmin in subpopulations of extrafollicular reticulum cells of human lymph nodes, tonsils, and spleen, Differentiation 36: 145–163.PubMedCrossRefGoogle Scholar
  90. Franke, W. W., Schmid, E., Osborn, M., and Weber, K., 1978, Different intermediate-sized filaments distinguished by immunofluorescence microscopy, Proc. Natl. Acad. Sci. USA 75: 5034–5038.PubMedCrossRefGoogle Scholar
  91. Franke, W. W., Appelhans, B., Schmid, E., Freudenstein, C., Osborn, M., and Weber, K., 1979a, Identification and characterization of epithelial cells in mammalian tissues by immunofluorescence microscopy using antibodies to prekeratin, Differentiation 15: 7–25.PubMedCrossRefGoogle Scholar
  92. Franke, W. W., Schmid, E., Breitkreutz, D., Lüderr, M., Boukamp, P., Fusenig, N. E., Osborn, M., and Weber, K., 1979b, Simultaneous expression of the two different types of intermediate sized filaments in mouse keratinocytes proliferating in vitro, Differentiation 14: 35–50.PubMedCrossRefGoogle Scholar
  93. Franke, W. W., Denk, H., Schmid, E., Osborn, M., and Weber, K., 1979c, Ultrastructural, biochemical, and immunologie characterization of Mallory bodies in livers of griseofulvin-treated mice. Fimbriated rods of filaments containing prekeratin-like polypeptides, Lab. Invest. 40: 207–220.PubMedGoogle Scholar
  94. Franke, W. W., Schmid, E., Freudenstein, C., Appelhans, B., Osborn, M., Weber, K., and Keenan, T. W., 1980, Intermediate-sized filaments of the prekeratin type in myoepithelial cells, J. Cell Biol. 84: 633–654.PubMedCrossRefGoogle Scholar
  95. Franke, W. W., Denk, H., Kalt, R., and Schmid, E., 1981a, Biochemical and immunological identification of cytokeratin proteins present in hepatocytes of mammalian liver tissue, Exp. Cell Res. 131: 299–318.PubMedCrossRefGoogle Scholar
  96. Franke, W. W., Mayer, D., Schmid, E., Denk, H., and Borenfreund, E., 1981b, Differences of expression of cytoskeletal proteins in cultured rat hepatocytes and hepatoma cells, Exp. Cell Res. 134: 345–365.PubMedCrossRefGoogle Scholar
  97. Franke, W. W., Grund, C., Jackson, B. W., and Illmensee, K., 1983, Formation of cytoskeletal elements during mouse embryogenesis. IV. Ultrastructure of primary mesenchymal cells and their cell-cell interactions, Differentiation 25: 121–141.PubMedCrossRefGoogle Scholar
  98. Franko, M. C., Gibbs, C. J., Jr., Rhoades, D. A., and Gajdusek, D. C., 1987, Monoclonal antibody analysis of keratin expression in the central nervous system, Proc. Natl. Acad. Sci. USA 84: 3482–3485.PubMedCrossRefGoogle Scholar
  99. French, S. W., 1981a, Nature, pathogenesis and significance of the Mallory body, Semin. Liver Dis. 1: 217–231.PubMedCrossRefGoogle Scholar
  100. French, S. W., 1981b, The Mallory body: Structure, composition, and pathogenesis, Hepatology 1: 76–83.PubMedCrossRefGoogle Scholar
  101. French, S. W., 1983, Present understanding of the development of Mallory’s body, Arch. Pathol. Lab. Med. 107: 445–450.PubMedGoogle Scholar
  102. French, S. W., and Davies, P. L., 1975, The Mallory body in the pathogenesis of alcoholic liver disease, in: Alcoholic Liver Pathology (J. M. Khanna, Y. Israel, and H. Kalant, eds.), Addiction Research Foundation of Ontario, Toronto, pp. 113–143.Google Scholar
  103. French, S. W., Ihrig, T. J., and Norum, M. L., 1972, A method of isolation of Mallory bodies in a purified fraction, Lab. Invest. 26: 240–244.PubMedGoogle Scholar
  104. French, S. W., Sim, J. S., Franks, K. E., Burbige, E. J., Denton, T., and Caldwell, M. G., 1977, Alcoholic hepatitis, in: Alcohol and the Liver (M. M. Fisher and J. G. Rankin, eds.), Plenum Press, New York, pp. 261–286.CrossRefGoogle Scholar
  105. Fudenberg, H. H., 1971, Genetically determined immune deficiency as the predisposing cause of “autoimmunity” and lymphoid neoplasias, Am. J. Med. 51: 295–298.PubMedCrossRefGoogle Scholar
  106. Fujimoto, T., and Singer, S. J., 1986, Immunocytochemical studies of endothelial cells in vivo. I. The presence of desmin only, or of desmin plus vimentin, or vimentin only, in the endothelial cells of different capillaries of the adult chicken, J. Cell Biol. 103: 2775–2786.PubMedCrossRefGoogle Scholar
  107. Fujinami, R. S., Oldstone, M. B. A., Wroblewska, Z., Frankel, M. E., and Koprowski, H., 1983, Molecular mimicry in virus infection: Crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments, Proc. Natl. Acad. Sci. USA 80: 2346–2350.PubMedCrossRefGoogle Scholar
  108. Fung, C. H. K., Gonzalez-Crussi, F., Yonan, T. N., and Martinez, N., 1981, “Rhabdoid” Wilms’ tumor: An ultrastructural study, Arch. Pathol. Lab. Med. 105: 521–523.PubMedGoogle Scholar
  109. Gabbiani, G., Ryan, G. B., Lamelin, J. P., Vassalli, P., Majno, G., Bouvier, C.A., Cruchaud, A., and Lüscher, E. F., 1973, Human smooth muscle autoantibody. Its identification as antiactin antibody and a study of its binding to “nonmuscular” cells, Am. J. Pathol. 72: 473–488.PubMedGoogle Scholar
  110. Gabbiani, G., Kapanci, Y., Barazzone, P., and Franke, W. W., 1981a, Immunochemical identification of intermediate-sized filaments in human neoplastic cells. A diagnostic aid for the surgical pathologist, Am. J. Pathol. 104: 206–216.PubMedGoogle Scholar
  111. Gabbiani, G., Schmid, E., Winter, S., Chaponnier, C., de Chastonay, C., Vandekerckhove, J., Weber, K., and Franke, W. W., 1981b, Vascular smooth muscle cells differ from other smooth muscle cells: Predominance of vimentin filaments and a specific α-type actin, Proc. Natl. Acad. Sci. USA 78: 298–302.PubMedCrossRefGoogle Scholar
  112. Gabbiani, G., Rungger-Brändle, E., de Chastonay, C., and Franke, W. W., 1982, Vimentin-containing smooth muscle cells in aortic intimai thickening after endothelial injury, Lab. Invest. 47: 265–269.PubMedGoogle Scholar
  113. Gabella, G., 1979, Hypertrophic smooth muscle. IV. Myofilaments, intermediate filaments and some mechanical properties, Cell Tissue Res. 201: 277–288.PubMedCrossRefGoogle Scholar
  114. Glasser, S. R., and Julian, J., 1986, Intermediate filament protein as a marker of uterine stromal cell decidualization, Biol. Reprod. 35: 463–474.PubMedCrossRefGoogle Scholar
  115. Goldman, J. E., Horoupian, D. S., and Johnson, A. B., 1980, Granulofilamentous inclusions in a meningioma, Cancer 46: 156–161.PubMedCrossRefGoogle Scholar
  116. Goldman, R. D., 1971, The role of three cytoplasmic fibers in BHK-21 cell motility. I. Microtubules and the effects of colchicine, J. Cell Biol. 51: 752–762.PubMedCrossRefGoogle Scholar
  117. Gomes, M. A., Staquet, M. J., and Thivolet, J., 1981, Staining of colloid bodies by keratin antisera in lichen planus, Am. J. Dermatopathol. 3: 341–347.PubMedCrossRefGoogle Scholar
  118. Gordon, W. E., III, Bushneil, A., and Burridge, K., 1978, Characterization of the intermediate (10 nm) filaments of cultured cells using an autoimmune rabbit antiserum, Cell 13: 249–261.PubMedCrossRefGoogle Scholar
  119. Gould, V. E., Moll, R., Moll, I., Lee, I., and Franke, W. W., 1985, Neuroendocrine (Merkel) cells of the skin: Hyperplasias, dysplasias, and neoplasms, Lab. Invest. 52: 334–353.PubMedGoogle Scholar
  120. Gown, A. M., and Gabbiani, G., 1984, Intermediate-sized (10-nm) filaments in human tumors, in: Advances in Immunohistochemistry (R. A. DeLellis, ed.), Masson, Paris, York, pp. 89–109.Google Scholar
  121. Gown, A. M., and Vogel, A. M., 1984, Monoclonal antibodies to human intermediate filament proteins. II. Distribution of filament proteins in normal human tissues, Am. J. Pathol. 114: 309–321.PubMedGoogle Scholar
  122. Guilbert, B., Dighiero, G., and Avrameas, S., 1982, Naturally occurring antibodies against nine common antigens in human sera. I. Detection, isolation, and characterization, J. Immunol. 128: 2779–2787.PubMedGoogle Scholar
  123. Haas, J. E., Palmer, N. F., Weinberg, A. G., and Beckwith, J. B., 1981, Ultrastructure of malignant rhabdoid tumor of the kidney: A distinctive renal tumor of children, Hum. Pathol. 12: 646–657.PubMedCrossRefGoogle Scholar
  124. Hall, P., 1985a, The pathological spectrum of alcoholic liver disease, Pathology 17: 209–218.PubMedCrossRefGoogle Scholar
  125. Hall, P., 1985b, Pathology and pathogenesis of alcoholic liver disease, in: Alcoholic Liver Disease (P. Hall, ed.), Arnold, London, pp. 41–68.Google Scholar
  126. Hansson, G. K., and Schwartz, S. M., 1983, Evidence for cell death in the vascular endothelium in vivo and in vitro, Am. J. Pathol. 112: 278–286.PubMedGoogle Scholar
  127. Hansson, G. K., Bondjers, G., and Nilsson, L. A., 1979, Plasma protein accumulation in injured endothelial cells. Immunofluorescent localization of IgG and fibrinogen in the rabbit aortic endothelium, Exp. Mol. Pathol. 30: 12–26.PubMedCrossRefGoogle Scholar
  128. Hansson, G. K., Bondjers, G., Bylock, A., and Hjalmarsson, L., 1980, Ultrastructural studies on the localization of IgG in the aortic endothelium and subendothelial intima of atherosclerotic and nonatherosclerotic rabbits, Exp. Mol. Pathol. 33: 302–315.PubMedCrossRefGoogle Scholar
  129. Hansson, G. K., Starkebaum, G. A., Benditt, E. P., and Schwartz, S. M., 1984, Fc-mediated binding of IgG to vimentin-type intermediate filaments in vascular endothelial cells, Proc. Natl. Acad. Sci. USA 81: 3103–3107.PubMedCrossRefGoogle Scholar
  130. Hansson, G. K., Lagerstedt, E., Bengtsson, A., and Heideman, M., 1987, IgG binding to cytoskeletal intermediate filaments activates the complement cascade, Exp. Cell Res. 170: 338–350.PubMedCrossRefGoogle Scholar
  131. Hazan, R., Denk, H., Franke, W. W., Lackinger, E., and Schiller, D. L., 1986, Change of cytokeratin organization during development of Mallory bodies as revealed by a monoclonal antibody, Lab. Invest. 54: 543–553.PubMedGoogle Scholar
  132. Hintner, H., Stingl, G., Schüler, G., and Wolff, K., 1982, In vitro complement-binding on cytoplasmic structures in normal human skin: I. Immunofluorescence studies, J. Invest. Dermatol. 79: 119–124.PubMedCrossRefGoogle Scholar
  133. Hintner, H., Steinert, P. M., and Lawley, T. J., 1983a, Human upper epidermal cytoplasmic antibodies are directed against keratin intermediate filament protein, J. Clin. Invest. 72: 1344–1351.PubMedCrossRefGoogle Scholar
  134. Hintner, H., Stanzl, U., Schuler, G., Klein, G., Fritsch, P., and Stingl, G., 1983b, In vitro complement binding in human skin cells with altered differentiation, J. Invest. Dermatol. 80: 490–493.PubMedCrossRefGoogle Scholar
  135. Hintner, H., Romani, N., Stanzl, U., “Grubauer, G., Fritsch, P., and Lawley, T. J., 1987, Phagocytosis of keratin filament aggregates following opsonization with IgG-anti-keratin filament autoantibodies, Differentiation 36: 234–254.CrossRefGoogle Scholar
  136. Holborow, E. J., 1979, Contractile proteins as autoantigens, Methods Achiev. Exp. Pathol. 9: 244–260.PubMedGoogle Scholar
  137. Holthöfer, H., Miettinen, A., Paasivuo, R., Lehto, V. P., Linder, E., Alfthan, O., and Virtanen, I., 1983, Cellular origin and differentiation of renal carcinomas. A fluorescence microscopic study with kidney-specific antibodies, antiintermediate filament antibodies, and lectins, Lab. Invest. 49: 317–326.PubMedGoogle Scholar
  138. Holthöfer, H. Miettinen, A., Lehto, V. P., Lehtonen, E., and Virtanen, I., 1984, Expression of vimentin and cytokeratin types of intermediate filament proteins in developing and adult human kidneys, Lab. Invest. 50: 552–559.PubMedGoogle Scholar
  139. Horvath, E., and Kovacs, K., 1978, Morphogenesis and significance of fibrous bodies in human pituitary adenomas, Virchows Arch. B 27: 69–78.Google Scholar
  140. Hronis, T. S., Steinberg, M. L., Defendi, V., and Sun, T. T., 1984, The simple epithelial nature of some simianvirus-40-transformed human epidermal keratinocytes, Cancer Res. 44: 5797–5804.PubMedGoogle Scholar
  141. Huszar, M., Halkin, H., Herczeg, E., Bubis, J., and Geiger, B., 1983, Use of antibodies to intermediate filaments in the diagnosis of metastatic amelanotic malignant melanoma, Hum. Pathol. 14: 1006–1008.PubMedCrossRefGoogle Scholar
  142. Huszar, M., Herczeg, E., Lieberman, Y., and Geiger, B., 1984, Distinctive immunofluorescent labeling of epithelial and mesenchymal elements of carcinosarcoma with antibodies specific for different intermediate filaments, Hum. Pathol. 15: 532–538.PubMedCrossRefGoogle Scholar
  143. Hynes, R. O., and Destree, A. T., 1978, 10 nm filaments in normal and transformed cells, Cell 13: 151–163.PubMedCrossRefGoogle Scholar
  144. Ihrig, T. J., Pettit, N. B., Akeda, S., Benson, N. C., and French, S. W., 1980, Liver injury due to griseofulvin: Gamma glutamyl transpeptidase induction correlated with Mallory bodies, Fed. Proc. 39: 876.Google Scholar
  145. Inoue, S., and Dionne, G. P., 1977, Tonofilaments in normal and human bronchial epithelium in squamous cell carcinoma, Am. J. Pathol. 88: 345–354.PubMedGoogle Scholar
  146. Irie, T., Benson, N. C., and French, S. W., 1982, Relationship of Mallory bodies to the cytoskeleton of hepatocytes in griseofulvin-treated mice, I Lab. Invest. 47: 336–345.Google Scholar
  147. Irie, T., Benson, N. C., and French, S. W., 1984, Electron microscopic study of the in vitro calcium-dependent degradation of Mallory bodies and intermediate filaments in hepatocytes, Lab. Invest. 50: 303–312.PubMedGoogle Scholar
  148. Ishikawa, H. Bischoff, R., and Holtzer, H., 1968, Mitoses and intermediate-sized filaments in developing skeletal muscle, J. Cell Biol. 38: 538–555.PubMedCrossRefGoogle Scholar
  149. Jackson, B. W., Grund, C., Schmid, E., Bürki, K., Franke, W. W., and Illmensee, K., 1980, Formation of cytoskeletal elements during mouse embryogenesis. Intermediate filaments of the cytokeratin type and desmosomes in preimplantation embryos, Differentiation 17: 161–179.PubMedCrossRefGoogle Scholar
  150. Jackson, B. W., Grund, C., Winter, S., Franke, W. W., and Illmensee, K., 1981, Formation of cytoskeletal elements during mouse embryogenesis. II. Epithelial differentiation and intermediate-sized filaments in early postimplantation embryos, Differentiation 20: 203–216.PubMedCrossRefGoogle Scholar
  151. Jahn, L., Fouquet, B., Rohe, K., and Franke, W. W., 1987, Cytokeratins in certain endothelial and smooth muscle cells of two taxonomically distant vertebrate species, Xenopus laevis and man, Differentiation 36: 234–254.PubMedCrossRefGoogle Scholar
  152. James, D. G., and Neville, E., 1977, Pathobiology of sarcoidosis, Pathobiol. Annu. 7: 31–61.PubMedGoogle Scholar
  153. Jockusch, B. M., Veldman, H., Griffiths, G. W., Van Oost, B. A., and Jennekens, F. G. I., 1980, Immunofluorescence microscopy of a myopathy. α-actin is a major constituent of nemaline rods, Exp. Cell Res. 127: 409–420.PubMedCrossRefGoogle Scholar
  154. Johnson, G. D., Holborow, E. J., and Glynn, L. E., 1965, Antibody to smooth muscle in patients with liver disease, Lancet 2: 878–879.PubMedCrossRefGoogle Scholar
  155. Johnson, G. D., Carvalho, A., Holborow, E. J., Goddard, D. H., and Russell, G., 1981, Antiperinuclear factor and keratin antibodies in rheumatoid arthritis, Ann. Rheum. Dis. 40: 263–266.PubMedCrossRefGoogle Scholar
  156. Jonasson, L., Holm, J., Skalli, O., Gabbiani, G., and Hansson, G. K., 1985, Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis, J. Clin. Invest. 76: 125–131.PubMedCrossRefGoogle Scholar
  157. Jonasson, L., Holm, J., Skalli, O., Bondjers, G., and Hansson, G. K., 1986, Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaques, Arteriosclerosis 6: 131–138.PubMedCrossRefGoogle Scholar
  158. Jones, J. C. R., Goldman, A. E., Yang, H. Y., and Goldman, R. D., 1985, The organizational fate of intermediate filament networks in two epithelial cell types during mitosis, J. Cell Biol. 100: 93–102.PubMedCrossRefGoogle Scholar
  159. Kanagasundaram, N., Kakumu, S., Chen, T., and Leevy, C. M., 1977, Alcoholic hyalin antigen (AHAg) and antibody (AHAb) in alcoholic hepatitis, Gastroenterology 73: 1368–1373.PubMedGoogle Scholar
  160. Karrer, H. E., 1961, An electron microscope study of the aorta in young and aging mice, J. Ultrastruct. Res. 5: 1–27.PubMedCrossRefGoogle Scholar
  161. Kartenbeck, J., Schmid, E., Franke, W. W., and Geiger, B., 1982, Different modes of internalization of proteins associated with adhaerens junctions and desmosomes: Experimental separation of lateral contacts induces endocytosis of desmosomal plaque material, EMBO J. 1: 725–732.PubMedGoogle Scholar
  162. Kasper, M., Goertchen, R., Stosiek, P., Perry, G., and Karsten, U., 1986, Coexistence of cytokeratin, vimentin and neurofilament protein in human choroid plexus. An immunohistochemical study of intermediate filaments in neuroepithelial tissues, Virchows Arch. A 410: 173–177.CrossRefGoogle Scholar
  163. Katsuma, Y., Swierenga, S. H. H., Khettry, U., Marceau, N., and French, S. W., 1987, Changes in the cytokeratin intermediate filament cytoskeleton associated with Mallory body formation in mouse and human liver, Hepatology 7: 1215–1233.PubMedCrossRefGoogle Scholar
  164. Keating, S., and Taylor, G. P., 1985, Undifferentiated (embryonal) sarcoma of the liver: Ultrastructural and immunohistochemical similarities with malignant fibrous histiocytoma, Hum. Pathol. 16: 693–699.PubMedCrossRefGoogle Scholar
  165. Keeley, A. F., Iseri, O. A., and Gottlieb, L. S., 1972, Ultrastructure of hyaline cytoplasmic inclusions in a human hepatoma: Relationship to Mallory’s alcoholic hyalin, Gastroenterology 62: 280–293.PubMedGoogle Scholar
  166. Keski-Oja, I., Lehto, V. P., Vartio, T., Badley, R. A., and Virtanen, I., 1983, Microfilaments and intermediate filaments in epithelial cells transformed by murine sarcoma or leukemia viruses, Eur. J. Cell Biol. 30: 191–199.PubMedGoogle Scholar
  167. Kim, K. H., Schwartz, F., and Fuchs, E., 1984, Differences in keratin synthesis between normal epithelial cells and squamous cell carcinomas are mediated by vitamin A, Proc. Natl. Acad. Sci. USA 81: 4280–4284.PubMedCrossRefGoogle Scholar
  168. Kimoff, R. J., and Huang, S.-N., 1981, Immunocytochemical and immunoelectron microscopic studies on Mallory bodies, Lab. Invest. 45: 491–503.PubMedGoogle Scholar
  169. Kobayashi, H., and Hashimoto, K., 1983, Amyloidogenesis in organ-limited cutaneous amyloidosis: An anti-genic identity between epidermal keratin and skin amyloid, J. Invest. Dermatol. 80: 66–72.PubMedCrossRefGoogle Scholar
  170. Kocher, O., and Gabbiani, G., 1986, Cytoskeletal features of human normal and atheromatous arterial smooth muscle cells, Hum. Pathol. 17: 875–880.PubMedCrossRefGoogle Scholar
  171. Kocher, O., Amaudruz, M., Schindler, A. M., and Gabbiani, G., 1981, Desmosomes and gap junctions in precarcinomatous and carcinomatous conditions of squamous epithelia. An electron microscopic and morphometrical study, J. Submicrosc. Cytol. 13: 267–281.PubMedGoogle Scholar
  172. Kocher, O., Skalli, O., Bloom, W. S., and Gabbiani, G., 1984, Cytoskeleton of rat aortic smooth muscle cells. Normal conditions and experimental intimai thickening, Lab. Invest. 50: 645–652.PubMedGoogle Scholar
  173. Kocher, O., Skalli, O., Cerutti, D., Gabbiani, F., and Gabbiani, G., 1985, Cytoskeletal features of rat aortic cells during development. An electron microscopic, immunohistochemical, and biochemical study, Circ. Res. 56: 829–838.PubMedCrossRefGoogle Scholar
  174. Krepier, R., Denk, H., Artlieb, U., and Moll, R., 1982, Immunocytochemistry of intermediate filament proteins present in pleomorphic adenomas of the human parotid gland: Characterization of different cell type in the same tumor, Differentiation 21: 191–199.Google Scholar
  175. Krisher, K., and Cunningham, M. W., 1985, Myosin: A link between streptococci and heart, Science 227: 413–415.PubMedCrossRefGoogle Scholar
  176. Kuhn, C., and Kuo, T. T., 1973, Cytoplasmic hyaline in asbestosis. A reaction of injured alveolar epithelium, Arch. Pathol. Lab. Med. 95: 190–194.Google Scholar
  177. Kurki, P., and Virtanen, I., 1984, The detection of human antibodies against cytoskeletal components, J. Immunol. Methods 67: 209–223.PubMedCrossRefGoogle Scholar
  178. Kurki, P., and Virtanen, I., 1985, The detection of smooth muscle antibodies reacting with intermediate filaments of desmin type, J. Immunol. Methods 76: 329–335.PubMedCrossRefGoogle Scholar
  179. Kurki, P., Linder, E., Virtanen, I., and Stenman, S., 1977, Human smooth muscle autoantibodies reacting with intermediate (100 Å) filaments, Nature 268: 240–241.PubMedCrossRefGoogle Scholar
  180. Kurki, P., Virtanen, I., Stenman, S., and Linder, E., 1978, Characterization of human smooth muscle autoantibodies reacting with cytoplasmic intermediate filaments, Clin. Immunol. Immunopathol. 11: 379–387.PubMedCrossRefGoogle Scholar
  181. Kurki, P., Miettinen, M., Salaspuro, M., Virtanen, I., and Stenman, S., 1983a, Cytoskeleton antibodies in chronic active hepatitis, primary biliary cirrhosis, and alcoholic liver disease, Hepatology 3: 297–302.PubMedCrossRefGoogle Scholar
  182. Kurki, P., Helve, T., and Virtanen, I., 1983b, Antibodies to cytoplasmic intermediate filaments in rheumatic diseases, J. Rheumatol. 10: 558–562.PubMedGoogle Scholar
  183. Lane, E. B., Hogan, B. L. M., Kurkinen, M., and Garrels, J. I., 1983, Co-expression of vimentin and cytokeratins in parietal endoderm cells of early mouse embryo, Nature 303: 701–704.PubMedCrossRefGoogle Scholar
  184. LaRocca, P. J., and Rheinwald, J. G., 1984, Coexpression of simple epithelial keratins and vimentin by human mesothelium and mesothelioma in vivo and in culture, Cancer Res. 44: 2991–2999.PubMedGoogle Scholar
  185. Laszlo, A., and Bissell, M. J., 1983, TPA induces simultaneous alterations in the synthesis and organization of vimentin, Exp. Cell Res. 148: 221–234.PubMedCrossRefGoogle Scholar
  186. Lawson, D., 1983, Epinemin: A new protein associated with vimentin filaments in non-neural cells, J. Cell Biol. 97: 1891–1905.PubMedCrossRefGoogle Scholar
  187. Lazarides, E., and Balzer, D. R., Jr., 1978, Specificity of desmin to avian and mammalian muscle cells, Cell 14: 429–438.PubMedCrossRefGoogle Scholar
  188. Lehto, V. P., and Virtanen, I., 1978, Intermediate (10 nm) filaments in human malignant mesothelioma, Virchows Arch. B 28: 229–234.Google Scholar
  189. Lehto, V. P., Miettinen, M., and Virtanen, I., 1985, A dual expression of cytokeratin and neurofilaments in bronchial carcinoid cells, Int. J. Cancer 35: 421–425.PubMedCrossRefGoogle Scholar
  190. Lehtonen, E., Lehto, V. P., Vartio, T., Badley, R. A., and Virtanen, L., 1983a, Expression of cytokeratin polypeptides in mouse oocytes and preimplantation embryos, Dev. Biol. 100: 158–165.PubMedCrossRefGoogle Scholar
  191. Lehtonen, E., Lehto, V. P., and Paasivuo, R., and Virtanen, I., 1983b, Parietal and visceral endoderm differ in their expression of intermediate filaments, EMBO J. 2: 1023–1028.PubMedGoogle Scholar
  192. Lenk, R., and Penman, S., 1979, The cytoskeletal framework and poliovirus metabolism, Cell 16: 289–301.PubMedCrossRefGoogle Scholar
  193. Li, C. L., Chew, E. C., Huang, D. P., and Ho, H. C., 1980, Intracytoplasmic desmosomes in tumor cells, Cell Biol. Int. Rep. 4: 593–597.PubMedCrossRefGoogle Scholar
  194. Liem, R. K. H., Moraru, E., Chin, S., and Wang, E., 1985, Immunoelectron microscopic localization of antibodies to the neurofilament triplet, Exp. Cell Res. 156: 419–428.PubMedCrossRefGoogle Scholar
  195. Lieska, N., Chen, J., Maisel, H., and Romero-Herrera, A. E., 1980, Subunit characterization of lens intermediate filaments, Biochim, Biophys. Acta 626: 136–153.CrossRefGoogle Scholar
  196. Linder, E., 1981, Binding of C1q and complement activation by vascular endothelium, J. Immunol. 126: 648–658.PubMedGoogle Scholar
  197. Linder, E., 1982, Antibody-independent binding of Clq and activation of serum complement by human skin in vitro, J. Invest. Dermatol. 78: 116–150.PubMedCrossRefGoogle Scholar
  198. Linder, E., Lehto, V. P., Virtanen, I., Stenman, S., and Natvig, J. B., 1977, Localization of amyloid-related serum protein SAA-like material to intermediate (10 nm) filaments of cultured human embryonal fibroblasts, J. Exp. Med. 146: 1158–1163.PubMedCrossRefGoogle Scholar
  199. Linder, E., Kurki, P., and Andersson, L. C., 1979a, Autoantibody to “intermediate filaments” in infectious mononucleosis, Clin. Immunol. Immunopathol. 14: 411–417.PubMedCrossRefGoogle Scholar
  200. Linder, E., Lehto, V. P., and Stenman, S., 1979b, Activation of complement by cytoskeletal intermediate filaments, Nature 278: 176–178.PubMedCrossRefGoogle Scholar
  201. Linder, E., Lehto, V. P., and Virtanen, I., 1979c, Amyloid-like green birefringence in cytoskeletal 10 nm filaments after staining with Congo red, Acta Pathol. Microbiol. Scand. Sect. A 87: 299–306.Google Scholar
  202. Linder, E., Hormia, M. I., and Eriksson, A., 1980, Binding and activation of complement by intermediate filaments of both “vimentin” and “desmin” type, Eur. J. Cell Biol. 22: 374.Google Scholar
  203. Linder, E., Helin, H., Chang, C. M., and Edgington, T. S., 1983, Complement-mediated binding of monocytes to intermediate filaments in vitro, Am. J. Pathol. 112: 267–277.PubMedGoogle Scholar
  204. Lowe, J. A., Blanchard, A., Morrell, K., Lennox, G., Reynolds, L., Billett, M., Landon, M., and Mayer, R. J., 1988, Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and Mallory bodies in alcoholic liver disease, J. Pathol. 155: 9–15.PubMedCrossRefGoogle Scholar
  205. Luisanda, A. V., Kanagasundaram, N., and Leevy, C. M., 1977, Chemical nature of alcoholic hyalin, Gastroenterology 73: 1374–1376.Google Scholar
  206. Lux, S. E., 1979, Spectrin-actin membrane skeleton of normal and abnormal red blood cells, Semin. Hematol. 16: 21–51.PubMedGoogle Scholar
  207. McGuire, J., Osber, M., and Lightfoot, L., 1984, Two keratins MW 50,000 and 56,000 are synthesized by psoriatic epidermis, Br. J. Dermatol. 111(Suppl. 27):27–37.PubMedCrossRefGoogle Scholar
  208. Mackay, I. R., 1978, Chronic active hepatitis, cirrhosis and other diseases of the liver, in: Immunological Diseases, Volume II (M. Samter, ed.), Little, Brown, Boston, pp. 1454–1477.Google Scholar
  209. McMillan, S. A., and Haire, M., 1979, The specificity of IgG-and IgM-class smooth muscle antibody in the sera of patients with multiple sclerosis and active chronic hepatitis, Clin. Immunol. Immunopathol. 14: 256–263.PubMedCrossRefGoogle Scholar
  210. Mahrle, G., Boiling, R., Osborn, M., and Weber, K., 1983, Intermediate filaments of the vimentin and prekeratin type in human epidermis, J. Invest. Dermatol. 81: 46–48.PubMedCrossRefGoogle Scholar
  211. Masu, S., Hosokowa, M., and Seiji, M., 1980, Immunofluorescence studies on cutaneous amyloidosis with anti-keratin antibody, Tohoku J. Exp. Med. 131: 121–122.CrossRefGoogle Scholar
  212. Meierhenry, E. F., Ruebner, B. H., Gershwin, M. E., Hsieh, L. S., and Grench, S. W., 1981, Mallory body formation in hepatic nodules of mice ingesting dieldrin, Lab. Invest. 44: 392–396.PubMedGoogle Scholar
  213. Meierhenry, E. G., Ruebner, B. H., Gershwin, M. E., Hsieh, L. S., and French, S. W., 1983, Dieldrin-induced Mallory bodies in hepatic tumors of mice of different strains, Hepatology 3: 90–95.PubMedCrossRefGoogle Scholar
  214. Michel, R. P., Limacher, J. J., and Kimoff, R. J., 1982, Mallory bodies in scar adenocarcinoma of the lung, Hum. Pathol. 13: 81–85.PubMedCrossRefGoogle Scholar
  215. Miettinen, M., 1988, Antibody specific to muscle actins in the diagnosis and classification of soft tissue tumors, Am. J. Pathol. 130: 205–215.PubMedGoogle Scholar
  216. Miettinen, M., and Virtanen, I., 1984, Synovial sarcoma—a misnomer, Am. J. Pathol. 117: 18–25.PubMedGoogle Scholar
  217. Miettinen, M., Lehto, V. P., Badley, R. A., and Virtanen, I., 1982a, Expression of intermediate filaments in soft-tissue sarcomas, Int. J. Cancer 30: 541–546.PubMedCrossRefGoogle Scholar
  218. Miettinen, M., Lehto, V. P., Badley, R. A., and Virtanen, I., 1982b, Alveolar rhabdomyosarcoma. Demonstration of the muscle type of intermediate filament protein, desmin, as a diagnostic aid, Am. J. Pathol. 108: 246–251.PubMedGoogle Scholar
  219. Miettinen, M., Lehto, V. P., and Virtanen, I., 1982c, Nasopharyngeal lymphoepithelioma: Histological diagnosis as aided by immunohistochemical demonstration of keratin, Virchows Arch. B 40:163–169.PubMedCrossRefGoogle Scholar
  220. Miettinen, M., Lehto, V. P., and Virtanen, I., 1982d, Histogenesis of Ewing’s sarcoma. An evaluation of intermediate filaments and endothelial cell markers, Virchows Arch. B 41: 277–284.PubMedGoogle Scholar
  221. Miettinen, M., Lehto, V. P., and Virtanen, I., 1983a, Monophasic synovial sarcoma of spindle-cell type: Epithelial differentiation as revealed by ultrastructural features, content of prekeratin and binding of peanut agglutinin, Virchows Arch. B 44: 187–199.PubMedCrossRefGoogle Scholar
  222. Miettinen, M., Lehto, V. P., Dahl, D., and Virtanen, I., 1983b, Differential diagnosis of chordoma, chondroid, and ependymal tumors as aided by anti-intermediate filament antibodies, Am. J. Pathol. 112;160–169.PubMedGoogle Scholar
  223. Miettinen, M., Lehto, V. P., and Virtanen, I., 1984a, Antibodies to intermediate filament proteins in the diagnosis and classification of human tumors, Ultrastruct. Pathol. 7: 83–107.PubMedCrossRefGoogle Scholar
  224. Miettinen, M., Lehto, V. P., and Virtanen, I., 1984b, Malignant fibrous histiocytoma within a recurrent chordoma, Am. J. Clin. Pathol. 82: 738–743.PubMedGoogle Scholar
  225. Miettinen, M., Lehto, V. P., Ekblom, P., Tasanen, A., and Virtanen, I., 1984c, Leiomyosarcoma of the mandible: Diagnosis as aided by immunohistochemical demonstration of desmin and laminin, J. Oral Pathol. 13: 373–381.PubMedCrossRefGoogle Scholar
  226. Miettinen, M., Franssila, K., Lehto, V. P., Paasivuo, R., and Virtanen, I., 1984d, Expression of intermediate filament proteins in thyroid gland and thyroid tumors, Lab. Invest. 50: 262–270.PubMedGoogle Scholar
  227. Mietinen, M., Lehto, V. P., and Virtanen, I., 1985a, Immunofluorescence microscopic evaluation of the intermediate filament expression of the adrenal cortex and medulla and their tumors, Am. J. Pathol. 118: 360–366.Google Scholar
  228. Miettinen, M., Lehto, V. P., Dahl, D., and Virtanen, I., 1985b, Varying expression of cytokeratin and neurofilaments in neuroendocrine tumors of human gastrointestinal tract, Lab. Invest. 52: 429–436.PubMedGoogle Scholar
  229. Molenaar, W. M., Oosterhuis, J. W., Oosterhuis, A. M., and Ramaekers, F. C. S., 1985, Mesenchymal and muscle-specific intermediate filaments (vimentin and desmin) in relation to differentiation in childhood rhabdomyosarcomas, Hum. Pathol. 16: 838–843.PubMedCrossRefGoogle Scholar
  230. Moll, R., Franke, W. W., Schiller, D. L., Geiger, B., and Krepier, R., 1982, The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells, Cell 31: 11–24.PubMedCrossRefGoogle Scholar
  231. Moll, R., Krepier, R., and Franke, W. W., 1983, Complex cytokeratin polypeptide patterns observed in certain human carcinomas, Differentiation 23: 256–269.PubMedCrossRefGoogle Scholar
  232. Moll, R., Moll, L., and Franke, W. W., 1984a, Identification of Merkel cells in human skin by specific cytokeratin antibodies: Changes of cell density and distribution in fetal and adult plantar epidermis, Differentiation 28: 136–154.PubMedCrossRefGoogle Scholar
  233. Moll, R., Moll, I., and Franke, W. W., 1984b, Differences of expression of cytokeratin polypeptides in various epithelial skin tumors, Arch. Dermatol. Res. 276: 349–363.PubMedCrossRefGoogle Scholar
  234. Molony, L., Hagen, P. O., and Schachat, F. H., 1986, Intermediate filament heterogeneity in normal and hypercholesterolemic rabbit vascular smooth muscle cells, Exp. Cell Res. 163: 78–86.PubMedCrossRefGoogle Scholar
  235. Monroe, S., French, S. W., and Zamboni, L., 1973, Mallory bodies in a case of primary biliary cirrhosis: An ultrastructural and morphogenetic study, Am. J. Clin. Pathol. 59: 254–262.PubMedGoogle Scholar
  236. Morris, A., Steinberg, M. L., and Defendi, V., 1985, Keratin gene expression in simian virus 40-transformed human keratinocytes, Proc. Natl. Acad. Sci. USA 82: 8498–8502.PubMedCrossRefGoogle Scholar
  237. Mortazavi-Milani, S. M., Stierle, H. E., and Holborow, E. J., 1982, In vitro induction of anti-intermediate filament antibody in lymphocyte cultures by Epstein-barr virus, Immunol. Lett. 5: 203–205.PubMedCrossRefGoogle Scholar
  238. Mortazavi-Milani, S. M., Badakere, S.S., and Holborow, E. J., 1984, Antibody to intermediate filaments of the cytoskeleton in the sera of patients with acute malaria, Clin. Exp. Immunol. 55: 177–182.PubMedGoogle Scholar
  239. Morton, J. A., Fleming, K. A., Trowell, J. M., and McGee, J. O., 1980, Mallory bodies—immunohistochemical detection by antisera to unique non-prekeratin components, Gut 21: 727–733.PubMedCrossRefGoogle Scholar
  240. Morton, J. A., Bastin, J., Fleming, K. A., McMichael, A., Burns, J., and McGee, J. O., 1981, Mallory bodies in alcoholic liver disease: Identification of cytoplasmic filament/cell membrane and unique antigenic determinants by monoclonal antibodies, Gut 22: 1–7.PubMedCrossRefGoogle Scholar
  241. Moss, N. S., and Benditt, E. P., 1970, Spontaneous and experimentally induced arterial lesions. I. An ultrastructural survey of the normal chicken aorta, Lab. Invest. 22: 166–183.PubMedGoogle Scholar
  242. Murti, K. G., and Goorha, R., 1983, Interaction of frog virus-3 with the cytoskeleton. I. Altered organization of microtubules, intermediate filaments, and microfilaments, J. Cell Biol. 96: 1248–1257.PubMedCrossRefGoogle Scholar
  243. Nagle, R. B., McDaniel, K. M., Clark, V. A., and Payne, C. M., 1983, The use of antikeratin antibodies in the diagnosis of human neoplasms, Am. J. Clin. Pathol. 79: 458–466.PubMedGoogle Scholar
  244. Naharro, G., Robbins, K. C., and Reddy, E. P., 1984, Gene product of v-fgr onc: Hybrid protein containing a portion of actin and a tyrosine-specific protein kinase, Science 223: 63–66.PubMedCrossRefGoogle Scholar
  245. Naito, S., and Matsumoto, S., 1978, Identification of cellular actin within the rabies virus, Virology 91: 151–163.PubMedCrossRefGoogle Scholar
  246. Nakanuma, Y., and Ohta, G., 1986, Expression of Mallory bodies in hepatocellular carcinoma in man and its significance, Cancer 57: 81–86.PubMedCrossRefGoogle Scholar
  247. Neimark, H. C., 1977, Extraction of an actin-like protein from the prokaryote Mycoplasma pneumoniae, Proc. Natl. Acad. Sei. USA 74: 4041–4045.CrossRefGoogle Scholar
  248. Nelson, W. G., Battifora, H., Santana, H., and Sun, T. T., 1984, Specific keratins as molecular markers for neoplasms with a stratified epithelial origin, Cancer Res. 44: 1600–1603.PubMedGoogle Scholar
  249. Nelson, W. J., and Traub, P., 1981, Properties of a Ca2+-activated protease specific for the intermediate-sized filament protein vimentin in Ehrlich ascites tumour cells, Eur. J. Biochem. 116; 51–57.PubMedCrossRefGoogle Scholar
  250. Nelson, W. J., and Traub, P., 1982, Intermediate (10 nm) filament proteins and the Ca2+-activated proteinase specific for vimentin and desmin in the cells from fish to man: An example of evolutionary conservation, J. Cell Sci. 57: 25–49.PubMedGoogle Scholar
  251. Neumann, P. E., Goldman, J. E., Horoupian, D. S., and Hess, M. A., 1985, Fibrous bodies in growth hormone-secreting adenomas contain cytokeratin filaments, Arch. Pathol. Lab. Med. 109: 505–508.PubMedGoogle Scholar
  252. Neustein, H. B., Nickerson, B., and O’Neal, M., 1980, Kartagener’s syndrome with absence of inner dynein arms of respiratory cilia, Am. Rev. Resp. Dis. 122: 979–981.PubMedGoogle Scholar
  253. Norkin, S. A., and Campagna-Pinto, D., 1968, Cytoplasmic hyaline inclusions in hepatoma, Arch. Pathol. 86: 25–32.PubMedGoogle Scholar
  254. Okamura, K., Harwood, T. R., and Yokoo, H., 1975, Isolation and electrophoretic study on Mallory bodies from the livers of alcoholic cirrhosis, Lab. Invest. 33: 193–199.PubMedGoogle Scholar
  255. Okanoue, T., Ohta, M., Ou, O., Kachi, K., Kagawa, K., Yuki, T., Okuno, T., Takino, T., and French, S. W., 1985, Relationship of Mallory bodies to intermediate filaments in hepatocytes. A scanning electron microscopic study, Lab. Invest. 53: 534–540.PubMedGoogle Scholar
  256. Osborn, M., and Goebel, H. H., 1983, The cytoplasmic bodies in a congenital myopathy can be stained with antibodies to desmin, the muscle-specific intermediate filament protein, Acta Neuropathol. 62: 149–152.PubMedCrossRefGoogle Scholar
  257. Osborn, M., and Weber, K., 1983, Tumor diagnosis by intermediate filament typing: A novel tool for surgical pathology, Lab. Invest. 48: 372–394.PubMedGoogle Scholar
  258. Osborn, M., Franke, W. W., and Weber, K., 1977, Visualization of a system of filaments 7–10 nm thick in cultured cells of an epithelioid line (Pt K2) by immunofluorescence microscopy, Proc. Natl. Acad. Sci. USA 74: 2490–2494.PubMedCrossRefGoogle Scholar
  259. Osborn, M., Caselitz, J., and Weber, K., 1981, Heterogeneity of intermediate filament expression in vascular smooth muscle: A gradient in desmin positive cells from the rat aortic arch to the level of the arteria iliaca communis, Differentiation 20: 196–202.PubMedCrossRefGoogle Scholar
  260. Osborn, M., Geisler, N., Shaw, G., Sharp, G., and Weber, K., 1982, Intermediate filaments, Cold Spring Harbor Symp. Quant. Biol. 46: 413–429.PubMedCrossRefGoogle Scholar
  261. Osborn, M., Caselitz, J., Püschel, K., and Weber, K., 1987, Intermediate filament expression in human vascular smooth muscle and in arteriosclerotic plaques, Virchows Arch. A. 411: 449–458.CrossRefGoogle Scholar
  262. Osung, O. A., Chandra, M., and Holborow, E. J., 1982a, Intermediate filaments in synovial lining cells in rheumatoid arthritis and other arthritides are of vimentin type, Ann. Rheum. Dis. 41:74–77.PubMedCrossRefGoogle Scholar
  263. Osung, O. A., Chandra, M., and Holborow, E. J., 1982b, Antibody to intermediate filaments of the cytoskeleton in rheumatoid arthritis, Ann. Rheum. Dis. 41: 69–73.PubMedCrossRefGoogle Scholar
  264. Page, D. L., Whelan Weiss, S., and Eggleston, J. C., 1975, Ultrastructural study of amyloid material in the calcifying epithelial ondontogenic tumor, Cancer 36: 1426–1435.PubMedCrossRefGoogle Scholar
  265. Palmberg, L., Sjölund, M., and Thyberg, J., 1985, Phenotype modulation in primary cultures of arterial smooth-muscle cells: Reorganization of the cytoskeleton and activation of synthetic activities, Differentiation 29: 275–283.PubMedCrossRefGoogle Scholar
  266. Pauli, B. U., Cohen, S. M., Alroy, J., and Weinstein, R. S., 1978, Desmosome ultrastructure and the biological behavior of chemical carcinogen-induced urinary bladder carcinomas, Cancer Res. 38: 3276–3285.PubMedGoogle Scholar
  267. Pease, D. C., and Paule, W. J., 1960, Electron microscopy of elastic arteries. The thoracic aorta of the rat, J. Ultrastruct. Res. 3: 469–483.PubMedCrossRefGoogle Scholar
  268. Pedersen, H., and Mygind, N., 1976, Absence of axonemal arms in nasal mucosa cilia in Kartagener’s syndrome, Nature 262: 494–495.PubMedCrossRefGoogle Scholar
  269. Pedersen, J. S., Toh, B. H., Locarnini, S. A., Gust, I. D., and Shyamala, G. N. S., 1981, Autoantibody to intermediate filaments in viral hepatitis, Clin. Immunol. Immunopathol. 21: 154–161.PubMedCrossRefGoogle Scholar
  270. Pedersen, J. S., Toh, B. H., Mackay, I. R., Tait, B. D., Gust, I. D., Kastelan, A., and Hadzic, N., 1982, Segregation of autoantibody to cytoskeletal filaments, actin and intermediate filaments with two types of chronic active hepatitis, Clin. Exp. Immunol. 48: 527–532.PubMedGoogle Scholar
  271. Phillips, M. J., 1982, Mallory bodies and the liver, Lab. Invest. 47: 311–313.PubMedGoogle Scholar
  272. Pitelka, D. R., Hamamoto, S. T., and Taggart, B. N., 1980, Epithelial cell junctions in primary and metastatic mammary tumors of mice, Cancer Res. 40: 1588–1599.PubMedGoogle Scholar
  273. Porte, A., Stoeckel, M.-E., Sacrez, A., and Batzenschlager, A., 1980, Unusual familial cardiomyopathy with storage of intermediate filaments in the cardiac muscular cells, Virchows Arch. (Pathol Anat) 386: 43–58.Google Scholar
  274. Price, M. G., and Sanger, J. W., 1983, Intermediate filaments in striated muscle. A review of structural studies in embryonic and adult skeletal and cardiac muscle, in: Cell and Muscle Motility, Volume 3 (R. M. Dowben and J. W. Shaw, eds.), Plenum Press, New York, pp. 1–40.CrossRefGoogle Scholar
  275. Pruss, R. M., Mirsky, R., Raff, M. C., Thorpe, R., Dowding, A. J., and Anderton, B. H., 1981, All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody, J. Cell Biol. 27: 419–428.Google Scholar
  276. Purtilo, D. T., and Gottlieb, L. S., 1973, Cirrhosis and hepatoma occurring at Boston City Hospital (1917–1968), Cancer 32: 458–462.PubMedCrossRefGoogle Scholar
  277. Quismorio, F. P., Kaufman, R. L., Beardmore, T., and Mongan, E. S., 1983, Reactivity of serum antibodies to the keratin layer of rat esophagus in patients with rheumatoid arthritis, Arthritis Rheum. 26: 494–499.PubMedCrossRefGoogle Scholar
  278. Ramaekers, F. C. S., Osborn, M., Schmid, E., Weber, K., Bloemendal, H., and Franke, W. W., 1980, Identification of the cytoskeletal proteins in lens-forming cells, a special epithelioid cell type, Exp. Cell Res. 127: 309–327.PubMedCrossRefGoogle Scholar
  279. Ramaekers, F. C. S., Boom-Kens, T. R., and Bloemendal, H., 1981, Cytoskeletal and contractile structures in bovine lens cell differentiation, Exp. Cell Res. 135: 454–461.PubMedCrossRefGoogle Scholar
  280. Ramaekers, F. C. S., Puts, J. J. G., Moesker, O., Kant, A., Huysmans, A., Haag, D., Jap, P. H. K., Herman, C. J., and Vooijs, G. P., 1983a, Antibodies to intermediate filament proteins in the immunohistochemical identification of human tumours: An overview, Histochem. J. 15: 691–713.PubMedCrossRefGoogle Scholar
  281. Ramaekers, F. C. S., Verheijen, R. H. M., Moesker, O., Kant, A., Vooijs, G. P., and Herman, C. J., 1983b, Mesodermal mixed tumor. Diagnosis by analysis of intermediate filament proteins, Am. J. Surg. Pathol. 7: 381–385.PubMedCrossRefGoogle Scholar
  282. Ramaekers, F. C. S., Haag, D., Kant, A., Moesker, O., Jap, P. H. K., and Vooijs, G. P., 1983c, Coexpression of keratin-and vimentin-type intermediate filaments in human metastatic carcinoma cells, Proc. Natl. Acad. Sci. USA 80: 2618–2622.PubMedCrossRefGoogle Scholar
  283. Ramaekers, F. C. S., Puts, J. J. G., Moesker, O., Kant, A., Vooijs, G. P., and Jap, P. H. K., 1983d, Intermediate filaments in malignant melanomas. Identification and use as marker in surgical pathology, J. Clin. Invest. 71: 635–643.PubMedCrossRefGoogle Scholar
  284. Ramaekers, F., Feitz, W., Moesker, O., Schaart, G., Herman, C., Debruyne, F., and Vooijs, P., 1985a, Antibodies to cytokeratin and vimentin in testicular tumour diagnosis, Virchows Arch. A 408: 127–142.CrossRefGoogle Scholar
  285. Ramaekers, F., Huysmans, A., Moesker, O., Schaart, G., Herman, C., and Vooijs, P., 1985b, Cytokeratin expression during neoplastic progression of human transitional cell carcinomas as detected by a monoclonal and a polyclonal antibody, Lab. Invest. 52: 31–38.PubMedGoogle Scholar
  286. Rappaport, L., Contard, F., Samuel, J. L., Delcayre, C., Marotte, F., Tomé, F., and Fardeau, M., 1988, Storage of phosphorylated desmin in a familial myopathy, FEBS Lett. 231: 421–425.PubMedCrossRefGoogle Scholar
  287. Regauer, S., Franke, W. W., and Virtanen, I., 1985, Intermediate filament cytoskeleton of amnion epithelium and cultured amnion epithelial cells: Expression of epidermal cytokeratins in cells of a simple epithelium, J. Cell Biol. 100: 997–1009.PubMedCrossRefGoogle Scholar
  288. Reznick-Schüller, H., 1977, Ultrastructural alterations of APUD cells during nitrosamine-induced lung car-cinogenesis, J. Pathol. 121: 79–82.CrossRefGoogle Scholar
  289. Roy, S., 1978, Cytoplasmic filamentous masses in chromophobe adenoma of the human pituitary gland, J. Pathol. 125: 151–154.PubMedCrossRefGoogle Scholar
  290. Rubin, R. W., Howard, J., and Leonardi, C., 1979, A biochemical and ultrastructural comparison of Triton X-100 models of normal and transformed cells, Tissue Cell 11: 413–423.PubMedCrossRefGoogle Scholar
  291. Rungger-Brändle, E., and Gabbiani, G., 1983, The role of cytoskeletal and cytocontractile elements in pathologic processes, Am. J. Pathol. 110: 359–392.Google Scholar
  292. Saurat, J. H., Didierjean, L., Skalli, O., Siegenthaler, G., and Gabbiani, G., 1984, The intermediate filament proteins of rabbit normal epidermal Merkel cells are cytokeratins, J. Invest. Dermatol. 83: 431–435.PubMedCrossRefGoogle Scholar
  293. Schindler, A. M., Amaudruz, M. A., Kocher, O., Riotton, G., and Gabbiani, G., 1982, Desmosomes and gapjunctions in various epidermoid preneoplastic and neoplastic lesions of the cervix uteri, Acta Cytol. 26: 466–470.PubMedGoogle Scholar
  294. Schmid, E., Osborn, M., Rungger-Brändle, E., Gabbiani, G., Weber, K., and Franke, W. W., 1982, Distribution of vimentin and desmin filaments in smooth muscle tissue of mammalian and avian aorta, Exp. Cell Res. 137: 329–340.PubMedCrossRefGoogle Scholar
  295. Schmidt, R. A., Cone, R., Haas, J. E., and Gown, A. M., 1988, Diagnosis of rhabdomyosarcomas with HHF35, a monoclonal antibody directed against muscle actins, Am. J. Pathol. 131: 19–28.PubMedGoogle Scholar
  296. Schuler, G., Hintner, H., Wolff, K., Fritsch, P., and Stingl, G., 1982, In vitro complement binding on cytoplasmic structures in normal human skin: Immunoelectronmicroscopic studies, J. Cell Biol. 95: 543–551.PubMedCrossRefGoogle Scholar
  297. Schürch, W., Seemayer, T. A., Lagacé, R., and Gabbiani, G., 1984, The intermediate filament cytoskeleton of myofibroblasts: An immunofluorescence and ultrastructural study, Virchows Arch. A 403: 323–336.CrossRefGoogle Scholar
  298. Schürch, W., Skalli, O., Seemayer, T. A., and Gabbiani, G., 1987, Intermediate filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin. I. Smooth muscle tumors, Am. J. Pathol. 128: 91–103.PubMedGoogle Scholar
  299. Scott, D. L., Delamere, J. P., Jones, L. J., and Walton, K. W., 1981, Significance of laminar antikeratin antibodies to rat oesophagus in rheumatoid arthritis, Ann. Rheum. Dis. 40: 267–271.PubMedCrossRefGoogle Scholar
  300. Serre, G., Vincent, C., Viraben, R., and Soleilhavoup, J. P., 1987, Natural IgM and IgG autoantibodies to epidermal keratins in normal human sera. I: ELISA-titration, immunofluorescence study, J. Invest. Dermatol. 88: 21–27.PubMedCrossRefGoogle Scholar
  301. Sharpe, A. H., Chen, L. B., Murphy, J. R., and Fields, B. N., 1980, Specific disruption of vimentin filament organization in monkey kidney CV-1 cells by diphteria toxin, exotoxin A, and cycloheximide, Proc. Natl. Acad. Sci. USA 77: 7267–7271.PubMedCrossRefGoogle Scholar
  302. Siebert, P. D., and Fukuda, M., 1985, Induction of cytoskeletal vimentin and actin gene expression by a tumorpromoting phorbol ester in the human leukemic cell line K562, J. Biol. Chem. 260: 3868–3874.PubMedGoogle Scholar
  303. Singh, B., Goldman, R., Hutton, L., Herzog, N. K., and Arlinghaus, R. B., 1987, The P55 protein affected by v-mos expression is vimentin, J. Virol. 61: 3625–3629.PubMedGoogle Scholar
  304. Skalli, O., Ropraz, P., Trzeciak, A., Benzonana, G., Gillessen, G., and Gabbiani, G., 1986a, A monoclonal antibody against α-smooth muscle actin: A new probe for smooth muscle differentiation, J. Cell Biol. 103: 2787–2796.PubMedCrossRefGoogle Scholar
  305. Skalli, O., Bloom, W. S., Ropraz, P., Azzarone, B., and Gabbiani, G., 1986b, Cytoskeletal remodeling of rat aortic smooth muscle cells “in vitro”: Relationships to culture conditions and analogies to “in vivo” situations, J. Submicrosc. Cytol. 18: 481–493.PubMedGoogle Scholar
  306. Skalli, O., Vandekerckhove, J., and Gabbiani, G., 1987, Actin isoform pattern as a marker of normal or pathological smooth-muscle and fibroblastic tissues, Differentiation 33: 232–238.PubMedCrossRefGoogle Scholar
  307. Skalli, O., Gabbiani, G., Babaï, F., Seemayer, T. A., Pizzolato, G., and Schüren, W., 1988, Intermediate filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin. II. Rhabdomyosarcomas, Am. J. Pathol. 130: 515–531.PubMedGoogle Scholar
  308. Stamenkovic, I., Skalli, O., and Gabbiani, G., 1986, Distribution of intermediate filament proteins in normal and diseased human glomeruli, Am. J. Pathol. 125: 465–475.PubMedGoogle Scholar
  309. Stanislawsky, L., Mongiat, F., and Moura Neto, V., 1984, Presence of actin in oncornaviruses, Biochem. Biophys. Res. Commun. 118: 580–586.PubMedCrossRefGoogle Scholar
  310. Steinert, P. M., Jones, J. C. R., and Goldman, R. D., 1984, Intermediate filaments, J. Cell Biol. 99: 22s–27s.PubMedCrossRefGoogle Scholar
  311. Stoeckel, M.-E., Osborn, M., Porte, A., Sacrez, A., Batzenschlager, A., and Weber, K., 1981, An unusual familial cardiomyopathy characterized by aberrant accumulations of desmin-type intermediate filaments, Virchows Arch. A 393: 53–60.Google Scholar
  312. Summerhayes, I. C., Cheng, Y. S. E., Sun, T. T., and Chen, L. B., 1981, Expression of keratin and vimentin intermediate filaments in rabbit bladder epithelial cells at different stages of benzo(a)pyrene-induced neoplastic progression, J. Cell Biol. 90: 63–69.PubMedCrossRefGoogle Scholar
  313. Takaki, Y., Masutani, M., and Kawada, A., 1971, Electron microscopic study of keratoacanthoma, Acta Derm. Venereol. 51: 21–26.PubMedGoogle Scholar
  314. Tazawa, J., Irie, T., and French, S. W., 1983, Mallory body formation runs parallel to γ-glutamyl transferase induction in hepatocytes of griseofulvin-fed mice, Hepatology 3: 989–1001.PubMedCrossRefGoogle Scholar
  315. Tazzari, P. L., Gobbi, M., Zauli, D., Tassinari, A., Crespi, C., Miserocchi, F., Dinota, A., Bandini, G., Ricci, P., and Tura, S., 1987, Close association between antibodies to cytoskeletal intermediate filaments, and chronic graft-versus-host disease, Transplantation 44: 234–236.PubMedCrossRefGoogle Scholar
  316. Thiedemann, K.-U., and Ferrans, V. J., 1976, Ultrastructure of sarcoplasmic reticulum in atrial myocardium of patients with mitral valvular disease, Am. J. Pathol. 83: 1–38.Google Scholar
  317. Thornell, L.-E., and Bjelle, A., 1981, Eosinophilic fasciitis: An ultrastructural and immunohistochemical study of the intermediate filament protein skeletin in regenerating muscle fibres, Neuropathol. Appl. Neurobiol. 7: 435–449.PubMedCrossRefGoogle Scholar
  318. Thornell, L.-E., Edström, L., Eriksson, A., Henriksson, K.-G., and Angqvist, K.-A., 1980, The distribution of intermediate filament protein (skeletin) in normal and diseased human skeletal muscle, J. Neurol. Sci. 47: 153–170.PubMedCrossRefGoogle Scholar
  319. Thornell, L.-E., Eriksson, A., and Edström, L., 1983, Intermediate filaments in human myopathies, in: Cell and Muscle Motility, Volume 4 (R. M. Dowben and J. W. Shay, eds.), Plenum Press, New York, pp. 85–136.Google Scholar
  320. Tinberg, H. M., 1981a, Intermediate filaments: Analysis of filamentous aggregates induced by griseofulvin, an antitubulin agent, Biochem. Biophys. Res. Commun. 99: 458–465.PubMedCrossRefGoogle Scholar
  321. Tinberg, H. M., 1981b, Intermediate filaments: Immunochemical comparison of major polypeptides of alcoholic hyalin, FEBS Lett. 125: 53–59.PubMedCrossRefGoogle Scholar
  322. Tinberg, H. M., and Mednick, D. L., 1981, Immunochemical comparison of prekeratin and alcoholic hyalin intermediate filaments, Biochem. Biophys. Res. Commun. 102: 867–876.PubMedCrossRefGoogle Scholar
  323. Tinberg, H. M., Regan, R. J., Geier, E. A., Peterson, G. E., and French, S. W., 1978, Isolation of hepatocellular hyalin and electrophoretic resolution of polypeptide components, Lab. Invest. 39: 483–490.PubMedGoogle Scholar
  324. Toccanier-Pelte, M.-F., Skalli, O., Kapanci, Y., and Gabbiani, G., 1987, Characterization of stromal cells with myoid features in lymph nodes and spleen in normal and pathologic conditions, Am. J. Pathol. 129: 109–118.PubMedGoogle Scholar
  325. Toh, B. H., 1979, Smooth muscle autoantibodies and autoantigens, Clin. Exp. Immunol. 38: 621–628.PubMedGoogle Scholar
  326. Toh, B. H., Yildiz, A., Sotelo, J., Osung, O., Holborow, E. J., Kanakoudi, F., and Small, J. V., 1979, Viral infections and IgM autoantibodies to cytoplasmic intermediate filaments, Clin. Exp. Immunol. 37: 76–82.PubMedGoogle Scholar
  327. Traub, P., 1985, Intermediate Filaments: A Review, Springer-Verlag, Berlin, pp. 150–163.CrossRefGoogle Scholar
  328. Traub, U. E., Nelson, W. J., and Traub, P., 1983, Polyacrylamide gel electrophoretic screening of mammalian cells cultured in vitro for the presence of the intermediate filament protein vimentin, J. Cell Sci. 62: 129–147.PubMedGoogle Scholar
  329. Travo, P., Weber, K., and Osborn, M., 1982, Co-existence of vimentin and desmin type intermediate filaments in a subpopulation of adult rat vascular smooth muscle cells growing in primary culture, Exp. Cell Res. 139: 87–94.PubMedCrossRefGoogle Scholar
  330. Tsukuda, T., McNutt, M. A., Ross, R., and Gown, A. M., 1987, HHF35, a muscle actin-specific monoclonal antibody. II. Reactivity in normal, reactive, and neoplastic human tissues, Am. J. Pathol. 127: 389–402.Google Scholar
  331. Tyrrell, D. L. J., and Norrby, E., 1978, Structural polypeptides of measles virus, J. Gen. Virol. 39: 219–229.PubMedCrossRefGoogle Scholar
  332. Vandekerckhove, J., Osborn, M., Altmannsberger, M., and Weber, K., 1987, Actin typing of rhabdomyosarcomas shows the presence of the fetal and adult forms of sarcomeric muscle actin, Differentiation 35: 126–131.PubMedCrossRefGoogle Scholar
  333. Van Muijen, G. N. P., Ruiter, D. J., and Warnaar, S. O., 1987, Coexpression of intermediate filament polypeptides in human fetal and adult tissues, Lab. Invest. 57: 359–369.PubMedGoogle Scholar
  334. Venetianer, A., Schiller, D. L., Magin, T., and Franke, W. W., 1983, Cessation of cytokeratin expression in a rat hepatoma cell line lacking differentiated functions, Nature 305: 730–733.PubMedCrossRefGoogle Scholar
  335. Virtanen, I., Lehto, V. P., Lehtonen, E., Vartio, T., Stenman, S., Kurki, P., Wager, O., Small, J. V., Dahl, D., and Badley, R. A., 1981, Expression of intermediate filaments in cultured cells, J. Cell Sci. 50: 45–63.PubMedGoogle Scholar
  336. Virtanen, I., Miettinen, M., and Lehto, V. P., 1984, Cytoskeletal proteins as tissue markers for cancer, Cancer Bull. 36: 174–178.Google Scholar
  337. Vogel, A. M., Gown, A. M., Caughlan, J., Haas, J. E., and Beckwith, J. B., 1984, Rhabdoid tumors of the kidney contain mesenchymal specific and epithelial specific intermediate filament proteins, Lab. Invest. 50: 232–238.PubMedGoogle Scholar
  338. Waldherr, R., and Schwechheimer, K., 1985, Co-expression of cytokeratin and vimentin intermediate-sized filaments in renal cell carcinomas. Comparative study of the intermediate-sized filament distribution in renal cell carcinomas and normal human kidney, Virchows Arch. A 408: 15–27.CrossRefGoogle Scholar
  339. Wang, E., 1985, Are cross-bridging structures involved in the bundle formation of intermediate filaments and the decrease in locomotion that accompany cell aging? J. Cell Biol. 100: 1466–1473.PubMedCrossRefGoogle Scholar
  340. Wang, E., and Gundersen, D., 1984, Increased organization of cytoskeleton accompanying the aging of human fibroblasts in vitro, Exp. Cell Res. 154: 191–202.PubMedCrossRefGoogle Scholar
  341. Wang, E., Wolf, B. A., Lamb, R. A., Choppin, P. W., and Goldberg, A. R., 1976, The presence of actin in enveloped viruses, in: Cell Mobility (R. Goldman, T. Pollard, and Y. Rosenbaum, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 589–600.Google Scholar
  342. Wang, N. S., Seemayer, T. A., Ahmed, M. N., and Knaack, J., 1976, Giant cell carcinoma of the lung. A light and electron microscopic study, Hum. Pathol. 7: 3–16.PubMedCrossRefGoogle Scholar
  343. Warnock, M. L., Press, M., and Churg, A., 1980, Further observations on cytoplasmic hyaline in the lung, Hum. Pathol. 11:59–65.PubMedCrossRefGoogle Scholar
  344. Weber, K., Wehland, J., and Herzog, W., 1976, Griseofulvin interacts with microtubules both in vivo and in vitro, J. Mol. Biol. 102:817–829.PubMedCrossRefGoogle Scholar
  345. Weinstein, R. S., Merk, F. B., and Alroy, J., 1976, The structure and function of intercellular junctions in cancer, Adv. Cancer Res. 23:23–89.PubMedCrossRefGoogle Scholar
  346. Weiss, R. A., Eichner, R., and Sun, T. T., 1984, Monoclonal antibody analysis of keratin expression in epidermal diseases: A 48 kd and a 56 kd keratin as molecular markers for hyperproliferative keratinocytes, J. Cell Biol. 98: 1397–1406.PubMedCrossRefGoogle Scholar
  347. Wetzel, W. J., and Alexander, R. W., 1979, Focal nodular hyperplasia of the liver with alcoholic hyalin bodies and cytologic atypia, Cancer 44: 1322–1326.PubMedCrossRefGoogle Scholar
  348. Whitehouse, J. M. A., Ferguson, N., and Currie, G. A., 1974, Antibody to microtubules in infectious mononucleosis, Clin. Exp. Immunol. 17: 227–235.PubMedGoogle Scholar
  349. Wiggers, K. D., French, S. W., French, B. A., and Carr, B. N., 1973, The ultrastructure of Mallory body filaments, Lab. Invest. 29: 652–658.PubMedGoogle Scholar
  350. Woolf, N., 1982, Factors that may affect the extent and severity of atherosclerosis, in: Pathology of Atherosclerosis (N. Woolf, ed.), Butterworth Scientific, London, pp. 153–186.Google Scholar
  351. Yildiz, A., Toh, B. H., Sotelo, J., Osung, O., Holborow, E. J., and Small, J. V., 1980, Smooth muscle autoantibodies reacting with cytoplasmic intermediate filaments in sera from normal, nonimmunized rabbits, Clin. Immunol. Immunopathol. 16: 279–286PubMedCrossRefGoogle Scholar
  352. Yokoi, Y., Namihisa, T., Kuroda, H., Komatsu, L., Miyazaki, A., Watanabe, S., and Usui, K., 1984, Immunocytochemical detection of desmin in fat-storing cells (Ito cells), Hepatology 4: 709–714.PubMedCrossRefGoogle Scholar
  353. Yokoo, H., Minick, O. T., Batti, F., and Kent, G., 1972, Morphologic variants of alcoholic hyalin, Am. J. Pathol. 69: 25–40.PubMedGoogle Scholar
  354. Young, B. J. J., Mallya, R. K., Leslie, R. D., Clark, C. J. M., and Hamblin, T. J., 1979, Anti-keratin antibodies in rheumatoid arthritis, Br. Med. J. 2: 97–99.PubMedCrossRefGoogle Scholar
  355. Zehner, Z. E., and Paterson, B. M., 1983, Vimentin gene expression during myogenesis: Two functional transcripts from a single copy gene, Nucleic Acids Res. 11: 8317–8332.PubMedCrossRefGoogle Scholar
  356. Zucker-Franklin, D., 1974, Properties of the Sezary lymphoid cell. An ultrastructural analysis, Mayo Clin. Proc. 49: 567–574.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Omar Skalli
    • 1
  • Giulio Gabbiani
    • 1
  1. 1.Department of PathologyUniversity of GenevaGeneva 4Switzerland

Personalised recommendations