Advertisement

Keratins and Their Genes in Xenopus laevis

Structural and Developmental Aspects
  • Thomas D. Sargent
  • Erzsebet Jonas
  • Milan Jamrich
  • George S. Michaels
  • Seiji Miyatani
  • Jeffrey A. Winkles
  • Igor B. Dawid

Abstract

Cytokeratins and cytokeratin genes in Xenopus laevis have been studied from both a structural and a developmental point of view. The former must be seen in the context of the extensive work on cytokeratins in many vertebrate animals; the information obtained for Xenopus provides additional comparative opportunities with important evolutionary implications. Since most other studies on cytokeratins have been done on mammalian material, it is very useful to have extensive data available on a cold-blooded animal as well. The second major impetus for this work came from developmental considerations: cytokeratins are prominent tissue-specific products and the study of their expression proved to be a powerful tool for the characterization of developmental processes.

Keywords

Xenopus Laevis Genome Duplication Adult Type Adult Skin Neurula Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bisbee, C. A., Baker, M. A., Wilson, A. C., Hadji-Adzimi, I., and Fischberg, M., 1977, Albumin phylogeny for clawed frogs (Xenopus), Science 195: 785–787.PubMedCrossRefGoogle Scholar
  2. Dawid, I. B., and Sargent, T. D., 1986, Molecular embryology in amphibians: New approaches to old questions, Trends Genet. 2: 47–50.CrossRefGoogle Scholar
  3. Ellison, T. R., Mathisen, P. M., and Miller, L., 1985, Developmental changes in keratin patterns during epidermal maturation, Dev. Biol. 112: 329–337.PubMedCrossRefGoogle Scholar
  4. Hanukoglu, I., and Fuchs, E., 1983, The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable structural domains among keratins, Cell 33: 915–924.PubMedCrossRefGoogle Scholar
  5. Hoffmann, W., and Franz, J. K., 1984, Amino acid sequence of the carboxy-terminal part of an acidic type I cytokeratin from Xenopus laevis epidermis as predicted from the cDNA sequence, EMBO J. 3: 1301–1306.PubMedGoogle Scholar
  6. Hoffmann, W., Franz, J. K., and Franke, W. W., 1985, Amino acid microheterogeneity of basic (type II) cytokeratins of Xenopus laevis epidermis and evolutionary conservativity of helical and non-helical domains, J. Mol Biol 184: 713–724.PubMedCrossRefGoogle Scholar
  7. Jonas, E., Sargent, T. D., and Dawid, I. B., 1985, Epidermal keratin gene expressed in embryos of Xenopus laevis, Proc. Natl Acad. Sci. USA 82: 5413–5417.PubMedCrossRefGoogle Scholar
  8. Marchuk, D., McCrohon, S., and Fuchs, E., 1984, Remarkable conservation of structure among intermediate filament genes, Cell 39: 491–498.PubMedCrossRefGoogle Scholar
  9. Nieuwkoop, P. D., and Faber, J., 1967, Normal Table of Xenopus laevis (Daudin), 2nd ed., North-Holland, Amsterdam.Google Scholar
  10. Okada, A., Shin, T., Dworkin-Rastl, E., Dworkin, M., and Zubay, G., 1985, Constancy of DNA organization of polymorphic and nonpolymorphic genes during development in Xenopus, Differentiation 29: 14–19.PubMedCrossRefGoogle Scholar
  11. Sargent, T. D., and Dawid, I. B., 1983, Differential gene expression in the gastrula of Xenopus laevis, Science 222: 135–139.PubMedCrossRefGoogle Scholar
  12. Sargent, T. D., Jamrich, M., and Dawid, I. B., 1986, Cell interactions and the control of gene activity during early development in Xenopus laevis, Dev. Biol 114: 238–246.PubMedCrossRefGoogle Scholar
  13. Steinert, P. M., and Parry, D. A. D., 1986, Intermediate filaments: Conformity and diversity of expression and structure, Annu. Rev. Cell Biol 1: 41–65.CrossRefGoogle Scholar
  14. Steinert, P. M., Steven, A. C., and Roop, D. R., 1985, The molecular biology of intermediate filaments, Cell 42: 411–419.PubMedCrossRefGoogle Scholar
  15. Wahli, W., Dawid, I. B., Ryffel, G. U., and Weber, R., 1981, Vitellogenesis and the vitellogenin gene family, Science 212: 298–304.PubMedCrossRefGoogle Scholar
  16. Wahli, W., Germond, J.-E., ten Heggeler, B., and May, F. E. B., 1982, Vitellogenin genes A1 and B2 are linked in the Xenopus genome, Proc. Natl Acad. Sci. USA 70: 6832–6836.CrossRefGoogle Scholar
  17. Wilbur, W. J., and Lipman, D. J., 1983, Similarity searches of the nucleic acid and protein data banks, Proc. Natl Acad. Sci. USA 80: 726–730.PubMedCrossRefGoogle Scholar
  18. Winkles, J. A., Jamrich, M., Jonas, E., Kay, B. K., Miyatani, S., Sargent, T. D., and Dawid, I. B., 1984, Gene expression during embryogenesis in Xenopus laevis, in: Molecular Biology of Development (E. H. Davidson and R. Firtel, eds.), Liss, New York, pp. 93–108.Google Scholar
  19. Winkles, J. A., Sargent, T. D., Parry, D. A. D., Jonas, E., and Dawid, I. B., 1985, Developmentally regulated cytokeratin gene in Xenopus laevis, Mol. Cell Biol. 5: 2575–2581.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Thomas D. Sargent
    • 1
    • 2
  • Erzsebet Jonas
    • 1
    • 2
  • Milan Jamrich
    • 1
    • 2
  • George S. Michaels
    • 1
    • 2
  • Seiji Miyatani
    • 1
    • 2
  • Jeffrey A. Winkles
    • 1
    • 2
  • Igor B. Dawid
    • 1
    • 2
  1. 1.Laboratory of Molecular GeneticsNational Institute of Child HealthBethesdaUSA
  2. 2.Human DevelopmentNational Institutes of HealthBethesdaUSA

Personalised recommendations