Anion Transport Systems: Continuous Monitoring of Transport by Fluorescence (CMTF) in Cells and Vesicles

  • Z. Ioav Cabantchik
  • Ofer Eidelman


Anion transport mechanisms are found in mammalian cell membranes in the form of exchangers or antiporters (Passow, 1987; Aronson, 1989), cation-anion cotransporters or symporters (Hoffman, 1986; O’Grady et al., 1987) and Cl channels (Greger, 1985, 1988; Gogelein, 1988; Frizzell et al., 1986). The transport of the anions across both biological and artificial membranes are studied by following the transcompartmental movement of physiologically relevant substrates such as Cl, HCO3, SO4−2 or H2PO4 . For electroneutral mechanisms, the anion flux can be traced by a variety of physical or chemical techniques, the most widely used being tracing the movement of a radiolabeled anion by separating the compartments at various time points, sampling their contents, and measuring the amount of tracer in one of them. This method is, however, limited by the space available to the substrate, its specific activity and total radioactivity, the efficiency and speed of separation relative to the actual transport rates, as well as by the capacity of the biological system to retain its structural integrity during separation steps. Since this method is discrete in nature, the amount of information it can yield is usually limited and often not sufficiently precise for a thorough kinetic evaluation. For charge-conducting transport systems, the classical and most straightforward approach is the electrophysiological one, which is used in various forms according to the level of information required and the nature of the biological system. Electrophysiological techniques are of an invasive nature and most commonly inaccessible to small organelles. On the other hand for conductive systems operating in cells and vesicles, isotopic techniques can still be very useful when used under conditions where a large chemical gradient of the ion is established across the membrane and a radio-labeled tracer of the ion is placed at the low concentration side (Garty et al., 1983). In such conditions, the diffusion potential created across the membrane by the transportable ion will drive the isotopic species into the vesicles at a rate commensurate with the potential and the intrinsic conductivity of the channel tested (Landry et al., 1987; Breuer, 1989).


Chloride Channel Anion Transport Fluorescent Substrate Fluorescent Indicator Mammalian Cell Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alper, S. L., Kopito, R., Libresco, S. M., and Lodish, H. F., 1988: Cloning and characterization of murine band 3 related cDNA from kidney and from a lymphoid cell line,J. Biol. Chem., 263:17902–17909.Google Scholar
  2. Aronson, P., 1989: The renal proximal tubule: a model for diversity of anion exchangers and stilbene sensitive anion transporters,Ann. Rev. Physiol., 51:419–441.CrossRefGoogle Scholar
  3. Barzilay, M., Jones, D., and Cabantchik, Z. I., 1978: Sidedness of inhibitory effects as evidence for asymmetric location of the anion transport system of red blood cell membranes,Fed. Proc., 37:1295.Google Scholar
  4. Barzilay, M., Ship, S., and Cabantchik, Z. I., 1979: Anion transport in red blood cells: 1. Chemical properties of anion recognition sites as revealed by structure activity relationships of aromatic sulfonic acids,Membr. Biochem., 2:227–254.PubMedCrossRefGoogle Scholar
  5. Blatz, A. E., and Magleby, K. L., 1985: Single chloride-selective channels active at resting membrane potentials in cultured rat skeletal muscle,Biophys. J., 47:119–123.PubMedCrossRefGoogle Scholar
  6. Breuer, V. W., 1989: Characterization of Cl channels in membrane vesicles from the kidney outer medulla,J. Membr. Biol., 107:35–42.PubMedCrossRefGoogle Scholar
  7. Breuer, V. W., 1990: Selective solubilization and reconstitution of a kidney chloride channel,Biochim. Biophys. Acta, In press.Google Scholar
  8. Cabantchik, Z. I., and Darmon, A., 1985: Reconstitution of Membrane Transport Systems,in: “Structure and Properties of Membranes” (Benga, G., ed.), pp. 123–165, CRC Press.Google Scholar
  9. Cabantchik, Z. I., Knauf, P. A., and Rothstein, A., 1978: The anion transport system of the red blood cell. The role of membrane protein evaluated by use of “probes”, Biochim. Biophys. Acta, 515: 239–303.PubMedCrossRefGoogle Scholar
  10. Cabrini, G. and Verkman A. S., 1986: Mechanism of interaction of the cyanine dye diS-C3-(5) with renal brush-border vesicles,J. Membr. Biol., 90:163–175.PubMedCrossRefGoogle Scholar
  11. Cala, P., 1985: Volume regulation by Amphiuma red blood cells: strategies for identifying alkali-/H transport,Fed. Proc., 44:2500–2507.PubMedGoogle Scholar
  12. Chen, J. H., Schulman, H., and Gardner, P., 1989: A c-AMP regulated chloride channel in lymphocytes that is affected in cystic fibrosis, Science, 243: 657–660.PubMedCrossRefGoogle Scholar
  13. Chen, P. Y., Illsley, N. P., and Verkman, A. S., 1988: Renal brush border chloride transport mechanisms characterized using a fluorescent indicator,Am. J. Physiol., 254:F114–F120PubMedGoogle Scholar
  14. Cox, J. V., and Lazarides, E., 1988: Alternative primary structures in the transmembrane domain of the chicken erythroid anion transporter,Mol. Cell. Biol., 8:1327–1335.PubMedGoogle Scholar
  15. Darmon, A., Eidelman, O., and Cabantchik, Z. I., 1982: A method for measuring anion transfer across membranes of hemoglobin free cells and vesicles by continuous monitoring of fluorescence, Anal. Biochem., 119: 313–321.Google Scholar
  16. Darmon, A., Zangvill, M., and Cabantchik, Z. I., 1983: New approaches for the reconstitution and functional assay of membrane transport proteins. Application to the anion transporter of human erythrocytes, Biochim. Biophys. Acta, 727: 77–88.PubMedCrossRefGoogle Scholar
  17. Demuth, D. R., Showe, L. C., Ballantine, M., Palumbo, A., Fraser, P. J., Cioe, L., Rovera, R., and Curtis, R. J., 1986: Cloning and structural characterization of a human non-erythroid band 3-like protein, EMBO J., 5: 1205–1214.PubMedGoogle Scholar
  18. Donowitz, M., and Welsh, M. J., 1986: Ca and cAMP in regulation of intestinal Na, K and Cl transport,Ann. Rev. Physiol., 48:135–150.CrossRefGoogle Scholar
  19. Eidelman, O., Zangvil, M., Razin, M., Ginsburg, H., and Cabantchik, Z. I., 1981: The anion transfer system of erythrocyte membranes: N-(7-nitrobenzofurazan-4-y1) taurine, a fluorescent substrate-analogue of the system,Biochem. J., 195:503–513.PubMedGoogle Scholar
  20. Eidelman, O., and Cabantchik, Z. I., 1983a: The mechanism of anion transport across human red blood cell membranes as revealed by a fluorescent substrate: I. Kinetic properties of NBD-taurine transfer in symmetric conditions,J. Membr. Biol., 71:141–148.CrossRefGoogle Scholar
  21. Eidelman, O., and Cabantchik, Z. I., 1983b: The mechanism of anion transport across human red blood cells membranes as revealed by a fluorescent substrate: II. Kinetic properties of NBD-taurine transfer in asymmetric conditions.,J. Membr. Biol., 71:149–161.CrossRefGoogle Scholar
  22. Eidelman, O., and Cabantchik, Z. I., 1989a: Continuous monitoring of transport by fluorescence,Biochim. Biophys. Acta (Reviews in Biomembranes) 988:319–334.CrossRefGoogle Scholar
  23. Eidelman, O., and Cabantchik, Z. I., 1989b: Fluorescent methods for monitoring transport in cells and vesicles,Meth. Enzymol., 172:122–135.CrossRefGoogle Scholar
  24. Finn, A. L., 1985: Volume dependent pathways in animal cells,Fed. Proc., 44:2599.Google Scholar
  25. Frizzell, R. A., Halm, D. R., Rechkemmer, G., and Shoemaker, R. L., 1986: Chloride channel regulation in secretory epithelia,Fed. Proc., 45:2727–2731.PubMedGoogle Scholar
  26. Frohlich, O., 1988: The “tunneling” mode of biological carrier mediated transport,J. Membr. Biol., 101:189–198.PubMedCrossRefGoogle Scholar
  27. Frohlich, O., and Gunn, R. B., 1986: Erythrocyte anion transport: the kinetics of a single site obligatory exchange system, Biochim. Biophys. Acta, 864: 169–194.PubMedCrossRefGoogle Scholar
  28. Ganz, M. B., Boyarsky, G., Sterzel, R.B., and Boron, W.F., 1989: Arginine vasopressin enhances pH iregulation in the presence of HCO3–by stimulating three acid-base transport systems, Nature, 332: 648–651.CrossRefGoogle Scholar
  29. Garty, H., Rudy, B. and Karlish, S. J. D., 1983: A simple and sensitive procedure for measuring isotopic fluxes through ion-specific channels in heterogeneous populations of membrane vesicles, J. Biol. Chem., 258: 13054–13059.Google Scholar
  30. Glickman, J., Croen, K., Kelly, S., and Al-Awqati, Q., 1983: Golgi membranes contains an electrogenic H-pump in parallel with a chloride conductance,J. Cell. Biol., 97:1303–1308.PubMedCrossRefGoogle Scholar
  31. Gogelein, H., 1988: Chloride channels in epithelia, Biochim. Biophys. Acta, 947: 521–547.PubMedCrossRefGoogle Scholar
  32. Greger, R., 1987: Ion transport mechanisms in thick ascending limb of Henle’s loop of mammalian nephron,Physiol. Rev., 65:755–797.Google Scholar
  33. Greger, R., 1988: Chloride transport in thick ascending limb, distal convolution, and collecting duct,Ann. Rev. Physiol., 50:111–122.CrossRefGoogle Scholar
  34. Gunn, R. B., 1979: Anion transport in red cells: an asymmetric, ping pong mechanism, in: “Mechanisms of Intestinal Secretion” (Binder, H. J., ed.), pp. 25–43, Alan Liss, Inc., New York.Google Scholar
  35. Hamill, O. P., 1983: Potassium and chloride channels in red blood cells, In: “Single channel recording” (Sackman B. and Neher E., Eds.) pp. Plenum Press, New York.Google Scholar
  36. Hamill, O. P., Bormann, J., and Sackmann, 1983: Activation of multiple conductance state chloride channels in spinal neurones by glycine and GABA, Nature, 305: 805–808.CrossRefGoogle Scholar
  37. Hoffman, E. K., 1986: Anion transport systems in the plasma membrane of vertebrate cells, Biochim. Biophys. Acta, 864: 1–32.CrossRefGoogle Scholar
  38. Jay, D., and Cantley, L. C., 1986: Structural aspects of the red cell anion exchange protein,Ann. Rev. Biochem., 55:511–538PubMedCrossRefGoogle Scholar
  39. Jennings, M. L., 1985: Kinetics and mechanism of anion transport in red blood cells,Ann. Rev. Physiol., 47:519–533.CrossRefGoogle Scholar
  40. Illsley, N. P., and Verkman A. S., 1987: Membrane chloride transport measured using a chloride-sensitive fluorescent probe, Biochemistry, 26: 1215–1219.PubMedCrossRefGoogle Scholar
  41. Illsley, N. P., Glaubensklee, C., Davis, B., and Verkman, A. S., 1988: Chloride transport across placental microvillous membranes measured by fluorescence,Am. J. Physiol., 255:C789–C797.PubMedGoogle Scholar
  42. Kasahara, M. and Hinkle, P. C., 1976: Demonstration of D-glucose transport catalyzed by a protein fraction from human erythrocyte sonicated liposomes, Proc. Natl. Acad. Sci., 73: 396–400.PubMedCrossRefGoogle Scholar
  43. Klocke, R. A., 1976: Rate of bicarbonate-chloride exchange in human red cells at 37 C,J. Appl. Physiol., 40:707–714.Google Scholar
  44. Knauf, P. A., 1979: Erythrocyte anion exchange and the band 3 protein: transport kinetics and molecular structure, in: “Current Topics in Membrane Transport” (Bronner, F., and Kleinzeller, A., eds.), pp. 249–363, Academic Press, New York.Google Scholar
  45. Knauf, P. A., 1986: Anion transport in erythrocytes, in: “Membrane Transport Disorders” (Andreoli, T., Hoffman, J. F., Schultz, S. G., and Fanestil, D. D., eds.), pp. 191–220, Plenum Press, Inc., New York.Google Scholar
  46. Kopito, R. R., and Lodish, H. F., 1985: Structure of the murine anion exchange protein,J. Cell. Bioch., 29:1–17.CrossRefGoogle Scholar
  47. Kopito, R. R., Andersson, M., and Lodish, H. V., 1987: Structure and organization of the murine band 3 gene. J. Biol. Chem., 262:8035–8040.Google Scholar
  48. Krapf, R., Berry, C. A. and Verkman, A. S., 1988a: Estimation of intracellular chloride activity in isolated perfused rabbit proximal convoluted tubules using a fluorescent indicator,Biophys. J., 53:955–962.CrossRefGoogle Scholar
  49. Krapf, R., Illsley. N. P., Tseng, H. C. and Verkman, A. S., 1988b: Structure-activity relationships of chloride sensitive fluorescent indicators for biological application,Anal. Biochem., 169:142–150.CrossRefGoogle Scholar
  50. Lakowicz, J. R., 1983: “Principles of fluorescence spectroscopy”. Plenum Press, New York.CrossRefGoogle Scholar
  51. Landry, D. W., Reitman, M., Cragoe, E. J., and Al-Awqati, Q., 1987: Epithelial chloride channel: Development of inhibitory ligands,J. Gen. Physiol., 90:779–798.PubMedCrossRefGoogle Scholar
  52. Loew, L. M., 1988: “Spectroscopic membrane probes”. CRC Press, Boca Raton Florida.Google Scholar
  53. McNeil, P. F., Murphy, R. F., Lanni, F. and Taylor, D. L., 1984: A method for incorporating macromolecules into adherent cells, J. Cell Biol., 98: 1556–1564.PubMedCrossRefGoogle Scholar
  54. Mircheff, A. K., 1989: Isolation of plasma membranes from polar cells and tissues: apical/basolateral separation, purity, function,Meth. Enzymol., 172:18–34.PubMedCrossRefGoogle Scholar
  55. Motais, R., and Cousin, J. L., 1978: A structure activity study of some drugs acting as reversible inhibitors of chloride permeability in red cell membranes: Influence of ring substituents, in: “Cell membrane receptors for drugs and hormones: A multidisciplinary study” ( Straub, R. W., and Bolis, L., Eds.) pp. 219–225, Raven Press, New York.Google Scholar
  56. Muallem, S., Blissard, D., Cragoe, E. J., and Sachs, G., 1988: Activation of Na/H and Cl/HCO 3 exchange by stimulation of acid secretion in the parietal cell,J.Biol. Chem., 263:14703–14711.PubMedGoogle Scholar
  57. O’Grady, Z. M., Palfrey, H. C., and Field, M., 1987: Characteristics and functions of Na-K-Cl cotransport in epithelial tissues,Am. J. Physiol., 253:C177–C192.PubMedGoogle Scholar
  58. Passow, H., 1987: Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane,Rev. Phvsiol. Biochem. Pharmacol., 103:62–217.Google Scholar
  59. Reinertsen, K. V., Tonnessen, T. I., Jacobsen, J., Sandvig, K., and Olsnes, S., 1988: Role of chloride/bicarbonate antiport in control of cytosolic pH. Cell-line differences in activity and regulation of antiport,J. Biol. Chem., 263:11117–11125.Google Scholar
  60. Rothenberg, P., Glaser, L., Schlesinger, P. and Cassel, D., 1983: Activation of Na/H exchange by epidermal growth factor elevated intracellular pH in A431 cells,J. Biol. Chem., 258:12644–12653.PubMedGoogle Scholar
  61. Schlatter, E., Greger, R., and Weidtke, C., 1983: Effect of high ceiling diuretics on active salt transport in the cortical thick ascending limb of Henle’s loop of rabbit kidney: Correlations of chemical structure and inhibitory potency,Pflug. Arch., 396:210–217.CrossRefGoogle Scholar
  62. Schuster, V. L., Bonsib, S. M., and Jennings, M. L., 1987: Two types of collecting duct mitochondria-rich (intercalated) cells: lectin and band 3 cytochemistry, Am. J. Phvsiol., 251:C347–C355.Google Scholar
  63. Schwartz, G. J., Barasch, J., and Al-Awqati, Q., 1985: Plasticity of functional epithelial polarity, Nature, 318: 368–371.PubMedCrossRefGoogle Scholar
  64. Spring, K. R., and Ericson A. C., 1982: Epithelial cell volume modulation and regulation J. Membr. Biol., 69:167–176.PubMedCrossRefGoogle Scholar
  65. Tago, K.,Schuster, V. L., and Stokes, J. B., 1986: Regulation of Cl self exchange by cAMP in cortical collecting tubule,Am. J. Physiol., 251:F40–F48.PubMedGoogle Scholar
  66. Tanner, M. J. A., Marti, P. G., and High, S., 1988: The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence, Biochem. J., 256: 703–712.PubMedGoogle Scholar
  67. Verkman, A. S., Sellers, M. C., Chao, A. C., Leung, T. and Ketcham, R., 1989: Synthesis and characterization of improved chloride-sensitive fluorescent indicators for biological applications,Anal. Biochem., 178:355–361.Google Scholar
  68. Wagner, S., Vogel, R., Lietzke, R., Koob, R., and Drenckhahn, D., 1987: Immunochemical characterization of band 3-like anion exchanger in collecting duct of human kidney,Am. J. Physiol., 253:F213–F221.PubMedGoogle Scholar
  69. Wangemann, P., Wittner, M., Distefano, A., Englert, H. C., Lang, H. J., Schlatter, E., and Greger, R., 1986: Cl-channel blockers in the TALH: Structure activity relationship,Pflug. Arch., 407:S128–S141.CrossRefGoogle Scholar
  70. Welsh, M. J., and Liedtke, C. M., 1986: Chloride and potassium channels in cystic fibrosis airway epithelia, Nature, 322: 467–470.PubMedCrossRefGoogle Scholar
  71. Xie, X. S., Stone, D. K., and Racker, E., 1983: Determinants of clathrin coated vesicle acidification,J. Biol. Chem., 258:14834–14838.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Z. Ioav Cabantchik
    • 1
  • Ofer Eidelman
    • 1
  1. 1.Department of Biological ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations