Cell Membrane Transport pp 369-397 | Cite as
The Molecular Biology of Sugar Transport Proteins
Abstract
Many species of bacteria live in environments where nutrients are in short supply. Individual species must therefore accumulate nutrients at rates commensurate with rapid growth and successful competition. In order to increase the uptake of a given nutrient metabolic energy is used in its transport across the cell membrane (Button, 1985). In Escherichia coli, the ubiquitous model microorganism, transport processes are energised by several mechanisms (Fig.l). Energy sources used include: trans-membrane electrochemical gradient, of protons or sodium; adenosine triphosphate (ATP); or phosphoenol pyruvate (PEP) (illustrated in Fig.l; reviewed in Button, 1985; Saier, 1985; Henderson, 1986).
Keywords
Glucose Transporter Cold Spring Harbor Multicopy Plasmid Membrane Transport Protein Xylose TransportPreview
Unable to display preview. Download preview PDF.
References
- Bachmann, B.J., 1983, Linkage map of Escherichia coli K12, edition 7, Microbial. Rev., 47: 180–230.Google Scholar
- Badia, J., Baldoma, L., Aguilar, J., and Boronat, A., 1989, Identification of the rhaA, rhaB and rhaD gene products from Escherichia coli K12, FEMS Microbiol. Lett., 65: 253–258.CrossRefGoogle Scholar
- Balbas, P., Soberon, X., Merino, E., Zurita, M., Lomeli, H., Valle, F., Flores, N., and Bolivar, F., 1986, Plasmid vector pBR322 and its special purpose derivatives–a review, Gene, 50: 3–40.PubMedCrossRefGoogle Scholar
- Baldwin, S.A., and Henderson P.J.F., 1989, Homologies between sugar transporters from eukaryotes and prokaryotes, Annu. Rev. Physiol., 51: 459–471.PubMedCrossRefGoogle Scholar
- Bankier, A.T., Weston, K.M.G., and Barrell, B., 1987, Random cloning and sequencing by the M13/dideoxynucleotide chain termination method, Meth. Enzymol., 155, 51–93.PubMedCrossRefGoogle Scholar
- Beckwith, and Zipser, 1970, “The lactose operon”, Cold Spring Harbor, Cold Spring Harbor.Google Scholar
- Birnbaum, M.J., 1989, Identification of a novel gene encoding an insulin-responsive glucose transporter protein. Cell, 57: 305–315PubMedCrossRefGoogle Scholar
- Birnbaum, M.J., Haspel, H.C., and Rosen, O.M., 1986, Cloning and characterisation of a cDNA encoding the rat brain glucose-transporter protein, Proc. Natl. Acad. Sci. USA, 83: 5784–5788.PubMedCrossRefGoogle Scholar
- Bishop, M.J., and Rawlings, C.J., 1987, “Nucleic acid and protein sequence analysis - a practical approach”, IRL Press, Oxford.Google Scholar
- Botfield M.C., and Wilson, T.H., 1988, Mutations that simultaneously alter both sugar and cation specificity in the melibiose carrier of Escherichia colí, J. Biol. Chem., 263: 12909–12915.PubMedGoogle Scholar
- Bradley, S.A., Tinsley, C.R., Muiry J.A.R., and Henderson, P.J.F., 1987, Proton-linked L-fucose transport in Escherichia coli, Biochem. J., 248: 495–500.PubMedGoogle Scholar
- Bremer, E., Silhavy, T.J., Wiesemann, J.M., and Wienstock, G.M., 1984, Lambda plac Mu: a transposable derivative of phage lambda for creating lacZ protein fusions in a single step, J. Bacteriol., 158: 1084–1093.PubMedGoogle Scholar
- Broome-Smith, J.K., and Spratt, B.G., 1986, A vector for the construction of translational fusions to TEM ß-lactamase and the analysis of protein export signals and membrane protein topology, Gene, 49: 341–349.PubMedCrossRefGoogle Scholar
- Buchel, D.E., Gronenborn, B., and Muller-Hill, B., 1980, Sequence of the lactose permease gene, Nature, 283: 541–545.PubMedCrossRefGoogle Scholar
- Button, D.K., 1985, Kinetics of nutrient-limited transport and microbial growth, Microbiol. Rev., 49: 270–297.PubMedGoogle Scholar
- Cairns, M.T., Alvarez, J., Panico, M., Gibbs, A.F., Morris, H.R., Chapman, D., and Baldwin, S.A., 1987, Investigation of the structure and function of the human erythrocyte glucose transporter by proteolytic dissection, Biochim. Biophys. Ict.a, 905: 295–310.CrossRefGoogle Scholar
- Cairns, B.R., Collard, M.W., and Landfear, S.M., 1989a, Developmentally regulated gene from Leishmania encodes a putative membrane transport protein, Proc. Natl. Acad. Sci. USA, 86: 7682–7686.PubMedCrossRefGoogle Scholar
- Cairns, M.T., Smith, G., Henderson, P.J.F., and Baldwin, S.A., 1989b, Photoaffinity labelling of the GalP D-galactose transport protein of Escherichia coli with cytochalasin B, Biochem.Soc.Trans., 17: 552–553.Google Scholar
- Casadaban, M.J., and Cohen, 1979, Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: In vivo probes for transcriptional control, Proc. Natl. Acad. Sci. USA, 76: 4530–4533.PubMedCrossRefGoogle Scholar
- Celenza J.L., Marshall-Carlson, L., and Carlson, M., 1988, The yeast SNF3 gene encodes a glucose transporter homologous to the mammalian protein, Proc. Natl. Acad. Sci. USA, 85: 2130–2134.PubMedCrossRefGoogle Scholar
- Chang, Y-D,. and Dickson, R.L., 1988, Primary structure of the lactose permease from the yeast Kluyveromyces lactis, J. Biol.Chem, 263: 16696–16703.PubMedGoogle Scholar
- Davis, E.O., Jones-Mortimer, M.C.J., and Henderson, P.J.F., 1984, Location of a structural gene for xylose/H+ symport at 91min on the linkage map of Escherichia coli, J. Biol. Chem., 259: 1520–1525.PubMedGoogle Scholar
- Davis, E. O., 1985, “Xylose transport in Escherichia coli”, Ph.D. dissertation, University of Cambridge.Google Scholar
- Davis, E.O., and Henderson, P.J.F., 1987, The cloning and DNA sequence of the gene xylE for xylose-proton symport in E. coli K12, J. Biol. Chem., 262: 13928–13932.PubMedGoogle Scholar
- Diesenhofer, J., Epp, 0., Miki, K., Huber, R., and Michel, H., 1985, Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3A resolution, Nature, 318: 618–624.CrossRefGoogle Scholar
- Doolittle, R.F., 1981, Similar amino acid sequences: chance or common ancestry, Science, 214: 149–159.PubMedCrossRefGoogle Scholar
- Dosch, D., Salvacion, F. and Epstein, W., 1984, Tetracycline resistance element of pBR322 mediates potassium transport, J.Bacteriol., 160: 1188–1190.PubMedGoogle Scholar
- Eckert, B., and Beck, C.F., 1989, Topology of the transposon Tn10-encoded tetracycline resistance protein within the inner membrane of Escherichia coli. J. Biol. Chem., 264: 11663–11670.PubMedGoogle Scholar
- Eiglmeier, K., Boos, W., and Cole, S.T., 1987, Nucleotide sequence and transcriptional startpoint of the gip T gene of Escherichia coli, Molec. Microbiol., 1: 251–258.CrossRefGoogle Scholar
- Eisenberg, D., Schwarz, E., Komaromy, M. and Wall, R., 1984, Analysis of membrane and surface protein sequences with the hydrophobic moment plot, J. Mol. Biol., 179: 125–142.PubMedCrossRefGoogle Scholar
- Epstein, W., Walderhaug, M.O., Polarek, J.W., Hesse, J.E., Dorus, E., and Daniel, J.M., 1990, The bacterial Kdp K+-ATPase and its relation to other transport ATPases, Phil. Trans. R. Soc Lond Ja, 326: 479–487.CrossRefGoogle Scholar
- Fersht, A.R., 1985, “Enzyme Structure and Mechanism”, pp. 317–331, Wiley, New York.Google Scholar
- Flores, E., and Schmetterer, G., 1986, Interaction of fructose with the glucose permease of the cyanobacterium Synechocystis sp. strain PCC 6803, J. Bacteriol., 166: 693–696.PubMedGoogle Scholar
- Foster, D.L., Boublik, M., and Kaback, H.R., 1983, Structure of the lac carrier protein of Escherichia colí, J. Biol.Chem 258: 31–34.PubMedGoogle Scholar
- Friedrich, M.J., and Kadner, R.J., 1987, Nucleotide sequence of the uhp region of Escherichia coli, J Bacteriol., 169: 3556–3563.PubMedGoogle Scholar
- Fukumoto, H., Seino, S., Imura, H., Seino, Y., Eddy, R.L., Fukushima, Y., Byers, M., Shows, B.T., and Bell, G.I., 1988, Sequence, tissue distribution, and chromosomal localisation of mRNA encoding a human glucose transporter-like protein, Proc. Natl.Acad. Sci. USA, 85: 5434–5438.PubMedCrossRefGoogle Scholar
- Furlong, 1987, Osmotic-shock-sensitive transport systems, in “Escherichia coli and Salmonella typhimurium”, Niedhardt, ed., pp. 768–796, American Society for Microbiology, Washington.Google Scholar
- Garnier, J., Osguthorpe, D.J., and Robson, B., 1978, Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins, J. Mol. Biol., 120: 97–120.PubMedCrossRefGoogle Scholar
- Geever, R.F., Huiet, L., Baum, J.A., Tyler, B.M., Patel, V.B., Rutledge, B.J., Case, M.E. and Giles, N.H., 1989, DNA sequence, organisation and regulation of the qa gene cluster of Neurospora crassa, J. Mol. Biol., 207: 15–34PubMedCrossRefGoogle Scholar
- Gould, G., and Bell, G.I., 1990, Facilitative glucose transporters: an expanding family, TIBS, 15: 18–23.PubMedGoogle Scholar
- Haspel, H.C., Rosenfeld, M., and Rosen, O.M., 1988, Characterisation of antisera to a synthetic carboxyl-terminal peptide of the glucose transporter protein, J. Biol. Chem., 263: 398–403.PubMedGoogle Scholar
- Hediger, M.A., Coady M.J., Ikeda T.S., and Wright E.M., 1987, Expression cloning and cDNA sequencing of the glucose/Na+ co-transporter, Nature, 330: 379–381.PubMedCrossRefGoogle Scholar
- Hediger, M.A., Turk, E., and Wright E.M., 1989, Homology of the human intestinal glucose/Na+ and Escherichia coli proline/Na+ cotransporters, Proc Natl. Acad. Sci USA, 86: 5748–5752.PubMedCrossRefGoogle Scholar
- Henderson, P.J.F., 1986, Active transport of sugars into Escherichia coli, in “Carbohydrate Metabolism in Cultured Cells”, M.J. Morgan, ed., pp. 409–460, Plenum Press, London.CrossRefGoogle Scholar
- Henderson, P.J.F., and Macpherson, A.J.S., 1986, Assay, genetics, proteins and reconstitution of proton-linked galactose, arabinose, and xylose transport systems of Escherichia coli, Methods Enzymol., 125: 387–429.PubMedCrossRefGoogle Scholar
- Henderson, P.J.F., and Maiden, M.C.J., 1990, Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes, Phil. Trans R. Soc. Lond. B, 326:391–410.CrossRefGoogle Scholar
- Henderson, R., and Schertler, G., 1990, The structure of bacterio-rhodopsin and its relevance to the visual opsins and other seven helix G-protein coupled receptors, Phil. Trans. R. Soc.Lond. B, 326: 379–389.CrossRefGoogle Scholar
- Hendrickson, W., and Schleif, R.F., 1984, Regulation of the Escherichia coli L-arabinose operon studied by gel elecrophoresis DNA binding assay, J. Mol. Biol., 174: 611–628.CrossRefGoogle Scholar
- Hendrix, R.W., Roberts, J.W., Stahl, F.W., and Weisberg, R.A., 1983, “Lambda II”, Cold Spring Harbor, Cold Spring Harbor.Google Scholar
- Higgins, C.F., 1989, Protein joins transport family, Nature, 341: 103.PubMedCrossRefGoogle Scholar
- Higgins, C.F., Gallagher, M.P., Hyde, S.C., Mimmack, M.L., and Pearce, S.R., 1990, The high affinity active transport systems in bacteria: the membrane-associated components, Phil. Trans.R. Soc. rond. B, 326: 353–365.CrossRefGoogle Scholar
- Hillen, W., and Schollmeier, K., 1983, Nucleotide sequence of the Tn10 encoded tetracycline resistance gene, Nucleic Acids Res., 11: 525–539.PubMedCrossRefGoogle Scholar
- Holman, G.D., and Rees, W.D., 1987, Photolabelling of the hexose transporter at external and internal sites, Bior.him. Biophys. Acta, 897: 395–405.CrossRefGoogle Scholar
- Ishiguro, N. and Sato, G. 1985. Nucleotide sequence of the gene determining plasmid-mediated citrate utilisation, J. Bacteriol., 164: 977–982.PubMedGoogle Scholar
- James,D.E., Strube, M. and Mueckler, M., 1989, Molecular cloning and characterisation of an insulin-regulatable glucose transporter, Nature, 338: 83–87.PubMedCrossRefGoogle Scholar
- Jones-Mortimer, M.C.J., and Henderson, P.J.F., 1986, Use of transposons to isolate and characterise mutants lacking membrane proteins, illustrated by the sugar transport systems of Escherichia coli, Methods Enzymol., 125: 157–180.PubMedCrossRefGoogle Scholar
- Jund, R., Weber, E. and Chevallier M-R, 1988, Primary structure of the uracil transport protein of Saccharomyces cerevisiae, Fur.J. Biochem., 171: 417–424.Google Scholar
- Kaback, H.R., 1986, Proton electrochemical gradients and active transport: the saga of lac permease. Annals N.Y. Acad. Sci., 456: 291–304.CrossRefGoogle Scholar
- Kaback, H.R., 1987, Use of site-directed mutagenesis to study the mechanism of a membrane transport protein, Biochemistry, 26: 2071–2076.PubMedCrossRefGoogle Scholar
- Kaback, H.R., 1990, Lac permease of Escherichia coli: on the path of the proton, Phil. Trans. R. Soc. Lond. B, 326: 425–436.CrossRefGoogle Scholar
- Karim, A.R., Rees, W.D., and Holman, G.D., 1987, Binding of cytochalasin B to trypsin and thermolysin fragments of the human erythrocyte hexose transporter, Biochim. Biophys. Acte, 902: 402–405.CrossRefGoogle Scholar
- Kohara, Y., Akiyama, K., and Isono, K., 1987, The physical map of the whole E. coli chromosome, Cell, 50: 495–508.PubMedCrossRefGoogle Scholar
- Kolodrubetz, D., and Schleif, R., 1981, Regulation of the L-arabinose transport operons in Escherichia coli, J. Mol. Biol., 151: 215–227.PubMedCrossRefGoogle Scholar
- Komor, E., and Tanner, W., 1974, The hexose-proton symport system of Chlorella vulgaris, Eur. J. Biochem., 44: 219–223.PubMedCrossRefGoogle Scholar
- Kornberg, H.L., and Henderson, P.J.F., 1976, Mutant methodology in the study of transport, in “Horizons in biochemistry”, vol. 2, Palmieri, F., and Singer, T.P., eds., pp. 1–31, Addison Wesley, London.Google Scholar
- Kosiba, B.E., and Schleif, R., 1982, Arabinose-inducible promoter from Escherichia coli, J. Mol. Biol., 156: 53–56.PubMedCrossRefGoogle Scholar
- Kyte, J. and Doolittle, R.F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol, 157: 105–132.PubMedCrossRefGoogle Scholar
- Leblanc, G., Pourcher, T., and Bassilana, M., 1989, Molecular biology and bacterial secondary transporters Biochimie, 71; 969–979.PubMedCrossRefGoogle Scholar
- Lengeler, J.W., Titgemeyer, F., Vogler, A.P., and Wohrl, B.M., 1990, Structures and homologies of carbohydrate:phosphotransferase system (PTS) proteins, Phil. Trans. R. Soc. Tond B, 326: 489–504.CrossRefGoogle Scholar
- Levy, S., 1984, Resistance of the tetracyclines, in “Antimicrobial drug resistance”, L.E. Brian, ed., pp. 191–240, Academic Press, New York.Google Scholar
- Levy, S. 1988, Tetracycline resistance determinants are widespread, ASM News, 54: 418–421.Google Scholar
- Lodish, H.F., 1988, Multi-spanning membrane proteins: how accurate are the models?, Trends in Biochem. Sci., 13: 332–334.CrossRefGoogle Scholar
- Lu, Z., and Lin, E.C.C., 1989, The nucleotide sequence of Escherichia coli genes for L-fucose dissimilation, Nucl. Acids Res., 17: 4883–4884.PubMedCrossRefGoogle Scholar
- Maiden, M.C.J., 1986, “Arabinose-proton symport in Escherichia coli”, Ph.D. dissertation, University of Cambridge.Google Scholar
- Maiden, M.C.J., Davis, E.O., Baldwin, S.A., Moore, D.C.M., and Henderson, P.J.F., 1987, Mammalian and bacterial sugar transport proteins are homologous, Nature, 325: 641–643.PubMedCrossRefGoogle Scholar
- Maiden M.C.J., Jones-Mortimer M.C., and Henderson P.J.F., 1988, The cloning, DNA sequence and overexpression of the gene araE coding for arabinose-proton symport in Escherichia coli K12, J. Biol. Chem., 263: 8003–8010.PubMedGoogle Scholar
- Maloney, P.C., 1990, Resolution and reconstitution of anion exchange systems, Phil. Trans. R. Soc.. Lond. B, 326: 437–454.CrossRefGoogle Scholar
- Manoil C., and Beckwith, J., 1986, A genetic approach to analysing membrane topology, Science, 233: 1403–1408.PubMedCrossRefGoogle Scholar
- McMurry, L., Petrucci, R.E. and Levy, S.B., 1980, Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli, Proc. Natl Arad.Sci USA, 77: 3974–3977.CrossRefGoogle Scholar
- Medigue, C., Bouche, J.P., Henaut, A., and Danchin, A., 1990, Mapping of sequenced genes (700kbp) in the restriction map of the Escherichia coli chromosome, Malec. Microhiol., 4: 169–187.CrossRefGoogle Scholar
- Menick, D., Lee, J.A., Brooker, R. J., Wilson, T. H. and Kaback, H.R., 1987, Role of cysteine residues in the Lac permease of Escherichia coli, Biochemistry, 26: 1132–1136.PubMedCrossRefGoogle Scholar
- Miller, J.H., 1972, “Experiments in molecular genetics”, Cold Spring Harbor, Cold Spring Harbor.Google Scholar
- Mitchell, P. 1961, Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature, 191: 144–148.PubMedCrossRefGoogle Scholar
- Mitchell, P., 1963, Molecule, group and electron transfer through natural membranes, Biochem. Soc. Symp., 22: 142–169.Google Scholar
- Mitchell, P. 1973, Performance and conservation of osmotic work by proton-coupled solute porter systems. Rioenergetics, 4: 63–91.CrossRefGoogle Scholar
- Mueckler, M., Caruso, C., Baldwin, S.A., Panico, M., Blench, I., Morris, H.R., Allard, W.J., Lienhard, G.E., Lodish, H., 1985, Sequence and structure of a human glucose transporter, Science, 229: 941–945.PubMedCrossRefGoogle Scholar
- Muiry, J.A.R., 1989, “The bacterial transport systems for L-rhamnose and L-fucose”, Ph.D.dissertation, University of Cambridge.Google Scholar
- Nakao, F, Yamato, I., and Anraku, Y., 1987, Nucleotide sequence of putP, the proline carrier gene of Escherichia coli K12, Mol.Gen. Genet., 208: 70–75.PubMedCrossRefGoogle Scholar
- Nehlin, J.O., Carlberg, M., and Ronne, H., 1989, Yeast galactose permease is related to yeast and mammalian glucose transporters, Gene, 85: 313–319.PubMedCrossRefGoogle Scholar
- Nikaido, H., and Vaara, M., 1987, Outer Membrane, in “Escherichia coli and Salmonella typhimurium”, Niedhardt, ed., pp., American Society for Microbiology, Washington.Google Scholar
- Postma, P.W., and Lengeler, J.W., 1985, Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria, Microbiol.Rev., 49: 232–269.PubMedGoogle Scholar
- Pourcher, T., Bassilana, M., Sarkar, H.K., Kaback, H.R., and Leblanc, G., 1990, The melibiose /Na+ symporter of Escherichia coli: kinetic and molecular properties, Phil. Trans. R. Soc. Lond. B, 326: 411–423.CrossRefGoogle Scholar
- Quiocho, F.A., 1986, Carbohydrate binding proteins: tertiary structures and protein-sugar interactions, Annu. Rev. Biochem., 55: 287–315.PubMedCrossRefGoogle Scholar
- Quiocho, F.A., 1990, Atomic structures of periplasmic binding proteins and the high affinity active transport systems in bacteria, phil. Trans. R. Soc. Lond. B, 326: 341–351.CrossRefGoogle Scholar
- Reynolds, C.H., and Silver, S., 1983, Citrate utilisation by Escherichia coli: plasmid-and chromosome-encoded systems, J.Bacteriol., 156: 1019–1024.PubMedGoogle Scholar
- Riordan, C., and Kornberg, H.L., 1977, Location of gale, a gene which specifies galactose permease activity, on the Escherichia coli linkage map, Proc. R. Soc. Lond. Ser. B, 198: 401–410.CrossRefGoogle Scholar
- Roberts, P.E.R., Moore, D.C.M., Jones-Mortimer, M.C.J., and Henderson, P.J.F., 1990, Location of the ga1P gene at 63.7min on the Escherichia coli linkage map, next to metK, in preparation.Google Scholar
- Saier, M.H., 1985, “Mechanisms and regulation of carbohydrate transport in bacteria”, Academic Press, New York.Google Scholar
- Sambrook, J., Fritsch, E.F., and Maniatis, T., 1989, “Molecular cloning, a laboratory manual”, Cold Spring Harbor, Cold Spring Harbor.Google Scholar
- Sanger, F., Coulson, A.R., Barrell, B.G., Smith, A.J.H., and Roe, B.A., 1980, Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing, J. Mol. Biol., 143: 161–178.PubMedCrossRefGoogle Scholar
- Sasatsu, M., Misra, T.K., Chu, L., Ladagu, R., and Silver, S., 1985, Cloning and DNA sequence of a plasmid-determined citrate utilisation system in Escherichia coli, J. Bacteriol., 164: 983–993.PubMedGoogle Scholar
- Sauer, N., and Tanner, W., 1989, The hexose carrier from Chlorella - cDNA cloning of a eucaryotic H+-cotransporter, FEES Left., 259: 43–46.CrossRefGoogle Scholar
- Shanahan, M.F., 1982, Cytochalasin B. A natural photoaffinity ligand for photolabelling the human erythrocyte glucose transporter, J. Biol. Chem., 257: 7290–7293.PubMedGoogle Scholar
- Silhavy, T.J., Berman, M.L., and Enquist, L.W., 1984, “Experiments with gene. fusions”, Cold Spring Harbor, Cold Spring Harbor.Google Scholar
- Smith, G., Petro, K.P., Cairns, M.T., Baldwin, S.A., Maiden, M.C.J., and Henderson, P.J.F., 1990, Interaction of bacterial transport proteins with cytochalasin B, in preparation.Google Scholar
- Staden, R., 1984a, Computer methods to locate signals in nucleic acid sequences, Nucl. Acids Res., 12: 505–519.PubMedCrossRefGoogle Scholar
- Staden, R., 1984b, Measurements of the effects that coding for a protein has on a DNA sequence and their use for finding genes, Nucl. Acids Res., 12: 5551–567.Google Scholar
- Stoner, C., and Schleif, R., 1983, The araE low affinity L-arabinose transport promoter, J. Mol. Biol., 171: 369–381.PubMedCrossRefGoogle Scholar
- Sumiya, M., 1989, “The Xy1F D-xylose binding protein transport system in Escherichia coli”, Ph.D. dissertation, University of Cambridge.Google Scholar
- Szkutnicka, K., Tschopp, J.F., Andrews, L., and Cirillo, V.P., 1989, Sequence and structure of the yeast galactose transporter, J.Bacteriol., 171: 4486–4493.PubMedGoogle Scholar
- Thorens, B., Sarkar, H.K., Kaback, H.R., and Lodish, H.F., 1988, Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney and 8-pancreatic islet cells, Cell, 55: 281–290.PubMedCrossRefGoogle Scholar
- Tobin, J.F., and Schleif, R.F., 1990, Transcription from the rha operon n J. Mol. Biol., 211: 1–4.PubMedCrossRefGoogle Scholar
- Vilaro, S., Palacin, M., Pilch, P. F., Testar, X., and Zorzano, A., 1989, Expression of an insulin-regulatable glucose carrier in muscle and fat epithelial cells, Nature, 342: 798–800.PubMedCrossRefGoogle Scholar
- von Heijne, G., 1987, “Sequence analysis in molecular biology - treasure trove or trivial pursuit”, Academic press, London.Google Scholar
- Von Heijne, G., 1988, Transcending the impenetrable: how proteins come to terms with membranes, Biochim. Biophys. Acta, 947: 307–333.CrossRefGoogle Scholar
- Walmsley, A.R., 1988, The dynamics of the glucose transporter, Trends in Biochem. Sci., 13: 226–231.CrossRefGoogle Scholar
- West, I.C. and Mitchell, P., 1972, Proton-coupled ß-galactoside translocation in non-metabolising Escherichia coli, Bioenergetics, 3: 445–462.CrossRefGoogle Scholar
- West, I.C., and Mitchell, P., 1973, Stoichiometry of lactose-proton symport across the plasma membrane of Escherichia coli, Biochem. J., 132: 587–592.PubMedGoogle Scholar
- Wilson, D.M., Tsuchiya, T., and Wilson, T.H., 1986, Methods for the study of the melibiose carrier of Escherichia coli, Methods Enzymol., 125: 377–387.PubMedCrossRefGoogle Scholar
- Yanisch-Perron, C., Vieira, J., and Messing, J., 1985, Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the Ml3mpl8 and pUC19 vectors, Gene, 33: 103–119.PubMedCrossRefGoogle Scholar
- Yao, B., Sollitti, P., and Marmur, J., 1989, Primary structure of the maltose-permease-encoding gene of Saccharomyces carlsbergensis, Gene, 79: 189–197.PubMedCrossRefGoogle Scholar
- Yazyu, H., Shiota-Niiya, S., Shimamoto, T., Kanazawa, H., Futai, M., and Tsuchiya, T., 1984, Nucleotide sequence of the melB gene and characteristics of deduced amino acid sequence of the melibiose carrier in Escherichia coli, J. Biol. Chem., 259: 4320–4326.PubMedGoogle Scholar
- Zhang, C.-C., Durand, M.-C., Jeanjean, R., and Joset, F., 1989, Molecular and genetical analysis of the fructose-glucose transport system in the cyanobacterium Synechocystis PCC6803, Malec. Microbiol., 3: 1221–1229.CrossRefGoogle Scholar
- Zilberstein, D., and Dwyer, D.M., 1985, Protonmotive force-driven active transport of D-glucose and L-proline in the protozoan parasite Leishmania donovani. Proc. Natl. Acad. Sci. USA, 82: 1716–1720.PubMedCrossRefGoogle Scholar
- Zilberstein, D., Dwyer, D.M., Matthei, S., and Horuk, R., 1986, Identification and biochemical characterisation of the plasma membrane glucose transporter of Leishmania donovani, J. Biol.Chem., 261: 15053–15057.PubMedGoogle Scholar