Skip to main content

Abstract

Intermediate filaments (IF) comprise a set of ~ 10-nm-diameter cytoskeletal filaments that are distributed throughout the cytoplasm from the level of the nuclear surface to the region of the plasma membrane in most eukaryotic cells (Ishikawa et. al., 1968; Traub, 1985a; Wang et. al., 1985; Goldman et. al., 1986). While IF from the various vertebrate cells share certain structural characteristics and constitute a unique fibrous organelle (Pruss et. al., 1981; Fuchs and Hanukoglu, 1983; Steinert and Parry, 1985), the structural proteins comprising them can be classified into subgroups whose distribution in most cases is tissue-type specific (Goldman et. al., 1979; Lazarides, 1980; Steinert and Roop, 1988). Due to this tissue-type specificity, IF have been used as markers to determine the origin of cells in studies of differentiation and in clinical pathology, e.g., neoplasia (Osborn and Weber, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnn, J., and Staehelin, L. A., 1981, The structure and function of spot desmosomes, Dermatology 20: 330–339.

    CAS  Google Scholar 

  • Baitinger, C., Cheney, R., Clements, D., Glickman, M., Hirokawa, N., Levine, J., Meiri, K., Simon, C., Skene, P., and Willard, M., 1983, Axonally transported proteins in axon development, maintenance and regeneration, Cold Spring Harbor Symp. Quant. Biol. 47: 791–802.

    Article  Google Scholar 

  • Ben-Ze’ev, A., 1983, Cell configuration-related control of vimentin biosynthesis and phosphorylation in cultured mammalian cells, J. Cell Biol. 97: 858–865.

    Article  CAS  Google Scholar 

  • Ben-Ze’ev, A., 1984, Control of intermediate filament protein synthesis by cell-cell interaction and cell configuration, FEBS Lett. 17: 107–110.

    Article  Google Scholar 

  • Berkowitz, S., Katagiri, J., Binder, H., and Williams, R., 1977, Separation and characterization of microtubule proteins from calf brain, Biochemistry 16: 5610–5617.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, G. S., and Vallee, R. B., 1983, Association of microtubule associated protein 2 (MAP-2) with microtubules and intermediate filaments in cultured brain cells, J. Cell Biol. 96: 1523–1531.

    Article  PubMed  CAS  Google Scholar 

  • Breckler, J., and Lazarides, E., 1982, Isolation of a new high molecular weight protein associated with desmin and vimentin filaments from avian embryonic skeletal muscle, J. Cell Biol. 92: 795–806.

    Article  PubMed  CAS  Google Scholar 

  • Brown, K. D., and Binder, L. I., 1988, A monoclonal antibody to a high molecular weight brain MAP recognizes intermediate filaments in HeLa and CHO cells, J. Cell Biol. 107: 459a.

    Google Scholar 

  • Celis, J. E., Small, J. V., Larsen, P. M., Fey, S. J., De Mey, J., and Celis, A., 1984, Intermediate filaments in monkey kidney TC7 cells: focal center and interrelationship with other cytoskeletal system, Proc. Natl. Acad. Sci. USA 81: 1117–1121.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L. B., Summerhayes, I. C., Johnson, L. V., Walsh, M. L., Bernai, S. D., and Lampidis, T. J., 1982, Probing mitochondria in living cells with rhodamine 123, Cold Spring Harbor Symp. Quant. Biol. 46: 141–155.

    Article  PubMed  Google Scholar 

  • Ciment, G., Resler, A., Letourneau, P. C., and Weston, J. A., 1986, A novel intermediate filament-associated protein, NAPA-73, that binds to different filament types at different stages of nervous system development, J. Cell Biol. 102: 246–251.

    Article  PubMed  CAS  Google Scholar 

  • Dale, B. A., 1977, Purification and characterization of a basic protein from the stratum corneum of mammalian epidermis, Biochim. Biophys. Acta 491: 193–204.

    Article  PubMed  CAS  Google Scholar 

  • Dentier, W. L., Granette, S., and Rosenbaum, J. L., 1975, Ultrastructural localization of the high molecular weight proteins associated with in vitro assembled brain microtubules, J. Cell Biol. 65: 237–241.

    Article  Google Scholar 

  • Duffy, P. E., Huang, Y. Y., and Rapport, M. M., 1982, The relationship of glial fibrillary acidic protein to the shape, motility, and differentiation of human astrocytoma cells, Exp. Cell Res. 139: 145–157.

    Article  PubMed  CAS  Google Scholar 

  • Ellison, J., and Garrod, D. R., 1984, Anchoring filaments of the amphibian epidermal-dermal junction traverse the basal lamina entirely from the plasma membrane of the hemidesmosomes to the dermis, J. Cell Sci. 72: 163–172.

    PubMed  CAS  Google Scholar 

  • Fey, E. G., Wan, K. M., and Penman, S., 1984, The epithelial cytoskeletal framework and nuclear matrixintermediate filament scaffold: Three dimensional organization and protein composition, J. Cell Biol. 100: 93–102.

    Google Scholar 

  • Foisner, R., Leichtfield, F. E., Herrmann, H., Small, J. V., Lawson, D., and Wiche, E., 1988, Cytoskeletonassociated plectin: In situ localization, in vitro reconstitution, and binding to immobilized intermediate filament proteins, J. Cell Biol. 106: 723–733.

    Article  PubMed  CAS  Google Scholar 

  • Franke, W. W., Schiller, D. L., Hatzfield, M., Magin, T. M., Jorcano, J. L., Mittnacht, S., Schmid, E., Cohlberg, J. A., and Quinlan, R. A., 1984, Cytokeratins: Complex formation biosynthesis, and interactions with desmosomes, in: Cancer Cell, Volume 1 (A. Levine, W. Topp, G. V. Wonde, and J. D. Watson, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 177–190.

    Google Scholar 

  • Fuchs, E., and Hanukoglu, I., 1983, Unraveling the structure of the intermediate filaments, Cell 34: 332–334.

    Article  PubMed  CAS  Google Scholar 

  • Georgatos, S. D., and Blobel, G., 1987, Lamin B constitutes an intermediate filament attachment site at the nuclear envelope, J. Cell Biol. 105: 117–125.

    Article  PubMed  CAS  Google Scholar 

  • Georgatos, S.D., and Marchesi, V. T., 1985, The binding of vimentin of human erythrocyte membranes: A model system for the study of intermediate filament-membrane interactions, J. Cell Biol. 100: 1955–1961.

    Article  PubMed  CAS  Google Scholar 

  • Georgatos, S. D., Weaver, D. C., and Marchesi, V. T., 1985, Site specificity in vimentin-membrane interactions: Intermediate filament subunits associate with the plasma membrane via their head domains, J. Cell Biol. 100: 1962–1967.

    Article  PubMed  CAS  Google Scholar 

  • Georgatos, S. D., Weber, K., Geisler, N., and Blobel, G., 1987, Binding of two desmin derivatives of the plasma membrane and the nuclear envelope of avian erythrocytes: Evidence for a conserved site-specificity in intermediate filament-membrane interactions, Proc. Natl. Acad. Sci. USA 84: 6780–6784.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, R. D., and Follett, E. A. C., 1969, The structure of the major cell processes of isolated BHK-21 fibroblasts, Exp. Cell Res. 57: 263–276.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, R. D., and Knipe, D. M., 1972, Functions of cytoplasmic fibers in nonmuscle cell motility, Cold Spring Harbor Symp. Quant. Biol. 37: 534.

    Google Scholar 

  • Goldman, R. D., Milsted, A., Schloss, J. A., Starger, J., and Yerna, M. J., 1979, Cytoplasmic fibers in mammalian cells: Cytoskeletal and contractile elements, Annu. Rev. Physiol. 41: 703–722.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, R. D., Hill, B. F., Steinert, P., Aynardi-Whitman, M., and Zackroff, R. V., 1980, Intermediate filament-micortubule interactions: Evidence in support of a common organization center, in: Microtubules and Microtubule Inhibitors (M. DeBrabander and J. DeMey, eds.), Elsevier/North-Holland, Amsterdam. pp. 91–102.

    Google Scholar 

  • Goldman, R. D., Goldman, A. E., Green, K. J., Jones, J. C. R., Lieska, N., Talian, J., and Yang, H.-Y, 1984, Intermediate filaments: Their interactions with various cell organelles and their associated proteins, J. Submicrosc. Cytol. 16: 73–74.

    CAS  Google Scholar 

  • Goldman, R. D., Goldman, A. E., Green, K. J., Jones, J. C. R., Lieska, N., and Yang, H.-Y, 1985, Intermediate filaments: Possible functions as cytoskeletal connecting links between the nucleus and the cell surface, Ann. N.Y. Acad. Sci. 455: 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, R. D., Goldman, A. E., Green, K., Jones, J. C. R., Jones, S. M., and Yang, H.-Y, 1986, Intermediate filament networks: Organization and possible functions of a diverse group of cytoskeletal elements, J. Cell Sei. Suppl. 5: 69–97.

    Article  CAS  Google Scholar 

  • Granger, B. L., and Lazarides, E., 1980, Synemin: A new high molecular weight protein associated with desmin and vimentin filaments in muscle, Cell 22: 727–738.

    Article  PubMed  CAS  Google Scholar 

  • Granger, B. L., and Lazarides, E., 1982, Structural associations of synemin and vimentin filaments in avian erythrocytes revealed by immunoelectron microscopy, Cell 30: 263–275.

    Article  PubMed  CAS  Google Scholar 

  • Granger, B. L., and Lazarides, E., 1984, Expression of the intermediate-filament-associated protein synemin in chicken lens cells, Mol. Cell Biol. 4: 1943–1950.

    PubMed  CAS  Google Scholar 

  • Granger, B. L., Repasky, E. A., and Lazarides, E., 1982, Synemin and vimentin are components of intermediate filaments in avian erythrocyte, J. Cell Biol. 92: 299–312.

    Article  PubMed  CAS  Google Scholar 

  • Green, K. J., and Goldman, R. D., 1986, Evidence for an interaction between the cell surface and the intermediate filaments in cultured fibroblasts, Cell Motil. Cytoskel. 6: 389–405.

    Article  CAS  Google Scholar 

  • Green, K. J., Talian, J. C., and Goldman, R. S., 1986, Relationship between intermediate filaments and microfilaments in cultured fibroblasts: Evidence for common foci during cell spreading, Cell Motil. Cytoskel. 6: 604–618.

    Article  Google Scholar 

  • Green, K. J., Geiger, B., Jones, J. C. R., and Talian, J. C., 1987, The relationship between intermediate filaments and microfilaments before and during the formation of desmosomes and adherens-type junctions in mouse epidermal keratinocytes, J. Cell Biol. 104: 1389–1402.

    Article  PubMed  CAS  Google Scholar 

  • Hennings, U., Michael, D., Cheng, C., Steinert, P., Holbrook, K., and Yuspa, S. H., 1980, Calcium regulation of growth and differentiation of mouse epidermal cells in culture, Cell 19: 245–254.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann, H., and Wiche, G., 1983, Specific in situ phosphorylation of plectin in detergent-resistant cytoskeletons from cultured Chinese hamster ovary cells, J. Biol. Chem. 258: 14610–14618.

    PubMed  CAS  Google Scholar 

  • Herrmann, H., and Wiche, G., 1987, Plectin and IFAP-300K are homologous proteins binding to microtubule-associated proteins 1 and 2 and to the 240 kilodalton subunit of spectrin, J. Biol. Chem. 262: 1320–1325.

    PubMed  CAS  Google Scholar 

  • Hirokawa, N., 1982, Cross-linker system between neurofilaments, microtubules and membranous organelles in frog axons revealed by quick-freeze, deep-etching method, J. Cell Biol. 94: 129–142.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa, N., Cheney, R. E., and Willard, M., 1983, Location of a protein of the fodrin/spectrin TW 260/240 family in the mouse intestinal brush border, Cell 32: 953–965.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa, N., Glicksman, M. A., and Willard, M. B., 1984, Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton, J. Cell Biol 98: 1523–1536.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, H., Bischoff, R., and Holtzer, H., 1968, Mitosis and intermediate sized filaments in developing skeletal muscle, J. Cell Biol. 38: 538–555.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. C. R., and Goldman, R. D., 1985, Intermediate filaments and the initiation of desmosome assembly, J. Cell Biol. 101: 506–517.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. C. R., Goldman, A. E., Steinert, P. M., Yuspa, S., and Goldman, R. D., 1982, Dynamic aspects of the supramolecular organization of intermediate filament networks in cultured epidermal cells, Cell Motil. 2: 197–213.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. C. R., Goldman, A. E., Yang, H.-Y., and Goldman, R. D., 1985, The organizational fate of intermediate filament networks in two epithelial cell types during mitosis, J. Cell Biol. 100: 93–102.

    Article  PubMed  CAS  Google Scholar 

  • Lasek, R. J., and Hoffman, P. N., 1976, The neuronal cytoskeleton, axonal transport and axonal growth, in: Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 1021–1049.

    Google Scholar 

  • Lawson, D., 1983, Epinemin: A new protein associated with vimentin filaments in non-neural cells, J. Cell Biol. 97: 1891–1905.

    Article  PubMed  CAS  Google Scholar 

  • Lawson, D., 1984, Distribution of epinemin in colloidal gold-labeled, quick-frozen deep-etched cytoskeletons, J. Cell Biol. 99: 1451–1460.

    Article  PubMed  CAS  Google Scholar 

  • Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature 283: 249–253.

    Article  PubMed  CAS  Google Scholar 

  • Lazarides, E., 1982, Intermediate filaments: A chemically heterogeneous, developmentally regulated class of proteins, Annu. Rev. Biochem. 51: 219–250.

    Article  PubMed  CAS  Google Scholar 

  • Lazarides, E., 1984, Assembly and morphogenesis of the avian erythrocyte cytoskeleton, in: Molecular Biology of the Cytoskeleton (G. G. Borisy, D. W. Cleveland, and D. B. Murphy, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 131–150.

    Google Scholar 

  • Lehto, V.-P., 1983, 140,000 dalton surface glycoprotein. A plasma membrane component of the detergentresistant cytoskeletal preparation of cultured human fibroblasts, Exp. Cell Res. 143: 271–286.

    Article  PubMed  CAS  Google Scholar 

  • Lehto, V.-P., and Virtanen, I., 1983, Immunolocalization of a novel, cytoskeleton-associated polypeptide of Mr 230,000 daltons (p230), J. Cell Biol. 96: 703–716.

    Article  PubMed  CAS  Google Scholar 

  • Lehto, V.-P., Virtanen, I., and Kurki, P., 1978, Intermediate filaments anchor the nuclei in nuclear monolayers of cultured human fibroblasts, Nature 272: 175–177.

    Article  PubMed  CAS  Google Scholar 

  • Le Terrier, J. F., Liem, R. K., and Shelanski, M. L., 1982, Interactions between neurofilaments and microtubule-associated proteins: A possible mechanism for intraorganellar bridging, J. Cell. Biol. 95: 982–986.

    Article  Google Scholar 

  • Lieska, N., Yang, H.-Y., and Goldman, R. D., 1985a, Purification of the 300,000-mol-wt intermediate filament (IF) associated protein and its in vitro recombination with IF, J. Cell Biol. 101: 802–813.

    Article  PubMed  CAS  Google Scholar 

  • Lieska, N., Yang, Y.-Y., and Goldman, R. D., 1985b, Purification and some in vitro properties of BHK-21 cell intermediate filament-associated proteins 70/280kD, J. Cell Biol. 101: 15a.

    Article  Google Scholar 

  • Lin, J. J.-C., and Feramisco, J. R., 1981, Disruption of the in vivo distribution of the intermediate filaments in fibroblasts through the microinjection of a specific monoclonal antibody, Cell 24: 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Mangeat, P. H., and Burridge, K., 1984, Immunoprecipitation of non-erythrocyte spectrin within live cells following microinjection of specific antibodies: Relation of cytoskeletal structures, j. Cell Biol. 98: 1363–1377.

    Article  PubMed  CAS  Google Scholar 

  • Metuzals, J., Montpetit, V., and Clapin, D.-F., 1981, Organization of the neurofilamentous network, Cell Tissue Res. 214: 455–482.

    Article  PubMed  CAS  Google Scholar 

  • Minami, Y., Murofishi, V., and Sakai, H., 1982, Interaction of tubulin with neurofilaments: Formation of networks by neurofilament dependent tubulin polymerization, J. Biochem. 92: 889–898.

    PubMed  CAS  Google Scholar 

  • Miyata, Y., Hoshi, M., Nishida, E., Minami, Y., and Sakai, H., 1986, Binding of microtubule-associated protein 2 and tau to the intermediate filament reassembled from neurofilament 70-kDa subunit protein, J. Biol. Chem. 261: 13026–13030.

    PubMed  CAS  Google Scholar 

  • Moon, R. T., and Lazarides, E., 1983, Synthesis and post-translational assembly of intermediate filaments in avian erythroid cells: Vimentin assembly limits the rate of synemin assembly, Proc. Natl. Acad. Sci. USA 80: 5495–5499.

    Article  PubMed  CAS  Google Scholar 

  • Mose-Larsen, P., Bravo, R., Fey, S. J., Small, J. V., and Celis, J. E., 1982, Putative association of mitochondria with a subpopulation of intermediate-sized filaments in cultured human skin fibroblasts, Cell 31: 681–692.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, M., and Franke, W. W., 1982, Biochemical and immunological characterization of desmoplakins I and II, the major polypeptides of the desmosomal plaque, Differentiation 23: 189–205.

    Article  Google Scholar 

  • Murphy, D. B., and Borisy, G. G., 1975, Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro, Proc. Natl. Acad. Sci. USA 72: 2696–2700.

    Article  PubMed  CAS  Google Scholar 

  • Osborn, M., and Weber, K., 1982, Intermediate filaments: Cell type specific markers in differentiation and pathology, Cell 31: 303–306.

    Article  PubMed  CAS  Google Scholar 

  • Price, M. G., and Lazarides, E., 1983, Expression of intermediate filament-associated protein paranemin and synemin in chicken development, J. Cell Biol. 97: 1860–1874.

    Article  PubMed  CAS  Google Scholar 

  • Pruss, R. M., Mirsky, R., Raff, M. C., Thorpe, R., Dowding, A. J., and Anderson, B. H., 1981, All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody, Cell 27: 419–428.

    Article  PubMed  CAS  Google Scholar 

  • Pytela, R., and Wiche, G., 1980, High molecular weight polypeptides (270,000–340,000) from cultured cells are related to hog brain microtubule-associated proteins but copurify with intermediate filaments, Proc. Natl. Acad. Sci. USA 77: 4808–4812.

    Article  PubMed  CAS  Google Scholar 

  • Ramaekers, F. C. S., Dunia, S. I., Dodemont, H. J., Benedetti, E. L., and Bloemendal, H., 1982, Lenticular intermediate-sized filaments: Biosynthesis and interactions with plasma membrane, Proc. Natl. Acad. Sci. USA 79: 3208–3212.

    Article  PubMed  CAS  Google Scholar 

  • Runge, M. S., Lau, T. M., Yphantis, D., Lifiscs, M., Saito, A., Altin, M., Reinke, K., and Williams, R. C., Jr., 1981, ATP-induced formation of an associated complex between microtubules and neurofilaments, Proc. Natl. Acad. Sci. USA 78: 1431–1435.

    Article  PubMed  CAS  Google Scholar 

  • Sandoval, I. V., Colaco, C. A., and Lazarides, E., 1983, Purification of the intermediate filament-associated protein, synemin, from chicken smooth muscle. Studies on its physiochemical properties, interaction with desmin and phosphorylation, J. Biol. Chem. 258: 2568–2576.

    PubMed  CAS  Google Scholar 

  • Schnapp, B. J., and Reese, T. S., 1982, Cytoplasmic structure in rapid frozen axons, J. Cell Biol. 94: 667–669.

    Article  PubMed  CAS  Google Scholar 

  • Shelanski, M. L., LeTerrier, J.-F., and Liem, R. K. H., 1981, Evidence for interaction between neurofilaments and microtubules, Neurosci. Res. Progr. Bull. 19: 32–43.

    CAS  Google Scholar 

  • Starger, J. M., Brown, W. E., Goldman, A. E., and Goldman, R. D., 1978, Biochemical and immunological analysis of rapidly purified 10nm filaments from baby hamster kidney (BHK-21) cells, J. Cell Biol. 78: 93–109.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., and Parry, D. A. D., 1985, Intermediate filaments, Annu. Rev. Cell Biol. 1: 41–65.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., and Roop, D. R., 1988, Molecular and cellular biology of intermediate filaments, Annu. Rev. Biochem. 57: 593–625.

    Article  PubMed  CAS  Google Scholar 

  • Thorpe, R., Delacourte, A., Ayers, M., Bullock, C., and Anderson, B. H., 1979, The polypeptides of isolated brain 10nm filaments and their association with polymerized tubulin, Biochem. J. 181: 275–84.

    PubMed  CAS  Google Scholar 

  • Tokuyasu, K. T., Maher, P. A., and Singer, S. J., 1984, Distribution of vimentin and desmin in developing chick myotubes in vivo. I. Immunofluorescence study, J. Cell Biol. 98: 1961–1972.

    Article  PubMed  CAS  Google Scholar 

  • Traub, P., 1985a, Intermediate Filaments: A Review, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Traub, P., 1985b, Are intermediate filament proteins involved in gene expression? Ann. N.Y. Acad. Sci. 455: 68–78.

    Article  PubMed  CAS  Google Scholar 

  • Tsukita, S., Usukura, J., Tsukita, S., and Ishikawa, H., 1982, The cytoskeleton in myelinated axons: A freezeetch replica study, Neuroscience 7: 2135–2147.

    Article  PubMed  CAS  Google Scholar 

  • Vallee, R. B., and Bloom, G. S., 1984, High molecular weight microtubule-associated proteins (MAPs), Modern Cell Biology 3, Liss, New York, pp. 21–75.

    Google Scholar 

  • Vallee, R. B., Bloom, G. S., and Theurkauf, W. E., 1984, Microtubule-associated proteins: Subunits of the cytomatrix, J. Cell Biol. 99: 38s–44s.

    Article  PubMed  CAS  Google Scholar 

  • Voter, W. A., and Erickson, H. P., 1982, Electron microscopy of MAP 2 (microtubule-associated protein 2). J. Ultrastruct. Res. 80: 374–382.

    Article  PubMed  CAS  Google Scholar 

  • Wang, E., and Goldman, R. D., 1978, Functions of cytoplasmic fibers in intracellular movement in BHK-21 cells, J. Cell Biol. 79: 708–726.

    Article  PubMed  CAS  Google Scholar 

  • Wang, E., Ciarncross, E. J., Yung, W. K. S., Garber, E. R. and Liem, R. K. H., 1983, An intermediate filament-associated protein, p50, recognized by monoclonal antibodies, J. Cell Biol. 97:1507–1514.

    Article  PubMed  CAS  Google Scholar 

  • Wang, E., Fischman, D., Liem, R. K. H., and Sun, T.-T. (eds.), 1985, Intermediate Filaments, Ann. N.Y. Acad. Sci. 455.

    Google Scholar 

  • Wang, W., 1985, Are cross-bridge structures involved in the bundle formation of intermediate filaments and the decrease in locomotion that accompany cell aging? J. Cell Biol. 100: 1466–1473.

    Article  PubMed  CAS  Google Scholar 

  • Wiche, G., and Baker, A. A., 1982, Cytoplasmic network arrays demonstrated by immunolocalization using antibodies to a high molecular weight protein present in cytoskeletal preparations from cultured cells, Exp. Cell Res. 138: 15–29.

    Article  PubMed  CAS  Google Scholar 

  • Wiche, G., Baker, M. A., Kindas-Mugge, I., Leichtfried, F., and Pytela, R., 1980, High molecular weight polypeptides (around 300,000) from cultured cells and their possible role as mediators of microtubule-intermediate filament interaction, in: Microtubules and Microtubule Inhibitors (M. DeBrabander and J. DeMey, eds.), Elsevier/North-Holland, Amsterdam, pp. 189–200.

    Google Scholar 

  • Wiche, G., Herrmann, H., Leichtfried, F., and Pytela, R., 1982, Plectin: A high molecular weight cytoskeletal polypeptide component that copurifies with intermediate filaments of the vimentin types, Cold Spring Harbor Symp. Quant. Biol. 46: 475–482.

    Article  PubMed  Google Scholar 

  • Wiche, G., Krepier, R., Antlieb, U., Pytela, R., and Denk, H., 1983, Occurrence and immunolocalization of plectin in tissues, J. Cell Biol. 97: 887–901.

    Article  PubMed  CAS  Google Scholar 

  • Wiche, G., Krepier, R., Antlieb, U., Pytela, R., and Aberer, W., 1984, Identification of plectin in different human cell types and immunolocalization at epithelial basal cell surface membranes, Exp. Cell Res. 155: 43–49.

    Article  PubMed  CAS  Google Scholar 

  • Willard, M., 1983, Neurofilaments and axonal transport, in: Neurofilaments (C. A. Marotta, ed.), University of Minnesota Press, Minneapolis, pp. 86–116.

    Google Scholar 

  • Wolf, K. M., and Mullins, J. M., 1985, Cytochalasin-induced redistribution of cytokeratin filaments in PtK-1 cells, J. Cell Biol. 101: 14a.

    Google Scholar 

  • Yang, H.-Y., Lieska, N., and Goldman, R. D., 1984, The distribution of a 300K molecular weight intermediate filament associated protein in different cell types, J. Cell Biol. 99: 324a.

    Google Scholar 

  • Yang, H.-Y., Lieska, N., Goldman, A. E., and Goldman, R. D., 1985a, A 300,000-mol-wt. intermediate filament associated protein in baby hamster kidney (BHK-21) cells, J. Cell Biol 100: 620–631.

    Article  PubMed  CAS  Google Scholar 

  • Yang, H.-Y., Lieska, N., and Goldman, R. D., 1985b, Identification and localization of a group of immunologically-related, intermediate filament-associated polypeptides in BHK-21 cells, J. Cell Biol. 101: 15a.

    Google Scholar 

  • Yang, H.-Y., Lieska, N., and Goldman, R. D., 1986, Different distribution of two intermediate filament-associated proteins, IFAP-300kD and IFAP-70-280kD, in BHK-21 cells, J. Cell Biol. 103: 419a.

    Article  Google Scholar 

  • Yang, H.-Y., Lieska, N., and Goldman, R. D., 1990, A group of immunologically-related, intermediate filament-associated polypeptides (70–280kD) in BHK-21 cells, submitted for publication.

    Google Scholar 

  • Zackroff, R. V., and Goldman, R. D., 1979, In vitro assembly of intermediate filaments from baby hamster kidney (BHK-21) cells, Proc. Natl. Acad. Sci. USA 76: 6226–6230.

    Article  PubMed  CAS  Google Scholar 

  • Zingsheim, H.-P., Hertzog, W., and Weber, K., 1979, Difference in surface morphology of microtubules reconstituted from pure brain tubulin using two different microtubule-associated proteins in high molecular weight MAP-2 proteins and tau proteins, Eur. J. Cell Biol. 19: 175–183.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yang, HY., Lieska, N., Goldman, R.D. (1990). Intermediate Filament-Associated Proteins. In: Goldman, R.D., Steinert, P.M. (eds) Cellular and Molecular Biology of Intermediate Filaments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9604-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9604-9_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9606-3

  • Online ISBN: 978-1-4757-9604-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics