Skip to main content

Anion Transport Systems: Continuous Monitoring of Transport by Fluorescence (CMTF) in Cells and Vesicles

  • Chapter
  • 89 Accesses

Abstract

Anion transport mechanisms are found in mammalian cell membranes in the form of exchangers or antiporters (Passow, 1987; Aronson, 1989), cation-anion cotransporters or symporters (Hoffman, 1986; O’Grady et al., 1987) and Cl channels (Greger, 1985, 1988; Gogelein, 1988; Frizzell et al., 1986). The transport of the anions across both biological and artificial membranes are studied by following the transcompartmental movement of physiologically relevant substrates such as Cl, HCO3, SO4−2 or H2PO4 . For electroneutral mechanisms, the anion flux can be traced by a variety of physical or chemical techniques, the most widely used being tracing the movement of a radiolabeled anion by separating the compartments at various time points, sampling their contents, and measuring the amount of tracer in one of them. This method is, however, limited by the space available to the substrate, its specific activity and total radioactivity, the efficiency and speed of separation relative to the actual transport rates, as well as by the capacity of the biological system to retain its structural integrity during separation steps. Since this method is discrete in nature, the amount of information it can yield is usually limited and often not sufficiently precise for a thorough kinetic evaluation. For charge-conducting transport systems, the classical and most straightforward approach is the electrophysiological one, which is used in various forms according to the level of information required and the nature of the biological system. Electrophysiological techniques are of an invasive nature and most commonly inaccessible to small organelles. On the other hand for conductive systems operating in cells and vesicles, isotopic techniques can still be very useful when used under conditions where a large chemical gradient of the ion is established across the membrane and a radio-labeled tracer of the ion is placed at the low concentration side (Garty et al., 1983). In such conditions, the diffusion potential created across the membrane by the transportable ion will drive the isotopic species into the vesicles at a rate commensurate with the potential and the intrinsic conductivity of the channel tested (Landry et al., 1987; Breuer, 1989).

Keywords

  • Chloride Channel
  • Anion Transport
  • Fluorescent Substrate
  • Fluorescent Indicator
  • Mammalian Cell Membrane

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4757-9601-8_18
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-4757-9601-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alper, S. L., Kopito, R., Libresco, S. M., and Lodish, H. F., 1988: Cloning and characterization of murine band 3 related cDNA from kidney and from a lymphoid cell line,J. Biol. Chem., 263:17902–17909.

    Google Scholar 

  • Aronson, P., 1989: The renal proximal tubule: a model for diversity of anion exchangers and stilbene sensitive anion transporters,Ann. Rev. Physiol., 51:419–441.

    CrossRef  CAS  Google Scholar 

  • Barzilay, M., Jones, D., and Cabantchik, Z. I., 1978: Sidedness of inhibitory effects as evidence for asymmetric location of the anion transport system of red blood cell membranes,Fed. Proc., 37:1295.

    Google Scholar 

  • Barzilay, M., Ship, S., and Cabantchik, Z. I., 1979: Anion transport in red blood cells: 1. Chemical properties of anion recognition sites as revealed by structure activity relationships of aromatic sulfonic acids,Membr. Biochem., 2:227–254.

    PubMed  CrossRef  CAS  Google Scholar 

  • Blatz, A. E., and Magleby, K. L., 1985: Single chloride-selective channels active at resting membrane potentials in cultured rat skeletal muscle,Biophys. J., 47:119–123.

    PubMed  CrossRef  CAS  Google Scholar 

  • Breuer, V. W., 1989: Characterization of Cl channels in membrane vesicles from the kidney outer medulla,J. Membr. Biol., 107:35–42.

    PubMed  CrossRef  CAS  Google Scholar 

  • Breuer, V. W., 1990: Selective solubilization and reconstitution of a kidney chloride channel,Biochim. Biophys. Acta, In press.

    Google Scholar 

  • Cabantchik, Z. I., and Darmon, A., 1985: Reconstitution of Membrane Transport Systems,in: “Structure and Properties of Membranes” (Benga, G., ed.), pp. 123–165, CRC Press.

    Google Scholar 

  • Cabantchik, Z. I., Knauf, P. A., and Rothstein, A., 1978: The anion transport system of the red blood cell. The role of membrane protein evaluated by use of “probes”, Biochim. Biophys. Acta, 515: 239–303.

    PubMed  CrossRef  CAS  Google Scholar 

  • Cabrini, G. and Verkman A. S., 1986: Mechanism of interaction of the cyanine dye diS-C3-(5) with renal brush-border vesicles,J. Membr. Biol., 90:163–175.

    PubMed  CrossRef  CAS  Google Scholar 

  • Cala, P., 1985: Volume regulation by Amphiuma red blood cells: strategies for identifying alkali-/H transport,Fed. Proc., 44:2500–2507.

    PubMed  CAS  Google Scholar 

  • Chen, J. H., Schulman, H., and Gardner, P., 1989: A c-AMP regulated chloride channel in lymphocytes that is affected in cystic fibrosis, Science, 243: 657–660.

    PubMed  CrossRef  CAS  Google Scholar 

  • Chen, P. Y., Illsley, N. P., and Verkman, A. S., 1988: Renal brush border chloride transport mechanisms characterized using a fluorescent indicator,Am. J. Physiol., 254:F114–F120

    PubMed  CAS  Google Scholar 

  • Cox, J. V., and Lazarides, E., 1988: Alternative primary structures in the transmembrane domain of the chicken erythroid anion transporter,Mol. Cell. Biol., 8:1327–1335.

    PubMed  CAS  Google Scholar 

  • Darmon, A., Eidelman, O., and Cabantchik, Z. I., 1982: A method for measuring anion transfer across membranes of hemoglobin free cells and vesicles by continuous monitoring of fluorescence, Anal. Biochem., 119: 313–321.

    CAS  Google Scholar 

  • Darmon, A., Zangvill, M., and Cabantchik, Z. I., 1983: New approaches for the reconstitution and functional assay of membrane transport proteins. Application to the anion transporter of human erythrocytes, Biochim. Biophys. Acta, 727: 77–88.

    PubMed  CrossRef  CAS  Google Scholar 

  • Demuth, D. R., Showe, L. C., Ballantine, M., Palumbo, A., Fraser, P. J., Cioe, L., Rovera, R., and Curtis, R. J., 1986: Cloning and structural characterization of a human non-erythroid band 3-like protein, EMBO J., 5: 1205–1214.

    PubMed  CAS  Google Scholar 

  • Donowitz, M., and Welsh, M. J., 1986: Ca and cAMP in regulation of intestinal Na, K and Cl transport,Ann. Rev. Physiol., 48:135–150.

    CrossRef  CAS  Google Scholar 

  • Eidelman, O., Zangvil, M., Razin, M., Ginsburg, H., and Cabantchik, Z. I., 1981: The anion transfer system of erythrocyte membranes: N-(7-nitrobenzofurazan-4-y1) taurine, a fluorescent substrate-analogue of the system,Biochem. J., 195:503–513.

    PubMed  CAS  Google Scholar 

  • Eidelman, O., and Cabantchik, Z. I., 1983a: The mechanism of anion transport across human red blood cell membranes as revealed by a fluorescent substrate: I. Kinetic properties of NBD-taurine transfer in symmetric conditions,J. Membr. Biol., 71:141–148.

    CrossRef  CAS  Google Scholar 

  • Eidelman, O., and Cabantchik, Z. I., 1983b: The mechanism of anion transport across human red blood cells membranes as revealed by a fluorescent substrate: II. Kinetic properties of NBD-taurine transfer in asymmetric conditions.,J. Membr. Biol., 71:149–161.

    CrossRef  CAS  Google Scholar 

  • Eidelman, O., and Cabantchik, Z. I., 1989a: Continuous monitoring of transport by fluorescence,Biochim. Biophys. Acta (Reviews in Biomembranes) 988:319–334.

    CrossRef  CAS  Google Scholar 

  • Eidelman, O., and Cabantchik, Z. I., 1989b: Fluorescent methods for monitoring transport in cells and vesicles,Meth. Enzymol., 172:122–135.

    CrossRef  CAS  Google Scholar 

  • Finn, A. L., 1985: Volume dependent pathways in animal cells,Fed. Proc., 44:2599.

    Google Scholar 

  • Frizzell, R. A., Halm, D. R., Rechkemmer, G., and Shoemaker, R. L., 1986: Chloride channel regulation in secretory epithelia,Fed. Proc., 45:2727–2731.

    PubMed  CAS  Google Scholar 

  • Frohlich, O., 1988: The “tunneling” mode of biological carrier mediated transport,J. Membr. Biol., 101:189–198.

    PubMed  CrossRef  CAS  Google Scholar 

  • Frohlich, O., and Gunn, R. B., 1986: Erythrocyte anion transport: the kinetics of a single site obligatory exchange system, Biochim. Biophys. Acta, 864: 169–194.

    PubMed  CrossRef  CAS  Google Scholar 

  • Ganz, M. B., Boyarsky, G., Sterzel, R.B., and Boron, W.F., 1989: Arginine vasopressin enhances pH iregulation in the presence of HCO3–by stimulating three acid-base transport systems, Nature, 332: 648–651.

    CrossRef  Google Scholar 

  • Garty, H., Rudy, B. and Karlish, S. J. D., 1983: A simple and sensitive procedure for measuring isotopic fluxes through ion-specific channels in heterogeneous populations of membrane vesicles, J. Biol. Chem., 258: 13054–13059.

    Google Scholar 

  • Glickman, J., Croen, K., Kelly, S., and Al-Awqati, Q., 1983: Golgi membranes contains an electrogenic H-pump in parallel with a chloride conductance,J. Cell. Biol., 97:1303–1308.

    PubMed  CrossRef  CAS  Google Scholar 

  • Gogelein, H., 1988: Chloride channels in epithelia, Biochim. Biophys. Acta, 947: 521–547.

    PubMed  CrossRef  CAS  Google Scholar 

  • Greger, R., 1987: Ion transport mechanisms in thick ascending limb of Henle’s loop of mammalian nephron,Physiol. Rev., 65:755–797.

    Google Scholar 

  • Greger, R., 1988: Chloride transport in thick ascending limb, distal convolution, and collecting duct,Ann. Rev. Physiol., 50:111–122.

    CrossRef  CAS  Google Scholar 

  • Gunn, R. B., 1979: Anion transport in red cells: an asymmetric, ping pong mechanism, in: “Mechanisms of Intestinal Secretion” (Binder, H. J., ed.), pp. 25–43, Alan Liss, Inc., New York.

    Google Scholar 

  • Hamill, O. P., 1983: Potassium and chloride channels in red blood cells, In: “Single channel recording” (Sackman B. and Neher E., Eds.) pp. Plenum Press, New York.

    Google Scholar 

  • Hamill, O. P., Bormann, J., and Sackmann, 1983: Activation of multiple conductance state chloride channels in spinal neurones by glycine and GABA, Nature, 305: 805–808.

    CrossRef  Google Scholar 

  • Hoffman, E. K., 1986: Anion transport systems in the plasma membrane of vertebrate cells, Biochim. Biophys. Acta, 864: 1–32.

    CrossRef  Google Scholar 

  • Jay, D., and Cantley, L. C., 1986: Structural aspects of the red cell anion exchange protein,Ann. Rev. Biochem., 55:511–538

    PubMed  CrossRef  CAS  Google Scholar 

  • Jennings, M. L., 1985: Kinetics and mechanism of anion transport in red blood cells,Ann. Rev. Physiol., 47:519–533.

    CrossRef  CAS  Google Scholar 

  • Illsley, N. P., and Verkman A. S., 1987: Membrane chloride transport measured using a chloride-sensitive fluorescent probe, Biochemistry, 26: 1215–1219.

    PubMed  CrossRef  CAS  Google Scholar 

  • Illsley, N. P., Glaubensklee, C., Davis, B., and Verkman, A. S., 1988: Chloride transport across placental microvillous membranes measured by fluorescence,Am. J. Physiol., 255:C789–C797.

    PubMed  CAS  Google Scholar 

  • Kasahara, M. and Hinkle, P. C., 1976: Demonstration of D-glucose transport catalyzed by a protein fraction from human erythrocyte sonicated liposomes, Proc. Natl. Acad. Sci., 73: 396–400.

    PubMed  CrossRef  CAS  Google Scholar 

  • Klocke, R. A., 1976: Rate of bicarbonate-chloride exchange in human red cells at 37 C,J. Appl. Physiol., 40:707–714.

    Google Scholar 

  • Knauf, P. A., 1979: Erythrocyte anion exchange and the band 3 protein: transport kinetics and molecular structure, in: “Current Topics in Membrane Transport” (Bronner, F., and Kleinzeller, A., eds.), pp. 249–363, Academic Press, New York.

    Google Scholar 

  • Knauf, P. A., 1986: Anion transport in erythrocytes, in: “Membrane Transport Disorders” (Andreoli, T., Hoffman, J. F., Schultz, S. G., and Fanestil, D. D., eds.), pp. 191–220, Plenum Press, Inc., New York.

    Google Scholar 

  • Kopito, R. R., and Lodish, H. F., 1985: Structure of the murine anion exchange protein,J. Cell. Bioch., 29:1–17.

    CrossRef  CAS  Google Scholar 

  • Kopito, R. R., Andersson, M., and Lodish, H. V., 1987: Structure and organization of the murine band 3 gene. J. Biol. Chem., 262:8035–8040.

    Google Scholar 

  • Krapf, R., Berry, C. A. and Verkman, A. S., 1988a: Estimation of intracellular chloride activity in isolated perfused rabbit proximal convoluted tubules using a fluorescent indicator,Biophys. J., 53:955–962.

    CrossRef  CAS  Google Scholar 

  • Krapf, R., Illsley. N. P., Tseng, H. C. and Verkman, A. S., 1988b: Structure-activity relationships of chloride sensitive fluorescent indicators for biological application,Anal. Biochem., 169:142–150.

    CrossRef  CAS  Google Scholar 

  • Lakowicz, J. R., 1983: “Principles of fluorescence spectroscopy”. Plenum Press, New York.

    CrossRef  Google Scholar 

  • Landry, D. W., Reitman, M., Cragoe, E. J., and Al-Awqati, Q., 1987: Epithelial chloride channel: Development of inhibitory ligands,J. Gen. Physiol., 90:779–798.

    PubMed  CrossRef  CAS  Google Scholar 

  • Loew, L. M., 1988: “Spectroscopic membrane probes”. CRC Press, Boca Raton Florida.

    Google Scholar 

  • McNeil, P. F., Murphy, R. F., Lanni, F. and Taylor, D. L., 1984: A method for incorporating macromolecules into adherent cells, J. Cell Biol., 98: 1556–1564.

    PubMed  CrossRef  CAS  Google Scholar 

  • Mircheff, A. K., 1989: Isolation of plasma membranes from polar cells and tissues: apical/basolateral separation, purity, function,Meth. Enzymol., 172:18–34.

    PubMed  CrossRef  CAS  Google Scholar 

  • Motais, R., and Cousin, J. L., 1978: A structure activity study of some drugs acting as reversible inhibitors of chloride permeability in red cell membranes: Influence of ring substituents, in: “Cell membrane receptors for drugs and hormones: A multidisciplinary study” ( Straub, R. W., and Bolis, L., Eds.) pp. 219–225, Raven Press, New York.

    Google Scholar 

  • Muallem, S., Blissard, D., Cragoe, E. J., and Sachs, G., 1988: Activation of Na/H and Cl/HCO 3 exchange by stimulation of acid secretion in the parietal cell,J.Biol. Chem., 263:14703–14711.

    PubMed  CAS  Google Scholar 

  • O’Grady, Z. M., Palfrey, H. C., and Field, M., 1987: Characteristics and functions of Na-K-Cl cotransport in epithelial tissues,Am. J. Physiol., 253:C177–C192.

    PubMed  Google Scholar 

  • Passow, H., 1987: Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane,Rev. Phvsiol. Biochem. Pharmacol., 103:62–217.

    Google Scholar 

  • Reinertsen, K. V., Tonnessen, T. I., Jacobsen, J., Sandvig, K., and Olsnes, S., 1988: Role of chloride/bicarbonate antiport in control of cytosolic pH. Cell-line differences in activity and regulation of antiport,J. Biol. Chem., 263:11117–11125.

    Google Scholar 

  • Rothenberg, P., Glaser, L., Schlesinger, P. and Cassel, D., 1983: Activation of Na/H exchange by epidermal growth factor elevated intracellular pH in A431 cells,J. Biol. Chem., 258:12644–12653.

    PubMed  CAS  Google Scholar 

  • Schlatter, E., Greger, R., and Weidtke, C., 1983: Effect of high ceiling diuretics on active salt transport in the cortical thick ascending limb of Henle’s loop of rabbit kidney: Correlations of chemical structure and inhibitory potency,Pflug. Arch., 396:210–217.

    CrossRef  CAS  Google Scholar 

  • Schuster, V. L., Bonsib, S. M., and Jennings, M. L., 1987: Two types of collecting duct mitochondria-rich (intercalated) cells: lectin and band 3 cytochemistry, Am. J. Phvsiol., 251:C347–C355.

    Google Scholar 

  • Schwartz, G. J., Barasch, J., and Al-Awqati, Q., 1985: Plasticity of functional epithelial polarity, Nature, 318: 368–371.

    PubMed  CrossRef  CAS  Google Scholar 

  • Spring, K. R., and Ericson A. C., 1982: Epithelial cell volume modulation and regulation J. Membr. Biol., 69:167–176.

    PubMed  CrossRef  CAS  Google Scholar 

  • Tago, K.,Schuster, V. L., and Stokes, J. B., 1986: Regulation of Cl self exchange by cAMP in cortical collecting tubule,Am. J. Physiol., 251:F40–F48.

    PubMed  CAS  Google Scholar 

  • Tanner, M. J. A., Marti, P. G., and High, S., 1988: The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence, Biochem. J., 256: 703–712.

    PubMed  CAS  Google Scholar 

  • Verkman, A. S., Sellers, M. C., Chao, A. C., Leung, T. and Ketcham, R., 1989: Synthesis and characterization of improved chloride-sensitive fluorescent indicators for biological applications,Anal. Biochem., 178:355–361.

    Google Scholar 

  • Wagner, S., Vogel, R., Lietzke, R., Koob, R., and Drenckhahn, D., 1987: Immunochemical characterization of band 3-like anion exchanger in collecting duct of human kidney,Am. J. Physiol., 253:F213–F221.

    PubMed  CAS  Google Scholar 

  • Wangemann, P., Wittner, M., Distefano, A., Englert, H. C., Lang, H. J., Schlatter, E., and Greger, R., 1986: Cl-channel blockers in the TALH: Structure activity relationship,Pflug. Arch., 407:S128–S141.

    CrossRef  Google Scholar 

  • Welsh, M. J., and Liedtke, C. M., 1986: Chloride and potassium channels in cystic fibrosis airway epithelia, Nature, 322: 467–470.

    PubMed  CrossRef  CAS  Google Scholar 

  • Xie, X. S., Stone, D. K., and Racker, E., 1983: Determinants of clathrin coated vesicle acidification,J. Biol. Chem., 258:14834–14838.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cabantchik, Z.I., Eidelman, O. (1991). Anion Transport Systems: Continuous Monitoring of Transport by Fluorescence (CMTF) in Cells and Vesicles. In: Yudilevich, D.L., Devés, R., Perán, S., Cabantchik, Z.I. (eds) Cell Membrane Transport. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9601-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9601-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9603-2

  • Online ISBN: 978-1-4757-9601-8

  • eBook Packages: Springer Book Archive