Intermediate Filaments

An Overview
  • Robert D. Goldman
  • Robert V. Zackroff
  • Peter M. Steinert


We now know that intermediate filaments (IF) are ubiquitous constituents of virtually all differentiated eukaryotic cells and are present in both the nucleus (as the nuclear lamina) and cytoplasm (as 10- to 15-nm-diameter filaments). However, the realization of this distribution has taken about 100 years. In retrospect, IF networks were first described in the late 1800s-early 1900s by cytologists studying fixed-stained tissue cells. It appears quite likely that many of the fibrillar structures revealed in the cytoplasm with the early silver and gold staining methods were IF. For example, the neurofibrils characteristic of neurons were described early on as an extensive “netlike structure” in the cell body surrounding the nucleus and extending into axons (Wilson, 1928, pp. 40–41). In addition, early cytologists such as Heidenhain and Del Rio depicted various types of columnar epithelial cells as containing extensive arrays of “tonofibrillae.” In stratified epithelia, many of the tonofibrillae were described as forming “intercellular plasma bridges” thought to traverse cell membranes (Wilson, 1928, pp. 40–41). These tonofibrils were probably the same fibrous arrays that can now be detected by immunofluorescence methods using antibodies directed against keratin, and the transcellular bridging areas most likely represent the IF bundle-desmosome complexes that typify keratinocytes and other epithelial cells (Jones and Goldman, 1985).


Intermediate Filament Intermediate Filament Protein Nuclear Lamins Intermediate Filament Vimentin Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Astbury, W. T., and Street, A., 1931, X-ray studies on the structure of hair, wool and related fibres. I, Philos. Trans. R. Soc. 230A: 75.Google Scholar
  2. Buckley, I. K., Raju, T. R., and Stewart, M., 1978, Heavy meromyosin labeling of intermediate filaments in cultured connective tissue cells, J. Cell Biol. 78: 648–652.CrossRefGoogle Scholar
  3. Celis, J. E., Larsen, P. M., Fey, S. J., and Celis, A., 1983, Phosphorylation of keratin and vimentin polypeptides in normal and transformed mitotic human epithelial amnion cells: Behavior of keratin and vimentin filaments during mitosis, J. Cell Biol. 97: 1429–1434.PubMedCrossRefGoogle Scholar
  4. Chou, Y. H., Rosevear, E., and Goldman, R. D., 1989, Phosphorylation and disassembly of intermediate filaments in mitotic cells, Proc. Natl. Acad. Sci. USA 86: 1885–1889.PubMedCrossRefGoogle Scholar
  5. Crick, F. H. C., 1953, The Fourier-transform of a coiled-coil, Acta Crystallogr. 6: 685.CrossRefGoogle Scholar
  6. Day, W. A., and Gilbert, D. S., 1972, X-ray diffraction pattern of axoplasm, Biochim. Biophys. Acta 285: 503–506.PubMedCrossRefGoogle Scholar
  7. Eriksson, A., and Thornell, L.-E., 1979, Intermediate (skeletin) filaments in heart Purkinje fibers. A correlative morphological and biochemical identification with evidence of a cytoskeletal function, J. Cell Biol. 80: 231–247.PubMedCrossRefGoogle Scholar
  8. Evans, R. M., 1984, Peptide mapping of phosphorylated vimentin, J. Biol. Chem 259: 5372–5375.PubMedGoogle Scholar
  9. Evans, R. M., 1988, Cyclic AMP-dependent protein kinase-induced vimentin filament disassembly involves modification of the N-terminal domain of intermediate filament subunits, FEBS Lett. 234: 73–78.PubMedCrossRefGoogle Scholar
  10. Evans, R. M., and Fink, L. M., 1982, An alternation in the phosphorylation of vimentin-type intermediate filaments is associated with mitosis in cultured mammalian cells, Cell 29: 43–52.PubMedCrossRefGoogle Scholar
  11. Fisher, D. Z., Chaudhary, N., and Blobel, G., 1986, cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins, Proc. Natl. Acad. Sci. USA 83: 6450–6454.PubMedCrossRefGoogle Scholar
  12. Fraser, R. D. B., and MacRae, T. P., 1961, Molecular configuration of alpha-keratin, J. Mol. Biol. 3: 640–645.PubMedCrossRefGoogle Scholar
  13. Geisler, N., and Weber, K., 1988, Phosphorylation of desmin in vitro inhibits formation of intermediate filaments: Identification of three kinase A sites in the amino terminal head domain, EMBO J. 7: 15–201.PubMedGoogle Scholar
  14. Georgatos, S.D., and Blobel, G., 1987a, Two distinct attachment sites for vimentin along the plasma membrane and the nuclear envelop in avian erythrocytes: A basis for a vectorial assembly of intermediate filament, J. Cell Biol. 105: 105–116.PubMedCrossRefGoogle Scholar
  15. Georgatos, S. D., and Blobel, G., 1987b, Lamin B constitutes an intermediate filament attachment site at the nuclear envelope, J. Cell Biol. 105: 117–126.PubMedCrossRefGoogle Scholar
  16. Gerace, L., Comeau, C., and Benson, N., 1984, Organization and modulation of nuclear lamina structure, J. Cell Sci. Suppl. 1, 137–160.CrossRefGoogle Scholar
  17. Goldman, A. E., Maul, G., Steinert, P. M., Yang, H.-Y, and Goldman, R. D., 1986, Keratin-like proteins which coisolate with intermediate filaments of BHK-21 cells are nuclear lamins, Proc. Natl. Acad. Sci. USA 83: 3839–3843.PubMedCrossRefGoogle Scholar
  18. Goldman, R. D., 1971, The role of three cytoplasmic fibers in BHK-21 cell motility. I. Microtubules and the effects of colchicine, J. Cell Biol. 51: 752–762.PubMedCrossRefGoogle Scholar
  19. Goldman, R. D., and Follett, E. A. C., 1969, The structure of the major cell processes of isolated BHK-21 fibroblasts, Exp. Cell Res. 57: 263–276.PubMedCrossRefGoogle Scholar
  20. Goldman, R. D., and Knipe, C., 1973, Functions of cytoplasmic fibers in non-muscle cell motility, Cold Spring Harbor Symp. Quant. Biol. 37: 523–534.CrossRefGoogle Scholar
  21. Goldman, R. D., Goldman, A., Green, K., Jones, J., Lieska, N., and Yang, H.-Y., 1985, Intermediate filaments: Possible functions as cytoskeletal connecting links between the nucleus and the cell surface, Ann. N.Y. Acad. Sci. 455: 1–17.PubMedCrossRefGoogle Scholar
  22. Goldman, R. D., Goldman, A. E., Green, K. J., Jones, J. C. R., Jones, S. M., and Yang, H.-Y., 1986, Intermediate filament networks: Organization and possible functions of a diverse group of cytoskeletal elements, J. Cell Sei. Suppl. 5: 69–97.CrossRefGoogle Scholar
  23. Green, K., and Goldman, R. D., 1986, Evidence for an interaction between the cell surface and intermediate filaments in cultured fibroblasts, Cell Motil. Cytoskel. 6: 389–405.CrossRefGoogle Scholar
  24. Green, K., Talian, J. C., and Goldman, R. D., 1986, Relationships between intermediate filaments and microfilaments in cultured fibroblasts: Evidence for common foci during cell spreading, Cell Motil. Cytoskel. 6:406–418.CrossRefGoogle Scholar
  25. Green, K. J., Geiger, B., Jones, J. C. R., Talian, J. C., and Goldman, R. D., 1987, The relationship between intermediate filaments and microfilaments before and during the formation of desmosomes and adherenstype junctions in mouse epidermal keratinocytes, J. Cell Biol. 104: 1389–1402.PubMedCrossRefGoogle Scholar
  26. Hitchcock, S., Carlson, L., and Lindberg, U., 1976, Depolymerization of F-actin by deoxyibnuclease I, Cell 7: 531–542.PubMedCrossRefGoogle Scholar
  27. Holmes, K. V., and Choppin, P. W., 1968, On the role of microtubules in movement and alignment of nuclei in virus-induced syncytia, J. Cell Biol. 39: 526–542.PubMedCrossRefGoogle Scholar
  28. Holtzer, H., Sanger, J. W., Ishikawa, A., and Strahs, K., 1972, Selected topics in skeletal myogenesis, Cold Spring Harbor Symp. Quant. Biol. 37: 549–566.CrossRefGoogle Scholar
  29. Holtzer, H., Fellini, S., Rubinstein, N., Chi, J., and Strahs, K., 1976, Cells, myosins and 100A filaments, in: Cell Motility (R. D. Goldman, R. D. Pollards, and J. L. Rosenbaum, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., Book B, pp. 823–839.Google Scholar
  30. Inagaki, M., Nishi, Y., Nishizawa, K., Matsuyama, M., and Sato, C., 1987, Site specific phosphorylation induces disassembly of vimentin filaments in vitro, Nature 328: 649–652.PubMedCrossRefGoogle Scholar
  31. Inagaki, M., Gonda, Y., Matsuyuma, M., Nishizama, K., Nishi, Y., and Sato, C., 1988, Intermediate filament reconstitution in vitro, J. Biol. Chem. 263: 5970–5978.PubMedGoogle Scholar
  32. Jones, J. C. R., and Goldman, R. D., 1985, Intermediate filaments and the initiation of desmosome assembly, J. Cell Biol. 101: 509–517.Google Scholar
  33. Jones, J., Goldman, A., Steinert, P., Yuspa, S., and Goldman, R., 1982, Dynamic aspects of the supramolecular organization of intermediate filament networks in cultured epidermal cells, Cell Motil. 2: 197–213.PubMedCrossRefGoogle Scholar
  34. Jones, J. C. R., Goldman, A. E., Yang, H.-Y., and Goldman, R. D., 1985, The organizational fate of intermediate filament networks in two epithelial cell types during mitosis, J. Cell Biol. 100: 93–102.PubMedCrossRefGoogle Scholar
  35. Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature 283: 249–256.PubMedCrossRefGoogle Scholar
  36. Leonard, D. G. B., Gorham, J. D., Cole, P., Green, L. A., and Ziff, E. B., 1988, A nerve growth factorregulated messenger RNA encodes a new intermediate filament protein, J. Cell Biol. 106: 181–193.PubMedCrossRefGoogle Scholar
  37. McKeon, F. D., Kirschner, M. W., and Caput, D., 1986, Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins, Nature 319: 463–468.PubMedCrossRefGoogle Scholar
  38. Parysek, L. M., and Goldman, R. D., 1988, Distribution of a novel 57kDa intermediate filament (IF) protein in the nervous system, J. Neurosci. 8: 555–563.PubMedGoogle Scholar
  39. Parysek, L. M., Chisholm, R. L., Ley, C. A., and Goldman, R. D., 1988, A type III intermediate filament gene is expressed in mature neurons, Neuron 1: 395–401.PubMedCrossRefGoogle Scholar
  40. Staehelin, A. L., 1974, Intercellular functions, Int. Rev. Cytol. 39: 191–283.PubMedCrossRefGoogle Scholar
  41. Starger, J., Brown, W., Goldman, A., and Goldman, R. D., 1978, Biochemical and immunological analyses of rapid purified 10-nm filaments from BHK-21 cells, J. Cell Biol. 78: 93–109.PubMedCrossRefGoogle Scholar
  42. Steinert, P. M., and Parry, D., 1985, Intermediate filaments, Annu. Rev. Cell Biol. 1: 41–65.PubMedCrossRefGoogle Scholar
  43. Steinert, P. M., and Roop, D., 1988, Molecular and cellular biology of intermediate filaments, Ann. Rev. Biochem. 57: 575–609.CrossRefGoogle Scholar
  44. Steinert, P. M., Zimmerman, S. B., and Idler, W. W., 1976, The self assembly of bovine epidermal keratin filaments in vitro, J. Mol. Biol. 108: 547–567.PubMedCrossRefGoogle Scholar
  45. Steinert, P., Zimmerman, S., Starger, J., and Goldman, R. D., 1978, Ten nanometer filaments of hamster BHK-21 cells and epidermal keratin filaments have similar structure, Proc. Natl. Acad. Sci. USA 75: 6098–6101.PubMedCrossRefGoogle Scholar
  46. Steinert, P., Zackroff, R., Aynardi-Whitman, M., and Goldman, R., 1982, Isolation and characterization of intermediate filaments, Methods Cell Biol. 24A: 399–419.CrossRefGoogle Scholar
  47. Steinert, P., Jones, J., and Goldman, R. D., 1984, Intermediate filaments, J. Cell Biol. 99: 22s–27s.PubMedCrossRefGoogle Scholar
  48. Steinert, P. M., Parry, D., Idler, W. W., Johnson, L. D., Steven, A., and Roop, D. R., 1985, Amino acid sequences of mouse and human epidermal type II keratins of Mr 67,000 provides a systematic basis for the structural and functional diversity of the end domains of keratin intermediate filament subunits, J. Biol. Chem. 260: 7142–7149.PubMedGoogle Scholar
  49. Vikstrom, K. L., Borisy, G. G., and Goldman, R. D., 1989, Dynamic aspects of intermediate filament networks in BHK-21 cells, Proc. Natl. Acad. Sci. USA 86: 549–553.PubMedCrossRefGoogle Scholar
  50. Wang, E., and Goldman, R. D., 1978, Functions of cytoplasmic fibers in intracellular movements in BHK-21 cells, J. Cell Biol. 79: 708–726.PubMedCrossRefGoogle Scholar
  51. Wilson, E., 1928, The Cell in Development and Heredity, Macmillan Co., New York.Google Scholar
  52. Wisniewski, H., Shelanski, M. L., and Terry, R. D., 1968, Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells, J. Cell Biol. 38: 224–229.PubMedCrossRefGoogle Scholar
  53. Zackroff, R. V., and Goldman, R. D., 1979. In vitro assembly of intermediate filaments from baby hamster kidney (BHK-21) cells, Proc. Natl. Acad. Sci. USA 76: 6226–6230.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Robert D. Goldman
    • 1
  • Robert V. Zackroff
    • 2
  • Peter M. Steinert
    • 3
  1. 1.Department of Cell, Molecular, and Structural BiologyNorthwestern University Medical SchoolChicagoUSA
  2. 2.Department of MicrobiologyUniversity of Rhode IslandKingstonUSA
  3. 3.Dermatology Branch, National Cancer InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations