Skip to main content

The Structure, Complexity, and Evolution of Intermediate Filament Genes

  • Chapter
Cellular and Molecular Biology of Intermediate Filaments

Abstract

The foregoing chapters in this book have directly or indirectly posed many fundamental questions pertaining to the mechanisms by which the expression of intermediate filament (IF) genes is regulated during development and differentiation. A consensual hypothesis established repeatedly in this book suggests that the morphological similarity of IF resides in the highly conserved secondary structure of the rod domains of all IF chains. The end domains, which vary widely in size and amino acid sequence among IF chains (Table I), are thought to occupy peripheral positions on intact IF where they are intimately involved in the functions of the IF in cells (Steinert et. al., 1985a; Steinert and Roop, 1988). Accordingly, the fundamental role of IF gene expression is to generate a particular set of exposed end domains, coupled to specific rod domains, that admit the functions of the IF required by the cell in which they occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebi, U., Cohn, J., Buhle, L., and Gerace, L., 1986, The nuclear lamina is a meshwork of intermediate-type filaments, Nature 323: 560–564.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, F., Young, P. R., and Tilghman, S. M., 1984, Evolution of the albumin α-fetoprotein ancestral gene from the amplification of a 27 nucleotide sequence, J. Mol. Biol. 173: 159–176.

    Article  PubMed  CAS  Google Scholar 

  • Bader, B. L., Magin, T. M., Hatzfeld, M., and Franke, W. W., 1986, Amino acid sequences and gene organization of cytokeratin no. 19, an exceptional tail-less intermediate filament protein, EMBO J. 5: 1865–1875.

    PubMed  CAS  Google Scholar 

  • Balcarek, J., and Cowan, N. J., 1985, Structure of the mouse glial fibrillary acidic protein gene: Implications for the evolution of the intermediate filament multigene family, Nucleic Acids Res. 13: 5527–5543.

    Article  PubMed  CAS  Google Scholar 

  • Blessing, M., Zentgraf, H., and Jorcano, J. L., 1987, Differentially expressed bovine cytokeratin genes: Analysis of gene linkage and evolutionary conservation of 5′-upstream sequences, EMBO J. 6: 567–575.

    PubMed  CAS  Google Scholar 

  • Bowden, P. E., Blanchard, A., and Steinert, P. M., 1987, Linkage of epidermal keratin genes isolated on large cosmid clones, J. Invest. Dermatol. 88: 478.

    Google Scholar 

  • Conway, J. F., and Parry, D. A. D., 1988, Intermediate filament structure. 3. Analysis of sequence homologies, Int. J. Biol. Macromol. 10: 79–98.

    Article  CAS  Google Scholar 

  • Craik, C. S., Rutter, W. J., and Fletterick, R., 1983, Splice junctions: Association with variation in protein structure, Science 220: 1125–1129.

    Article  PubMed  CAS  Google Scholar 

  • Crewther, W. G., Dowling, L. M., Steinert, P. M., and Parry, D. A. D., 1983, The structure of intermediate filaments, Int. J. Biol. Macromol. 5: 267–274.

    Article  CAS  Google Scholar 

  • Dowling, L. M., Crewther, W. G., and Ingles, A. S., 1986, The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin. Relationships with proteins from other intermediate filaments, Biochem. J. 236: 695–703.

    PubMed  CAS  Google Scholar 

  • Ferrari, S., Cannizzaro, L. A., Battini, R., Huebner, K., and Baserga, R., 1987, The gene encoding human vimentin is located on the short arm of chromosome 10, Am. J. Human Genet. 41: 616–626.

    CAS  Google Scholar 

  • Fisher, D. Z., Chaudhary, N., and Blobel, G., 1986, cDNA sequence of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins, Proc. Natl. Acad. Sci. USA 83: 6450–6455.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W., 1978, Why genes in pieces? Nature 271: 501.

    Article  PubMed  CAS  Google Scholar 

  • Glass, C., Kim, K. H., and Fuchs, E., 1985, Sequence and expression of a human type II mesothelial keratin, J. Cell Biol. 101: 2366–2373.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, A. E., Maul, G., Steinert, P. M., Yang, H.-Y., and Goldman, R. D., 1986, Keratin-like proteins that co-isolate with intermediate filaments of BHK-21 cells are nuclear lamins, Proc. Natl. Acad. Sci. USA 83: 3839–3843.

    Article  PubMed  CAS  Google Scholar 

  • Hisanaga, S., and Hirokawa, N., 1988, Structure of the peripheral domains of neurofilaments revealed by low angle rotary shadowing, J. Mol. Biol. 202: 297–302.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, L. D., Idler, W. W., Zhou, X.-M., Roop, D. R., and Steinert, P. M., 1985, The structure of the gene for the human epidermal keratin of 67,000 molecular weight, Proc. Natl. Acad. Sci. USA 82: 1896–1900.

    Article  PubMed  CAS  Google Scholar 

  • Julien, J.-R., Grosveld, F., Yasdanbaksh, K., Flavell, D., Meijer, D., and Mushynski, W., 1987, The structure of a human neurofilament gene (NF-L): A unique exon-intron organization in the intermediate filament gene family, Biochim. Biophys. Acta 909: 10–21.

    Article  PubMed  CAS  Google Scholar 

  • Klinge, E. M., Sylvestre, Y., Freedeburg, I. M., and Blumenberg, M., 1978, Evolution of keratin genes: different protein domains evolve by different pathways, J. Mol. Evol. 24: 319–329.

    Article  Google Scholar 

  • Krieg, T. M., Schafer, M. P., Cheng, C. K., Filpula, D., Flaherty, P., Steinert, P. M., and Roop, D. R., 1985, Organization of a type I keratin gene: Evidence for evolution of intermediate filaments from a common ancestral gene, J. Biol. Chem. 260: 5867–5870.

    PubMed  CAS  Google Scholar 

  • Lasek, R. J., Philips, L., Katz, M. J., and Autilio-Gambetti, L., 1985, Function and evolution of neurofilament proteins, Ann. N.Y. Acad. Sci. 455: 462–478.

    Article  PubMed  CAS  Google Scholar 

  • Lau, S. Y. M., Taneja, A. K., and Hodges, R. S., 1984, Synthesis of a model protein of defined secondary and quaternary structure. Effects of chain length on the stabilization and formation of two-stranded α-helical coiled-coils, J. Biol. Chem. 259: 13253–13264.

    PubMed  CAS  Google Scholar 

  • Lee, M. G. S., Lewis, S. A., Wilde, C. D., and Cowan, N. J., 1983, Evolutionary history of a multigene family: An expressed human β-tubulin gene and three processed pseudogenes, Cell 33: 477–487.

    Article  PubMed  CAS  Google Scholar 

  • Lessin, S. R., Huebner, K., Isobe, M., Croce, C. M., and Steinert, P. M., 1988, Chromosomal mapping of human keratin genes: Evidence of non-linkage, J. Invest. Dermatol. 91: 572–578.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, S. A., and Cowan, N. J., 1986, Anomalous placement of introns in a member of the intermediate filament multigene family: An evolutionary conundrum, Mol. Cell. Biol. 6: 1529–1534.

    PubMed  CAS  Google Scholar 

  • Lomedico, P., Rosenthal, N., Efstratiadis, S., Gilbert, W., Kolodner, R., and Tizard, R., 1979, The structure and evolution of the two nonallelic rat preproinsulin genes, Cell 18: 545–558.

    Article  PubMed  CAS  Google Scholar 

  • Lonberg, N., and Gilbert, W., 1985, Intron/exon structure of the chicken pyruvate kinase gene, Cell 40: 81–90.

    Article  PubMed  CAS  Google Scholar 

  • McKeon, F. D., Kirschner, M. W., and Caput, D., 1986, Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins, Nature 319: 463–468.

    Article  PubMed  CAS  Google Scholar 

  • Marchuk, D., McCrohon, S., and Fuchs, E., 1984, Remarkable conservation of structure among intermediate filament genes, Cell 39: 491–498.

    Article  PubMed  CAS  Google Scholar 

  • Mischke, D., and Wild, G., 1987, Polymorphic keratins in human epidermis, J. Invest. Dermatol. 88: 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Miyatani, S., Winkles, J. A., Sargent, T. D., and Dawid, I. B., 1986, Stage-specific keratins of Xenopus laevis embryos and tadpoles: The XK81 family, J. Cell Biol. 103: 1957–1965.

    Article  PubMed  CAS  Google Scholar 

  • Myers, M. W., Lazzarini, R. A., Lee, V. M.-Y, Schlaepfer, W. W., and Nelson, D. L., 1987, The human midsize neurofilament subunit: A repeated protein sequence and relationship of its gene to the intermediate filament family, EMBO J. 6: 1617–1626.

    PubMed  CAS  Google Scholar 

  • Napolitano, E. N., Chin, S. S. M., Colman, D. R., and Liem, R. K. H., 1987, Complete amino acid sequence and in vitro expression of rat NF-M, the middle molecular weight neurofilament protein, J. Neurosci. 7: 2590–2595.

    PubMed  CAS  Google Scholar 

  • Nishoida, Y., Leder, A., and Leder, P., 1980, An unusual α-globin-like gene that has cleanly lost both globin intervening sequences, Proc. Natl. Acad. Sci. USA 77: 2806–2809.

    Article  Google Scholar 

  • Ohno, S., Matsunaga, T., and Wallace, R. B., 1982, Identification of the 48-base-long primordial building block sequence of mouse immunoglobulin variable region genes, Proc. Natl. Acad. Sei. USA 79: 1999–2002.

    Article  CAS  Google Scholar 

  • Parry, D. A. D., and Fraser, R. D. B., 1985, Intermediate filament structure. I. Analysis of IF protein sequence data, Int. J. Biol. Macromol. 7: 203–213.

    Article  CAS  Google Scholar 

  • Parry, D. A. D., Crewther, W. G., Fraser, R. D. B., and MacRae, T. P., 1977, Structure of alpha-keratin: Structural implications of the amino acid sequences of the type I and type II chain segments, J. Mol. Biol. 113: 448–454.

    Article  Google Scholar 

  • Parry, D. A. D., Conway, J. F., and Steinert, P. M., 1986, Structural studies on lamin: Similarities and differences between lamin and intermediate filament proteins, Biochem. J. 238: 305–308.

    PubMed  CAS  Google Scholar 

  • Parry, D. A. D., Conway, J. F., Goldman, A. E., Goldman, R. D., and Steinert, P. M., 1987, Nuclear lamin proteins: Common structures for paracrystalline, filamentous and lattice forms, Int. J. Biol. Macromol. 9: 137–145.

    Article  CAS  Google Scholar 

  • Powell, B. C., Cam, G. R., Fietz, M. J., and Rogers, G. E., 1986, Clustered arrangement of keratin intermediate filament genes, Proc. Natl. Acad. Sci. USA 83: 5048–5052.

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot, N. J., Shander, M. H. M., Manley, J. L., Gefter, M. L., and Maniatis, T., 1980, Structure and in vitro transcription of human globin genes, Science 209: 1329–1336.

    Article  PubMed  CAS  Google Scholar 

  • Quax, W., Egberts, W. V., Hendricks, W., Quax-Jeuken, Y., and Bloemendal, H., 1983, The structure of the vimentin gene, Cell 35: 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Quax, W., van der Brock, L., Egberts, W. V., Ramaekers, F., and Bloemendal, H., 1985a, Characterization of the hamster desmin gene: Expression and formation of desmin filaments in nonmuscle cells after gene transfer, Cell 43: 327–338.

    Article  PubMed  CAS  Google Scholar 

  • Quax, W., Meera-Khan, P., Quax-Jeuken, Y., and Bloemendal, H., 1985b, The human desmin and vimentin genes are located on different chromosomes, Gene 38: 189–196.

    Article  PubMed  CAS  Google Scholar 

  • RayChaudhury, A., Marchuk, D., Lindhurst, M., and Fuchs, E., 1986, Three tightly linked genes encoding human type I keratins: Conservation of sequences in the 5′-untranslated leader and 5′-upstream regions of co-expressed keratins, Mol. Cell Biol. 6: 539–548.

    PubMed  CAS  Google Scholar 

  • Rieger, M., Jorcano, J. L., and Franke, W. W., 1985, Complete sequence of a bovine type I cytokeratin gene: Conserved and variable intron positions in genes of polypeptides of the same cytokeratin family. EMBO J. 4: 2261–2267.

    PubMed  CAS  Google Scholar 

  • Romano, V., Bosco, P., Costa, G., Leube, R., Franke, W. W., Rochi, M., and Romeo, G., 1987, Chromosome assignment of cytokeratin genes, Cytogenet. Cell Genet. 46: 683.

    Google Scholar 

  • Roop, D. R., and Steinert, P. M., 1986, The structure and evolution of intermediate filament genes, in: Cell and Molecular Biology of the Cytoskeleton (J. W. Shay, ed.), Plenum Press, New York, pp. 69–83.

    Chapter  Google Scholar 

  • Roop, D. R., Cheng, C. K., Titterington, L., Meyers, C. A., Stanley, J. R., Steinert, P. M., and Yuspa, S. H., 1984, Synthetic peptides corresponding to keratin subunits elicit highly specific antibodies, J. Biol. Chem. 259: 8037–8040.

    PubMed  CAS  Google Scholar 

  • Rosenberg, M., RayChaudhury, A., Shows, T. B., LeBeau, M. M., and Fuchs, E., 1988, A group of type I keratins on human chromosome 17; characterization and expression, Mol. Cell Biol. 8: 722–736.

    PubMed  CAS  Google Scholar 

  • Savtchenko, E. S., Freedberg, I. M., and Blumenberg, M., 1987, Human keratin genes are linked, J. Invest. Dermatol. 88: 516.

    Google Scholar 

  • Shaw, G., and Weber, K., 1984, Differential expression of neurofilament triplet proteins in brain development, Nature 298: 277–279.

    Article  Google Scholar 

  • Steinert, P. M., and Roop, D. R., 1988, Molecular and cellular biology of intermediate filaments, Annu. Rev. Biochem. 57: 593–625.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., Rice, R. H., Roop, D. R., Trus, B. L., and Steven, A. C., 1983, Complete amino acid sequence of a mouse epidermal keratin subunit: Implications for the structure of intermediate filaments, Nature 302: 794–800.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., Parry, D. A. D., Racoosin, E. L., Idler, W. W., Steven, A. C., Trus, B. L., and Roop, D. R., 1984, The complete cDNA and deduced amino acid sequence of a type II mouse epidermal keratin of 60,000 molecular weight: Analysis of sequence differences between type I and type II keratins, Proc. Natl. Acad. Sci. USA 81: 5709–5713.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., Steven, A. C., and Roop, D. R., 1985a, The molecular biology of intermediate filaments, Cell 42: 411–419.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., Parry, D. A. D., Idler, W. W., Johnson, L. D., Steven, A. C., and Roop, D. R., 1985b, Amino acid sequences of mouse and human epidermal type II keratins of Mr 67,000 provide a systematic basis for the structural and functional diversity of the end domains of keratin intermediate filament subunits, J. Biol. Chem. 260: 7442–7449.

    Google Scholar 

  • Sun, T.-T., Eichner, R., Schermer, A., Cooper, D., Nelson, W. G., and Weiss, R. A., 1984, Classification, expression and possible mechanisms of evolution of mammalian epithelial keratins: A unifying model, in: Cancer Cells 1: The Transformed Phenotype, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 169–176.

    Google Scholar 

  • Tyner, A. L., Eichman, M. J., and Fuchs, E., 1985, The sequence of a type II keratin gene expressed in human skin: Conservation of structure among all intermediate filament genes, Proc. Natl. Acad. Sci. USA 82: 4683–4687.

    Article  PubMed  CAS  Google Scholar 

  • Vasseur, M., Duprey, P., Brulet, P., Jacob, F., 1985, One gene and one pseudogene for the cytokeratin endo A, Proc. Natl. Acad. Sei. USA 82: 1155–1159.

    Article  CAS  Google Scholar 

  • Weber, K., 1986, Link between lamins and intermediate filaments, Nature 320: 402.

    PubMed  CAS  Google Scholar 

  • Weber, K., and Geisler, N., 1984, Intermediate filaments—from wool α-keratin to neurofilaments: A structural overview, in: Cancer Cells 1: The Transformed Phenotype, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 153–159.

    Google Scholar 

  • Yamada, K., Avvedimento, V. E., Mudryji, M., Ohkubo, H., Vogeli, G., Irani, M., Pastan, I., and De Crombrugghe, B., 1980, The collagen gene: Evidence for its evolutionary assembly by amplification of a DNA segment containing an exon of 54 bp, Cell 22: 887–892.

    Article  PubMed  CAS  Google Scholar 

  • Zackroff, R. V., Goldman, A. E., Jones, J. C. R., Steinert, P. M., and Goldman, R. D., 1984, Isolation and characterization of keratin-like proteins from cultured cells with fibroblastic morphology, J. Cell Biol. 98: 1231–1237.

    Article  PubMed  CAS  Google Scholar 

  • Zehner, Z. E., and Paterson, B. M., 1983, Characterization of the chicken vimentin gene: Single copy gene producing multiple mRNAs, Proc. Natl. Acad. Sci. USA 80: 911–915.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, X.-M., Idler, W. W., Steven, A. C., Roop, D. R., and Steinert, P. M., 1988, The complete sequence of the human intermediate filament chain keratin 10; subdomainal divisions and model for folding of end domain sequences, J. Biol. Chem. 263: 15584–15589.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Steinert, P.M., Roop, D.R. (1990). The Structure, Complexity, and Evolution of Intermediate Filament Genes. In: Goldman, R.D., Steinert, P.M. (eds) Cellular and Molecular Biology of Intermediate Filaments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9604-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9604-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9606-3

  • Online ISBN: 978-1-4757-9604-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics