Advertisement

Transport Studies in Isolated Enterocytes

  • A. Ilundáin

Abstract

The purpose of this paper is to illustrate experimental strategies that may be adopted in the laboratory to approach transport studies in isolated enterocytes with isotopic methods. Since the work carried out with this biological preparation is vast I shall focus on methodologies set up to: a) investigate the energetics of organic solute active transport (e.g.sugars and dipeptides), b) reveal the separate pathways involved in the transfer of a given solute across the cell membrane (e.g. K+ transport) and c) study intracellular transport events.

Keywords

Intestinal Epithelial Cell Incubation Buffer Cotransport System Radiolabelled Substrate Membrane Vesicle Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahnen, D.J., Reed, T.A. and Bozdech, J.M. (1988). Isolation and characterization of populations of mature and immature rat colonocytes. American Journal of Physiology 254, G610 - G621.PubMedGoogle Scholar
  2. Bolufer, J., Santos, F.J. and Vila, A. (1982). Interactions between monosaccharides and Leucine in basolateral membrane of isolated chick intestinal cells. Revista de Fi iolo.ía 38, 65–70.Google Scholar
  3. Bronner, F., Pansu, D., Bosshard, A. and Lipton, J.H. (1983). Calcium uptake by isolated rat intestinal cells Journal of Cell. Physiology 116, 322–328.CrossRefGoogle Scholar
  4. Brown, P.D. and Sepúlveda, F.V. (1985a). A rabbit jejunal isolated enterocyte preparation suitable for transport studies. Journal of Physiology 363, 257–270.PubMedGoogle Scholar
  5. Brown, P.D. and Sepúlveda, F.V. (1985b). Potassium movements associated with amino acid and sugar transport in enterocytes isolated from rabbit jejunum. Journal of Physiology 363, 271–285.PubMedGoogle Scholar
  6. Burton, K.A., Ilundâin, A., O’Brien, J.A. and Sepúlveda, F.V. (1986). Calcium mobilisation by inositol-1,4,5-triphosphate in chicken enterocytes. Journal of Physiology 378, 77 p.Google Scholar
  7. Calonge, M.L., Ilundain, A. and Bolufer, J. (1989). Ionic dependence of glycylsarcosine uptake by isolated enterocytes. Journal of Cell Phvsiologv 138, 579–585.CrossRefGoogle Scholar
  8. Carter-Su, C. and Kimmich, G.A. (1979). Membrane potentials and sugar transport by ATP-depleted intestinal cells: effect of anion gradients. American Journal of Physiology 237, C67 - C74.PubMedGoogle Scholar
  9. Carter-Su, C. and Kimmich, G.A. (1980). Effect of membrane potential on Na+-dependent sugar transport by ATP-depleted intestinal cells. American Journal of Phvsiologv 238, C73 - C80.Google Scholar
  10. Crane, R.K. (1968). Absorption of sugars. In “Handbook of Physiology”, C.F. Code, ed., sect. 6, vol III, pp 1323 Americal Journal Society, Washington D.C.Google Scholar
  11. Eddy, A.A. (1987). The sodium gradient hypothesis of organic solute transport with special reference to amino acids. In “Amino acid transport in animal cells”, ed.Yudilevich,D.L. and Boyd C.A.R., pp 47–86. Manchester University Press.Google Scholar
  12. Ferrer, A., Planas, J.M. and Moretó, M. (1986). Preparation and properties of isolated epithelial cells from chicken caecum and jejunum. Revista espanola de Fisiologia 42, 341–348.PubMedGoogle Scholar
  13. Geck, P. and Heinz, E. (1986). The Na-K-Cl cotransport system. Journal of Membrane Bioloqy 91, 97–105.CrossRefGoogle Scholar
  14. Girardi, A.J., Mc Michael, H. and Henle, W. (1956). The use of HeLa cells in suspension for the quantitative study of virus propagation. Virology 2, 532–544.PubMedCrossRefGoogle Scholar
  15. Ilundâin, A., O’Brien, J.A., Burton, K.A. and Sepúlveda, F.V. (1987). Inositol triphosphate and calcium mobilisation in permeabilised enterocytes. Biochimica et biophysica acta 896, 113–116.PubMedCrossRefGoogle Scholar
  16. Kaunitz, J.D. (1988). Preparation and charaterization of viable epithelial cells from rabbit distal colon. American Journal of Ph siolo 254, G502 - G512.Google Scholar
  17. Kimmich, G.A. (1975). Preparation and characterisation of isolated intestinal epithelial cells and their use in studying intestinal transport. In: “Methods in memr ban biology”, Korth, E.,ed., vol IV. Plenum Press, New York, pp 51–115.Google Scholar
  18. Kimmich, G.A. (1981). Intestinal absorption of sugars. In “Physiology of the Gastrointestinal Tract”, chapter 41, Johnson L.R., ed., Raven Press, New York, pp. 1035–1061.Google Scholar
  19. Kimmich, G.A., Carter-Su, C. and Randles, J. (1977). Energetics of Nat-dependent sugar transport by isolated intestinal cells: evidence for a major role for membrane potential. American Journal of Physiology 233, E357 - E362.PubMedGoogle Scholar
  20. Kimmich, G.A., Randles, J., Restrepo, D. and Montrose, M. (1985). The potential dependence of the intestinal Nat-dependent sugar transporter.Annual New York Academiin 456, 63–76.Google Scholar
  21. Kimmich, G.A. and Randles, J. (1988). Nat-coupled sugar transport: membrane potential-dependent Km and Ki for Nat. American Journal of PhysiolomL 255, C486 - C494.Google Scholar
  22. Lazdunski, M. (1983). Apamin a neurotoxin specific for one class of Ca2+-dependent K+ channels. Cell Calcium 4, 421–428.PubMedCrossRefGoogle Scholar
  23. Latorre, R., Oberhauser, A., Labarca, P. and Alvarez, 0. (1989). Varieties of calcium-activated potassium channels. Annual Review of Physiology 51, 385–399PubMedCrossRefGoogle Scholar
  24. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265–275.PubMedGoogle Scholar
  25. Montero, M.C., Bolufer,J. and Ilundâin, A. (1988). Potassium transport in epithelial cells isolated from small intestine of the chicken. Pflügers Archiv European Journal of Physiology 412, 422–426.CrossRefGoogle Scholar
  26. Montero, M.C. and Ilundâin, A. (1989). Effects of anisosmotic buffers on K+ transport in isolated chicken enterocytes. Biochimica et Biophysica Acta 979, 269–271.PubMedCrossRefGoogle Scholar
  27. Morris, A.P., Gallacher, D.U. and Lee, J.A.C. (1986) A large conductance, voltage-and calcium-activated K+ channel in the basolateral membrane of rat enterocytes. FEBS Letters 206, 87–92.PubMedCrossRefGoogle Scholar
  28. Schwarz, W. and Passow, H. (1983). Ca2+-activated K+-channels in erythrocytes and excitable cells. Annual Review of Physiology 45, 359–374.PubMedCrossRefGoogle Scholar
  29. Sepúlveda, F.V. and Mason, W.T (1985) Single channel recordings obtained from basolateral membranes of isolated rabbit enterocytes. FEBS Letters 191, 87–91.PubMedCrossRefGoogle Scholar
  30. Sepúlveda, F.V. and Smith, S.M. (1987). Calcium transport by permeabilised rabbit small intestinal epithelial cells. Pflücers Archiv European Journal of Physioloav 408, 231–238.CrossRefGoogle Scholar
  31. Sheppard, D.N., Giraldez, F. and Sepúlveda, F.V. (1988). Kinetics of voltage-and Ca2+ activation and Ba2+ blockade of a large-conductance K+ channel from Necturus enterocytes. Journal of Membrane Biology 105, 65–75.PubMedCrossRefGoogle Scholar
  32. Velasco, G., Dominguez, P., Shears,S.B. and Lazo, P.S. (1986a). Permeability properties of isolated enterocytes from rat small intestine. Biochimica et Biophysica Acta 889, 361–365.PubMedCrossRefGoogle Scholar
  33. Velasco, G., Shears, S.B., Michell, R.H. and Lazo, P.S. (1986b). Calcium uptake by intracellular compartments in permeabilised enterocytes. Effect of inositol 1,4,5 triphosphate. Biochemical and Biophysical Research Communications 139, 612–618.PubMedCrossRefGoogle Scholar
  34. Verbost, P.M., Senden, M.H.M.N. and Van Os, C.H. (1987). Nanomolar concentrations of Cd2+ inhibit Ca2+ transport systems in plasma membranes and intracellular Ca2+ stores in intestinal epithelium. Biochimica et. Biophysica Acta 902, 247–252.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • A. Ilundáin
    • 1
  1. 1.Depto. Fisiología y Biología AnimalUniversidad de SevillaSevillaSpain

Personalised recommendations