Skip to main content

Transport Studies in Isolated Enterocytes

  • Chapter
  • 92 Accesses

Abstract

The purpose of this paper is to illustrate experimental strategies that may be adopted in the laboratory to approach transport studies in isolated enterocytes with isotopic methods. Since the work carried out with this biological preparation is vast I shall focus on methodologies set up to: a) investigate the energetics of organic solute active transport (e.g.sugars and dipeptides), b) reveal the separate pathways involved in the transfer of a given solute across the cell membrane (e.g. K+ transport) and c) study intracellular transport events.

Keywords

  • Intestinal Epithelial Cell
  • Incubation Buffer
  • Cotransport System
  • Radiolabelled Substrate
  • Membrane Vesicle Preparation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4757-9601-8_7
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-4757-9601-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahnen, D.J., Reed, T.A. and Bozdech, J.M. (1988). Isolation and characterization of populations of mature and immature rat colonocytes. American Journal of Physiology 254, G610 - G621.

    PubMed  CAS  Google Scholar 

  • Bolufer, J., Santos, F.J. and Vila, A. (1982). Interactions between monosaccharides and Leucine in basolateral membrane of isolated chick intestinal cells. Revista de Fi iolo.ía 38, 65–70.

    CAS  Google Scholar 

  • Bronner, F., Pansu, D., Bosshard, A. and Lipton, J.H. (1983). Calcium uptake by isolated rat intestinal cells Journal of Cell. Physiology 116, 322–328.

    CrossRef  CAS  Google Scholar 

  • Brown, P.D. and Sepúlveda, F.V. (1985a). A rabbit jejunal isolated enterocyte preparation suitable for transport studies. Journal of Physiology 363, 257–270.

    PubMed  CAS  Google Scholar 

  • Brown, P.D. and Sepúlveda, F.V. (1985b). Potassium movements associated with amino acid and sugar transport in enterocytes isolated from rabbit jejunum. Journal of Physiology 363, 271–285.

    PubMed  CAS  Google Scholar 

  • Burton, K.A., Ilundâin, A., O’Brien, J.A. and Sepúlveda, F.V. (1986). Calcium mobilisation by inositol-1,4,5-triphosphate in chicken enterocytes. Journal of Physiology 378, 77 p.

    Google Scholar 

  • Calonge, M.L., Ilundain, A. and Bolufer, J. (1989). Ionic dependence of glycylsarcosine uptake by isolated enterocytes. Journal of Cell Phvsiologv 138, 579–585.

    CrossRef  CAS  Google Scholar 

  • Carter-Su, C. and Kimmich, G.A. (1979). Membrane potentials and sugar transport by ATP-depleted intestinal cells: effect of anion gradients. American Journal of Physiology 237, C67 - C74.

    PubMed  CAS  Google Scholar 

  • Carter-Su, C. and Kimmich, G.A. (1980). Effect of membrane potential on Na+-dependent sugar transport by ATP-depleted intestinal cells. American Journal of Phvsiologv 238, C73 - C80.

    CAS  Google Scholar 

  • Crane, R.K. (1968). Absorption of sugars. In “Handbook of Physiology”, C.F. Code, ed., sect. 6, vol III, pp 1323 Americal Journal Society, Washington D.C.

    Google Scholar 

  • Eddy, A.A. (1987). The sodium gradient hypothesis of organic solute transport with special reference to amino acids. In “Amino acid transport in animal cells”, ed.Yudilevich,D.L. and Boyd C.A.R., pp 47–86. Manchester University Press.

    Google Scholar 

  • Ferrer, A., Planas, J.M. and Moretó, M. (1986). Preparation and properties of isolated epithelial cells from chicken caecum and jejunum. Revista espanola de Fisiologia 42, 341–348.

    PubMed  CAS  Google Scholar 

  • Geck, P. and Heinz, E. (1986). The Na-K-Cl cotransport system. Journal of Membrane Bioloqy 91, 97–105.

    CrossRef  CAS  Google Scholar 

  • Girardi, A.J., Mc Michael, H. and Henle, W. (1956). The use of HeLa cells in suspension for the quantitative study of virus propagation. Virology 2, 532–544.

    PubMed  CrossRef  CAS  Google Scholar 

  • Ilundâin, A., O’Brien, J.A., Burton, K.A. and Sepúlveda, F.V. (1987). Inositol triphosphate and calcium mobilisation in permeabilised enterocytes. Biochimica et biophysica acta 896, 113–116.

    PubMed  CrossRef  Google Scholar 

  • Kaunitz, J.D. (1988). Preparation and charaterization of viable epithelial cells from rabbit distal colon. American Journal of Ph siolo 254, G502 - G512.

    CAS  Google Scholar 

  • Kimmich, G.A. (1975). Preparation and characterisation of isolated intestinal epithelial cells and their use in studying intestinal transport. In: “Methods in memr ban biology”, Korth, E.,ed., vol IV. Plenum Press, New York, pp 51–115.

    Google Scholar 

  • Kimmich, G.A. (1981). Intestinal absorption of sugars. In “Physiology of the Gastrointestinal Tract”, chapter 41, Johnson L.R., ed., Raven Press, New York, pp. 1035–1061.

    Google Scholar 

  • Kimmich, G.A., Carter-Su, C. and Randles, J. (1977). Energetics of Nat-dependent sugar transport by isolated intestinal cells: evidence for a major role for membrane potential. American Journal of Physiology 233, E357 - E362.

    PubMed  CAS  Google Scholar 

  • Kimmich, G.A., Randles, J., Restrepo, D. and Montrose, M. (1985). The potential dependence of the intestinal Nat-dependent sugar transporter.Annual New York Academiin 456, 63–76.

    CAS  Google Scholar 

  • Kimmich, G.A. and Randles, J. (1988). Nat-coupled sugar transport: membrane potential-dependent Km and Ki for Nat. American Journal of PhysiolomL 255, C486 - C494.

    CAS  Google Scholar 

  • Lazdunski, M. (1983). Apamin a neurotoxin specific for one class of Ca2+-dependent K+ channels. Cell Calcium 4, 421–428.

    PubMed  CrossRef  CAS  Google Scholar 

  • Latorre, R., Oberhauser, A., Labarca, P. and Alvarez, 0. (1989). Varieties of calcium-activated potassium channels. Annual Review of Physiology 51, 385–399

    PubMed  CrossRef  CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Montero, M.C., Bolufer,J. and Ilundâin, A. (1988). Potassium transport in epithelial cells isolated from small intestine of the chicken. Pflügers Archiv European Journal of Physiology 412, 422–426.

    CrossRef  CAS  Google Scholar 

  • Montero, M.C. and Ilundâin, A. (1989). Effects of anisosmotic buffers on K+ transport in isolated chicken enterocytes. Biochimica et Biophysica Acta 979, 269–271.

    PubMed  CrossRef  CAS  Google Scholar 

  • Morris, A.P., Gallacher, D.U. and Lee, J.A.C. (1986) A large conductance, voltage-and calcium-activated K+ channel in the basolateral membrane of rat enterocytes. FEBS Letters 206, 87–92.

    PubMed  CrossRef  CAS  Google Scholar 

  • Schwarz, W. and Passow, H. (1983). Ca2+-activated K+-channels in erythrocytes and excitable cells. Annual Review of Physiology 45, 359–374.

    PubMed  CrossRef  CAS  Google Scholar 

  • Sepúlveda, F.V. and Mason, W.T (1985) Single channel recordings obtained from basolateral membranes of isolated rabbit enterocytes. FEBS Letters 191, 87–91.

    PubMed  CrossRef  Google Scholar 

  • Sepúlveda, F.V. and Smith, S.M. (1987). Calcium transport by permeabilised rabbit small intestinal epithelial cells. Pflücers Archiv European Journal of Physioloav 408, 231–238.

    CrossRef  Google Scholar 

  • Sheppard, D.N., Giraldez, F. and Sepúlveda, F.V. (1988). Kinetics of voltage-and Ca2+ activation and Ba2+ blockade of a large-conductance K+ channel from Necturus enterocytes. Journal of Membrane Biology 105, 65–75.

    PubMed  CrossRef  CAS  Google Scholar 

  • Velasco, G., Dominguez, P., Shears,S.B. and Lazo, P.S. (1986a). Permeability properties of isolated enterocytes from rat small intestine. Biochimica et Biophysica Acta 889, 361–365.

    PubMed  CrossRef  CAS  Google Scholar 

  • Velasco, G., Shears, S.B., Michell, R.H. and Lazo, P.S. (1986b). Calcium uptake by intracellular compartments in permeabilised enterocytes. Effect of inositol 1,4,5 triphosphate. Biochemical and Biophysical Research Communications 139, 612–618.

    PubMed  CrossRef  CAS  Google Scholar 

  • Verbost, P.M., Senden, M.H.M.N. and Van Os, C.H. (1987). Nanomolar concentrations of Cd2+ inhibit Ca2+ transport systems in plasma membranes and intracellular Ca2+ stores in intestinal epithelium. Biochimica et. Biophysica Acta 902, 247–252.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ilundáin, A. (1991). Transport Studies in Isolated Enterocytes. In: Yudilevich, D.L., Devés, R., Perán, S., Cabantchik, Z.I. (eds) Cell Membrane Transport. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9601-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9601-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9603-2

  • Online ISBN: 978-1-4757-9601-8

  • eBook Packages: Springer Book Archive