The Structure, Complexity, and Evolution of Intermediate Filament Genes

  • Peter M. Steinert
  • Dennis R. Roop


The foregoing chapters in this book have directly or indirectly posed many fundamental questions pertaining to the mechanisms by which the expression of intermediate filament (IF) genes is regulated during development and differentiation. A consensual hypothesis established repeatedly in this book suggests that the morphological similarity of IF resides in the highly conserved secondary structure of the rod domains of all IF chains. The end domains, which vary widely in size and amino acid sequence among IF chains (Table I), are thought to occupy peripheral positions on intact IF where they are intimately involved in the functions of the IF in cells (Steinert et. al., 1985a; Steinert and Roop, 1988). Accordingly, the fundamental role of IF gene expression is to generate a particular set of exposed end domains, coupled to specific rod domains, that admit the functions of the IF required by the cell in which they occur.


Intermediate Filament Heptad Repeat Keratin Gene Wool Keratin Peptide Repeat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebi, U., Cohn, J., Buhle, L., and Gerace, L., 1986, The nuclear lamina is a meshwork of intermediate-type filaments, Nature 323: 560–564.PubMedCrossRefGoogle Scholar
  2. Alexander, F., Young, P. R., and Tilghman, S. M., 1984, Evolution of the albumin α-fetoprotein ancestral gene from the amplification of a 27 nucleotide sequence, J. Mol. Biol. 173: 159–176.PubMedCrossRefGoogle Scholar
  3. Bader, B. L., Magin, T. M., Hatzfeld, M., and Franke, W. W., 1986, Amino acid sequences and gene organization of cytokeratin no. 19, an exceptional tail-less intermediate filament protein, EMBO J. 5: 1865–1875.PubMedGoogle Scholar
  4. Balcarek, J., and Cowan, N. J., 1985, Structure of the mouse glial fibrillary acidic protein gene: Implications for the evolution of the intermediate filament multigene family, Nucleic Acids Res. 13: 5527–5543.PubMedCrossRefGoogle Scholar
  5. Blessing, M., Zentgraf, H., and Jorcano, J. L., 1987, Differentially expressed bovine cytokeratin genes: Analysis of gene linkage and evolutionary conservation of 5′-upstream sequences, EMBO J. 6: 567–575.PubMedGoogle Scholar
  6. Bowden, P. E., Blanchard, A., and Steinert, P. M., 1987, Linkage of epidermal keratin genes isolated on large cosmid clones, J. Invest. Dermatol. 88: 478.Google Scholar
  7. Conway, J. F., and Parry, D. A. D., 1988, Intermediate filament structure. 3. Analysis of sequence homologies, Int. J. Biol. Macromol. 10: 79–98.CrossRefGoogle Scholar
  8. Craik, C. S., Rutter, W. J., and Fletterick, R., 1983, Splice junctions: Association with variation in protein structure, Science 220: 1125–1129.PubMedCrossRefGoogle Scholar
  9. Crewther, W. G., Dowling, L. M., Steinert, P. M., and Parry, D. A. D., 1983, The structure of intermediate filaments, Int. J. Biol. Macromol. 5: 267–274.CrossRefGoogle Scholar
  10. Dowling, L. M., Crewther, W. G., and Ingles, A. S., 1986, The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin. Relationships with proteins from other intermediate filaments, Biochem. J. 236: 695–703.PubMedGoogle Scholar
  11. Ferrari, S., Cannizzaro, L. A., Battini, R., Huebner, K., and Baserga, R., 1987, The gene encoding human vimentin is located on the short arm of chromosome 10, Am. J. Human Genet. 41: 616–626.Google Scholar
  12. Fisher, D. Z., Chaudhary, N., and Blobel, G., 1986, cDNA sequence of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins, Proc. Natl. Acad. Sci. USA 83: 6450–6455.PubMedCrossRefGoogle Scholar
  13. Gilbert, W., 1978, Why genes in pieces? Nature 271: 501.PubMedCrossRefGoogle Scholar
  14. Glass, C., Kim, K. H., and Fuchs, E., 1985, Sequence and expression of a human type II mesothelial keratin, J. Cell Biol. 101: 2366–2373.PubMedCrossRefGoogle Scholar
  15. Goldman, A. E., Maul, G., Steinert, P. M., Yang, H.-Y., and Goldman, R. D., 1986, Keratin-like proteins that co-isolate with intermediate filaments of BHK-21 cells are nuclear lamins, Proc. Natl. Acad. Sci. USA 83: 3839–3843.PubMedCrossRefGoogle Scholar
  16. Hisanaga, S., and Hirokawa, N., 1988, Structure of the peripheral domains of neurofilaments revealed by low angle rotary shadowing, J. Mol. Biol. 202: 297–302.PubMedCrossRefGoogle Scholar
  17. Johnson, L. D., Idler, W. W., Zhou, X.-M., Roop, D. R., and Steinert, P. M., 1985, The structure of the gene for the human epidermal keratin of 67,000 molecular weight, Proc. Natl. Acad. Sci. USA 82: 1896–1900.PubMedCrossRefGoogle Scholar
  18. Julien, J.-R., Grosveld, F., Yasdanbaksh, K., Flavell, D., Meijer, D., and Mushynski, W., 1987, The structure of a human neurofilament gene (NF-L): A unique exon-intron organization in the intermediate filament gene family, Biochim. Biophys. Acta 909: 10–21.PubMedCrossRefGoogle Scholar
  19. Klinge, E. M., Sylvestre, Y., Freedeburg, I. M., and Blumenberg, M., 1978, Evolution of keratin genes: different protein domains evolve by different pathways, J. Mol. Evol. 24: 319–329.CrossRefGoogle Scholar
  20. Krieg, T. M., Schafer, M. P., Cheng, C. K., Filpula, D., Flaherty, P., Steinert, P. M., and Roop, D. R., 1985, Organization of a type I keratin gene: Evidence for evolution of intermediate filaments from a common ancestral gene, J. Biol. Chem. 260: 5867–5870.PubMedGoogle Scholar
  21. Lasek, R. J., Philips, L., Katz, M. J., and Autilio-Gambetti, L., 1985, Function and evolution of neurofilament proteins, Ann. N.Y. Acad. Sci. 455: 462–478.PubMedCrossRefGoogle Scholar
  22. Lau, S. Y. M., Taneja, A. K., and Hodges, R. S., 1984, Synthesis of a model protein of defined secondary and quaternary structure. Effects of chain length on the stabilization and formation of two-stranded α-helical coiled-coils, J. Biol. Chem. 259: 13253–13264.PubMedGoogle Scholar
  23. Lee, M. G. S., Lewis, S. A., Wilde, C. D., and Cowan, N. J., 1983, Evolutionary history of a multigene family: An expressed human β-tubulin gene and three processed pseudogenes, Cell 33: 477–487.PubMedCrossRefGoogle Scholar
  24. Lessin, S. R., Huebner, K., Isobe, M., Croce, C. M., and Steinert, P. M., 1988, Chromosomal mapping of human keratin genes: Evidence of non-linkage, J. Invest. Dermatol. 91: 572–578.PubMedCrossRefGoogle Scholar
  25. Lewis, S. A., and Cowan, N. J., 1986, Anomalous placement of introns in a member of the intermediate filament multigene family: An evolutionary conundrum, Mol. Cell. Biol. 6: 1529–1534.PubMedGoogle Scholar
  26. Lomedico, P., Rosenthal, N., Efstratiadis, S., Gilbert, W., Kolodner, R., and Tizard, R., 1979, The structure and evolution of the two nonallelic rat preproinsulin genes, Cell 18: 545–558.PubMedCrossRefGoogle Scholar
  27. Lonberg, N., and Gilbert, W., 1985, Intron/exon structure of the chicken pyruvate kinase gene, Cell 40: 81–90.PubMedCrossRefGoogle Scholar
  28. McKeon, F. D., Kirschner, M. W., and Caput, D., 1986, Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins, Nature 319: 463–468.PubMedCrossRefGoogle Scholar
  29. Marchuk, D., McCrohon, S., and Fuchs, E., 1984, Remarkable conservation of structure among intermediate filament genes, Cell 39: 491–498.PubMedCrossRefGoogle Scholar
  30. Mischke, D., and Wild, G., 1987, Polymorphic keratins in human epidermis, J. Invest. Dermatol. 88: 191–197.PubMedCrossRefGoogle Scholar
  31. Miyatani, S., Winkles, J. A., Sargent, T. D., and Dawid, I. B., 1986, Stage-specific keratins of Xenopus laevis embryos and tadpoles: The XK81 family, J. Cell Biol. 103: 1957–1965.PubMedCrossRefGoogle Scholar
  32. Myers, M. W., Lazzarini, R. A., Lee, V. M.-Y, Schlaepfer, W. W., and Nelson, D. L., 1987, The human midsize neurofilament subunit: A repeated protein sequence and relationship of its gene to the intermediate filament family, EMBO J. 6: 1617–1626.PubMedGoogle Scholar
  33. Napolitano, E. N., Chin, S. S. M., Colman, D. R., and Liem, R. K. H., 1987, Complete amino acid sequence and in vitro expression of rat NF-M, the middle molecular weight neurofilament protein, J. Neurosci. 7: 2590–2595.PubMedGoogle Scholar
  34. Nishoida, Y., Leder, A., and Leder, P., 1980, An unusual α-globin-like gene that has cleanly lost both globin intervening sequences, Proc. Natl. Acad. Sci. USA 77: 2806–2809.CrossRefGoogle Scholar
  35. Ohno, S., Matsunaga, T., and Wallace, R. B., 1982, Identification of the 48-base-long primordial building block sequence of mouse immunoglobulin variable region genes, Proc. Natl. Acad. Sei. USA 79: 1999–2002.CrossRefGoogle Scholar
  36. Parry, D. A. D., and Fraser, R. D. B., 1985, Intermediate filament structure. I. Analysis of IF protein sequence data, Int. J. Biol. Macromol. 7: 203–213.CrossRefGoogle Scholar
  37. Parry, D. A. D., Crewther, W. G., Fraser, R. D. B., and MacRae, T. P., 1977, Structure of alpha-keratin: Structural implications of the amino acid sequences of the type I and type II chain segments, J. Mol. Biol. 113: 448–454.CrossRefGoogle Scholar
  38. Parry, D. A. D., Conway, J. F., and Steinert, P. M., 1986, Structural studies on lamin: Similarities and differences between lamin and intermediate filament proteins, Biochem. J. 238: 305–308.PubMedGoogle Scholar
  39. Parry, D. A. D., Conway, J. F., Goldman, A. E., Goldman, R. D., and Steinert, P. M., 1987, Nuclear lamin proteins: Common structures for paracrystalline, filamentous and lattice forms, Int. J. Biol. Macromol. 9: 137–145.CrossRefGoogle Scholar
  40. Powell, B. C., Cam, G. R., Fietz, M. J., and Rogers, G. E., 1986, Clustered arrangement of keratin intermediate filament genes, Proc. Natl. Acad. Sci. USA 83: 5048–5052.PubMedCrossRefGoogle Scholar
  41. Proudfoot, N. J., Shander, M. H. M., Manley, J. L., Gefter, M. L., and Maniatis, T., 1980, Structure and in vitro transcription of human globin genes, Science 209: 1329–1336.PubMedCrossRefGoogle Scholar
  42. Quax, W., Egberts, W. V., Hendricks, W., Quax-Jeuken, Y., and Bloemendal, H., 1983, The structure of the vimentin gene, Cell 35: 215–223.PubMedCrossRefGoogle Scholar
  43. Quax, W., van der Brock, L., Egberts, W. V., Ramaekers, F., and Bloemendal, H., 1985a, Characterization of the hamster desmin gene: Expression and formation of desmin filaments in nonmuscle cells after gene transfer, Cell 43: 327–338.PubMedCrossRefGoogle Scholar
  44. Quax, W., Meera-Khan, P., Quax-Jeuken, Y., and Bloemendal, H., 1985b, The human desmin and vimentin genes are located on different chromosomes, Gene 38: 189–196.PubMedCrossRefGoogle Scholar
  45. RayChaudhury, A., Marchuk, D., Lindhurst, M., and Fuchs, E., 1986, Three tightly linked genes encoding human type I keratins: Conservation of sequences in the 5′-untranslated leader and 5′-upstream regions of co-expressed keratins, Mol. Cell Biol. 6: 539–548.PubMedGoogle Scholar
  46. Rieger, M., Jorcano, J. L., and Franke, W. W., 1985, Complete sequence of a bovine type I cytokeratin gene: Conserved and variable intron positions in genes of polypeptides of the same cytokeratin family. EMBO J. 4: 2261–2267.PubMedGoogle Scholar
  47. Romano, V., Bosco, P., Costa, G., Leube, R., Franke, W. W., Rochi, M., and Romeo, G., 1987, Chromosome assignment of cytokeratin genes, Cytogenet. Cell Genet. 46: 683.Google Scholar
  48. Roop, D. R., and Steinert, P. M., 1986, The structure and evolution of intermediate filament genes, in: Cell and Molecular Biology of the Cytoskeleton (J. W. Shay, ed.), Plenum Press, New York, pp. 69–83.CrossRefGoogle Scholar
  49. Roop, D. R., Cheng, C. K., Titterington, L., Meyers, C. A., Stanley, J. R., Steinert, P. M., and Yuspa, S. H., 1984, Synthetic peptides corresponding to keratin subunits elicit highly specific antibodies, J. Biol. Chem. 259: 8037–8040.PubMedGoogle Scholar
  50. Rosenberg, M., RayChaudhury, A., Shows, T. B., LeBeau, M. M., and Fuchs, E., 1988, A group of type I keratins on human chromosome 17; characterization and expression, Mol. Cell Biol. 8: 722–736.PubMedGoogle Scholar
  51. Savtchenko, E. S., Freedberg, I. M., and Blumenberg, M., 1987, Human keratin genes are linked, J. Invest. Dermatol. 88: 516.Google Scholar
  52. Shaw, G., and Weber, K., 1984, Differential expression of neurofilament triplet proteins in brain development, Nature 298: 277–279.CrossRefGoogle Scholar
  53. Steinert, P. M., and Roop, D. R., 1988, Molecular and cellular biology of intermediate filaments, Annu. Rev. Biochem. 57: 593–625.PubMedCrossRefGoogle Scholar
  54. Steinert, P. M., Rice, R. H., Roop, D. R., Trus, B. L., and Steven, A. C., 1983, Complete amino acid sequence of a mouse epidermal keratin subunit: Implications for the structure of intermediate filaments, Nature 302: 794–800.PubMedCrossRefGoogle Scholar
  55. Steinert, P. M., Parry, D. A. D., Racoosin, E. L., Idler, W. W., Steven, A. C., Trus, B. L., and Roop, D. R., 1984, The complete cDNA and deduced amino acid sequence of a type II mouse epidermal keratin of 60,000 molecular weight: Analysis of sequence differences between type I and type II keratins, Proc. Natl. Acad. Sci. USA 81: 5709–5713.PubMedCrossRefGoogle Scholar
  56. Steinert, P. M., Steven, A. C., and Roop, D. R., 1985a, The molecular biology of intermediate filaments, Cell 42: 411–419.PubMedCrossRefGoogle Scholar
  57. Steinert, P. M., Parry, D. A. D., Idler, W. W., Johnson, L. D., Steven, A. C., and Roop, D. R., 1985b, Amino acid sequences of mouse and human epidermal type II keratins of Mr 67,000 provide a systematic basis for the structural and functional diversity of the end domains of keratin intermediate filament subunits, J. Biol. Chem. 260: 7442–7449.Google Scholar
  58. Sun, T.-T., Eichner, R., Schermer, A., Cooper, D., Nelson, W. G., and Weiss, R. A., 1984, Classification, expression and possible mechanisms of evolution of mammalian epithelial keratins: A unifying model, in: Cancer Cells 1: The Transformed Phenotype, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 169–176.Google Scholar
  59. Tyner, A. L., Eichman, M. J., and Fuchs, E., 1985, The sequence of a type II keratin gene expressed in human skin: Conservation of structure among all intermediate filament genes, Proc. Natl. Acad. Sci. USA 82: 4683–4687.PubMedCrossRefGoogle Scholar
  60. Vasseur, M., Duprey, P., Brulet, P., Jacob, F., 1985, One gene and one pseudogene for the cytokeratin endo A, Proc. Natl. Acad. Sei. USA 82: 1155–1159.CrossRefGoogle Scholar
  61. Weber, K., 1986, Link between lamins and intermediate filaments, Nature 320: 402.PubMedGoogle Scholar
  62. Weber, K., and Geisler, N., 1984, Intermediate filaments—from wool α-keratin to neurofilaments: A structural overview, in: Cancer Cells 1: The Transformed Phenotype, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 153–159.Google Scholar
  63. Yamada, K., Avvedimento, V. E., Mudryji, M., Ohkubo, H., Vogeli, G., Irani, M., Pastan, I., and De Crombrugghe, B., 1980, The collagen gene: Evidence for its evolutionary assembly by amplification of a DNA segment containing an exon of 54 bp, Cell 22: 887–892.PubMedCrossRefGoogle Scholar
  64. Zackroff, R. V., Goldman, A. E., Jones, J. C. R., Steinert, P. M., and Goldman, R. D., 1984, Isolation and characterization of keratin-like proteins from cultured cells with fibroblastic morphology, J. Cell Biol. 98: 1231–1237.PubMedCrossRefGoogle Scholar
  65. Zehner, Z. E., and Paterson, B. M., 1983, Characterization of the chicken vimentin gene: Single copy gene producing multiple mRNAs, Proc. Natl. Acad. Sci. USA 80: 911–915.PubMedCrossRefGoogle Scholar
  66. Zhou, X.-M., Idler, W. W., Steven, A. C., Roop, D. R., and Steinert, P. M., 1988, The complete sequence of the human intermediate filament chain keratin 10; subdomainal divisions and model for folding of end domain sequences, J. Biol. Chem. 263: 15584–15589.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Peter M. Steinert
    • 1
  • Dennis R. Roop
    • 2
  1. 1.Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaUSA
  2. 2.Departments of Cell Biology and DermatologyBaylor College of MedicineHoustonUSA

Personalised recommendations