Proton NMR Studies of Transmembrane Solute Transport

  • G. F. King
  • C. A. R. Boyd

Abstract

Although the ability of nuclear magnetic resonance (NMR) spectroscopy to monitor chemical reactions non-invasively in intact cells and tissues has been well documented (Kuchel, 1981; Gadian, 1982; Brindle and Campbell, 1987) surprisingly few attempts have been made to review the wealth of NMR techniques available for studying transmembrane solute transport. It is the aim of this Chapter to summarise these techniques and to provide practical examples of each to guide the non-expert NMR user in the choice of appropriate NMR experiments for the transport system to be investigated. Discussion will be restricted to 1H NMR studies, since ‘H (proton) nuclei are the most NMR-responsive and are present in most biologically important molecules; those readers interested in studies employing other nuclei, such as the alkali metal ions, should consult an excellent recent review (Kirk, 1990).

Keywords

Human Erythrocyte Nuclear Magnetic Resonance Spectroscopy Magnetic Field Gradient Nuclear Magnetic Resonance Technique Nuclear Magnetic Resonance Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alger, J. R. and Prestegard, J. H., 1977, Investigation of peptide bond isomerization by magnetization transfer NMR, J. Magn. Reson. 27:137Google Scholar
  2. Alger, J. R. and Prestegard, J. H. 1979, Nuclear magnetic resonance study of acetic acid permeation of large unilamellar vesicle membranes. Biophys. J. 28: 1Google Scholar
  3. Ashley, D. L. and Goldstein, J. H. 1980, The application of dextran magnetite as a relaxation agent in the measurement of water exchange using pulsed nuclear magnetic resonance spectroscopy. Biochem. Biophys. Res. Commun. 97:114Google Scholar
  4. Bar-On, Z. and Degani, H. 1985, Permeability of alkylamines across phosphatidylcholine vesicles as studied by 1H-NMR. Biochim. Biophys. Acta 813:207Google Scholar
  5. Beilharz, G. R., Middlehurst, C. R., Kuchel, P. W., Hunt, G. E. and Johnson, G. F. S., 1984, Determination of choline in erythrocytes using high resolution proton nuclear magnetic resonance spectroscopy: comparison with a choline oxidase method. Analyt. Biochem. 127:324Google Scholar
  6. Benga, G. 1988, Water transport in red blood cell membranes. Prog. Biophys. Molec. Biol. 51:193Google Scholar
  7. Bodenhausen, G. and Ernst, R. R. 1982, Direct determination of rate constants of slow dynamic processes by two-dimensional “accordion” spectroscopy in nuclear magnetic resonance. J. Am. Chem. Soc. 104:1304Google Scholar
  8. Boyd, C. A. R., Campbell, I. D., King, G. F. and Quirk, P. G. 1988, Proton NMR studies on epithelial cells isolated from chicken small intestine. J. Physiol. 407: 14 PGoogle Scholar
  9. Brindle, K. M. and Campbell, I. D. 1987, NMR studies of kinetics in cells and tissues. Quart. Rev. Biophys. 19:159Google Scholar
  10. Brindle, K. M., Brown, F. F., Campbell, I. D., Grathwohl, C. and Kuchel, P. W. 1979, Application of spin-echo nuclear magnetic resonance to whole-cell systems. Membrane transport. Biochem. J. 180:37Google Scholar
  11. Brown, F. F. 1983, The effect of compartmental location on the T,* of small molecules in cell suspensions: A cellular field gradient model. J. Magn. Reson. 54:385Google Scholar
  12. Brown, F. F., Campbell, I. D., Kuchel, P. W. and Rabenstein, D. L. 1977, Human erythrocyte metabolism studies by 1H spin-echo NMR. FEBS Lett. 82: 12Google Scholar
  13. Brown, F. F., Sussman, I., Avron, M. and Degani, H. 1982, NMR studies of glycerol permeability in lipid vesicles, erythrocytes and the alga Dunaliella. Biochim. Biophvs. Acta 690:165Google Scholar
  14. Brown, F. F., Jaroszkiewicz, G. and Jaroszkiewicz, M. 1983, An NMR method for studying the intracellular distribution and transport properties of small molecules in cell suspensions: The chicken erythrocyte system. J. Magn. Reson. 54:400Google Scholar
  15. Campbell, I. D., Dobson, C. M., Ratcliffe, R. G. and Williams, R. J. P. 1978, Fourier transform NMR pulse methods for the measurement of slow exchange rates. J. Magn. Reson. 29:397Google Scholar
  16. Carr, H. Y. and Purcell, E. M. 1954, Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94:630Google Scholar
  17. Conlon, T. and Outred, R. 1972, Water diffusion permeability measurements of erythrocytes using an NMR technique. Biochim. Biophys. Acta 288:354Google Scholar
  18. Cramer, J. A. and Prestegard, J. H. 1977, NMR studies of pH induced transport of carboxylic acids across phospholipid vesicle membranes. Biochem. Biophys. Res. Commun. 75:295Google Scholar
  19. Degani, H. 1978, NMR kinetic studies of the ionophore X-537A-mediated transport of manganous ions across phospholipid bilayers. Biochim. Biophys. Acta 509:364Google Scholar
  20. Degani, H. and Avron, M. 1982, The diffusional water permeability in the halo-tolerant algae Dunaliella as measured by nuclear magnetic resonance. Biochim. Biophys. Acta 690:174Google Scholar
  21. Degani, H., Simon, S. and McLaughlin, A. C. 1981, The kinetics of ionophore X-537A-mediated transport of manganese through dipalmitoylphosphatidycholine vesicles. Biochim. Biophvs. Acta 646:320Google Scholar
  22. Fabry, M. E. and Eisenstadt, M. 1975, Water exchange between red cells and plasma: measurement by nuclear magnetic resonance. Biophys. J. 15:1101Google Scholar
  23. Fabry, M. E. and Eisenstadt, M. 1978, Water exchange across red cell membranes: II. Measurement by nuclear magnetic resonance T1, T2 and T12 hybrid relaxation. J. Memb. Biol. 42:375Google Scholar
  24. Fabry, M. E. and San George, R. C. 1983, Effects of magnetic susceptibility on NMR signals arising from red cells: A warning. Biochemistry 22: 4119Google Scholar
  25. Freeman, R. 1988, in A handbook of nuclear magnetic resonance, pp 250–258, Longman Scientific and Technical, AvonGoogle Scholar
  26. Gadian, D. G. 1982, in Nuclear magnetic resonance and its application to living systems. Clarendon Press, OxfordGoogle Scholar
  27. Glasel, J. A. and Lee, K. H. 1974, On the interpretation of water nuclear magnetic resonance relaxation times in heterogeneous systems. J. Am. Chem. Soc. 96:970Google Scholar
  28. Gupta, R. K. and Gupta, P. 1982, Direct observation of resolved resonances from intra-and extracellular sodium-23 ions in NMR studies of intact cells and tissues using dysprosium (III) tripolyphosphate as paramagnetic shift reagent. J. Magn. Reson. 47:344Google Scholar
  29. Guy, R. D., Razi, M. T. and Rabenstein, D. L. 1986, Measurement of rates of transport across erythrocyte membranes by 1H nuclear magnetic resonance spectroscopy. J. Magn. Reson. 66:434Google Scholar
  30. Haziewood, C. F., Chang, D. C., Nichols, B. L. and Woessner, D. E. 1974, Nuclear magnetic resonance transverse relaxation times of water protons in skeletal muscle. Biophys. J. 14:583Google Scholar
  31. Herbst, M. D. and Goldstein, J. H., 1989, A review of water diffusion measurements by NMR in human red cells. Am. J. Physiol. 256: C1097Google Scholar
  32. Hockings, P., Healy, P. C. and Rogers, P. J., 1989, Shift and relaxation reagents with preference for lactate in 1H-NMR and 13C-NMR spectroscopy of cell suspensions of Streptococcus faecalis. Proc. Aust. Biochem. Soc. 21:SP1Google Scholar
  33. Hunt, G. R. A. 1980, A comparison of Triton X-100 and the bile salt taurocholate as micellar ionophores or fusogens in phospholipid vesicular membranes: A 1H NMR method using the lathanide probe ion Pr3+. FEBS Lett. 119:132Google Scholar
  34. Hunt, G. R. A. and Jones, I. C., 1982, Lathanide-ion transport across phospholipid vesicular membranes: a comparison of alamethicin 30 and A23187 using 1H NMR spectroscopy. Biosci. Rep. 2:921Google Scholar
  35. Hunt, G. R. A., Tipping, L. R. H. and Belmont, M. R., 1978, Rate-determining processes in the transport of Pr3+ ions by the ionophore A23187 across phospholipid vesicular membranes. A 1H-NMR and theoretical study. Biophys. Chem. 8:341Google Scholar
  36. Hunt, G. R. A., Jones, I. C. and Veiro, J. A., 1984, Phosphatidic acid regulates the activity of the channel-forming ionophores alamethicin, metlittin and nystatin: A 1H-NMR study using phospholipid membranes. Biosci. Rep. 4:403Google Scholar
  37. Jones, A. J. and Kuchel, P. W., 1980, Measurement of choline concentration and transport in human erythrocytes in 1H NMR: Comparison of normal blood and that from lithium-treated psychiatric patients. Clin. Chim. Acta 104:77Google Scholar
  38. Jones, G. P., Starr, R. K. and Paleg, L. G., 1985, Promotion of cation transport across phospholipid vesicular vesicles by the plant hormone indole-3-acetic acid as studied by 1H-NMR. Biochim. Biophys. Acta 812:77Google Scholar
  39. King, G. F. and Kuchel, P. W., 1984, A proton NMR study of iminodipeptide transport and hydrolysis in the human erythrocyte: Possible physiological roles for the coupled system. Biochem. J. 220:553Google Scholar
  40. King, G. F. and Kuchel, P. W., 1985, Assimilation of a-glutamyl peptides by human erythrocytes: A possible means of glutamate supply for glutathione synthesis. Biochem. J. 227:833Google Scholar
  41. King, G. F., Middlehurst, C. R. and Kuchel, P. W., 1986, Direct NMR evidence that prolidase is specific for the trans isomer of imidodipeptide substrates. Biochemistry 25: 1054Google Scholar
  42. King, G. F., York, M. J., Chapman, B. E. and Kuchel, P. W., 1983, Proton NMR spectroscopic studies of dipeptidase in human erythrocytes. Biochem. Biophys. Res. Commun. 110:305Google Scholar
  43. King, G. F., Deegan, J., Smith, R., Matouschek, A. and Campbell, I. D., 1988, An NMR study of alamethicin-, ö-haemolysin-, and melittin-induced leakage from large unilamellar vesicles. Biochem. Soc. Trans. 16:595Google Scholar
  44. Kirk, K., 1990, NMR methods for monitoring membrane transport rates. NMR in Biomed., (in press)Google Scholar
  45. Kirk, K. and Kuchel, P. W., 1986, Equilibrium exchange of dimethyl methylphosphonate across the human red cell membrane measured using NMR spin transfer. J. Magn. Reson. 68:311Google Scholar
  46. Kirk, K. and Kuchel, P. W., 1988, The contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the 31P NMR spectra of oxygenated erythrocyte suspensions. J. Biol. Chem. 263:130Google Scholar
  47. Kuchel, P. W., 1981, Nuclear magnetic resonance of biological samples. CRC Crit. Rev. Analyt. Chem. 12:155Google Scholar
  48. Kuchel, P. W., 1985, Kinetic analysis of multienzyme systems in homogeneous solution. in: Catalytic facilitation in organised multienzyme systems ( Welch G R ed.) pp 303–380, Academic Press, New YorkCrossRefGoogle Scholar
  49. Kuchel, P. W., 1989, Biological applications of NMR. in: Analytical NMR ( Field L D and Sternhell S eds.) pp 157–219, John Wiley and Sons, ChichesterGoogle Scholar
  50. Kuchel, P. W., 1990, Spin-exchange NMR spectroscopy in studies of the kinetics of enzymes and membrane transport. NMR in Biomed. (in press)Google Scholar
  51. Kuchel, P. W. and Bulliman, B. T., 1990, Perturbation of homogeneous magnetic fields by isolated single and confocal spheroids: Implications for NMR spectroscopy of cells. NMR in Biomed. (in press)Google Scholar
  52. Kuchel, P. W., Chapman, B. E., Endre, Z. H., King, G. F., Thorburn, D. R. and York, M. J., 1984, Monitoring metabolic reactions in erythrocytes using NMR spectroscopy. Biomed. Biochim. Acta 43:719Google Scholar
  53. Kuchel, P. W., King, G. F. and Chapman, B. E., 1987, No evidence of high capacitya-glutamyl-dipeptide transport into human erythrocytes. Biochem. J. 242: 311Google Scholar
  54. Kuchel, P. W., Bulliman, B. E., Chapman, B. E. and Kirk, K., 1987a, The use of transmembrane differences in saturation transfer for measuring fast membrane transport: Application to H13CO3-exchange across the human erythrocyte. J. Magn. Reson. 74:1Google Scholar
  55. Kuchel, P. W., Chapman, B. E. and Potts, J. R., 1987b, Glucose transport in human erythrocytes measured using 13C NMR spin transfer. FEBS Lett. 219: 5Google Scholar
  56. Labotka, R. J. and Omachi, A., 1987, Erythrocyte anion transport of phosphate analogs. J. Biol. Chem. 262:305Google Scholar
  57. Lau, A. L. Y. and Chan, S. I., 1976, Voltage-induced formation of alamethicin pores in lecithin bilayer vesicles. Biochemistry 5: 2551Google Scholar
  58. Lipschitz-Farber, C. and Degani, H., 1980, Kinetics of water diffusion across phospholipid membranes: 1H and 170-NMR relaxation studies. Biochim. Biophys. Acta 600:291Google Scholar
  59. Lee, Y. and Chan, S. I., 1977, The effect of lysolecithin on the structure and permeability of lecithin bilayer vesicles. Biochemistry 16: 1303Google Scholar
  60. McCain, D.C. and Markley, J. L., 1985, Water permeability of chloroplast envelope membranes. In vivo measurement by saturation-transfer NMR. FEBS Lett 183: 353Google Scholar
  61. McConnell, H. M., 1958, Reaction rates by nuclear magnetic resonance. J. Chem. Phys. 28:430Google Scholar
  62. Meiboom, S. and Gill, D., 1958, Modified spin-echo method for measuring relaxation times. Rev. Sci. Instrum. 29:688Google Scholar
  63. Mendz, G. L., Robinson, G. and Kuchel, P. W., 1986, Direct quantitative analysis analysis of enzyme-catalysed reactions by two-dimensional nuclear magnetic resonance spectroscopy: Adenylate cyclase and phosphoglyceromutase. J. Am.Chem.Soc. 108:169Google Scholar
  64. Middlehurst, C. R., King, G. F., Beilharz, G. R., Hunt, G. E., Johnson, G. F. S. and Kuchel, P. W., 1984, Studies of rat brain metabolism using proton nuclear magnetic resonance spectroscopy: Spectral assignments and monitoring of prolidase, acetylcholinesterase and glutaminase. J. Neurochem. 43: 1561PubMedCrossRefGoogle Scholar
  65. Nicholson, J. K., Buckingham, M. J. and Sadler, P. J., 1983, High resolution 1H n.m.r. studies of vertebrate blood and plasma. Biochem. J. 211:605Google Scholar
  66. Nicholson, J. K., Timbrell, J. A., Bales, J. R. and Sadler, P. J., 1985, A high resolution proton nuclear magnetic resonance approach to the study of hepatocyte and drug metabolism. Application to acetaminophen. Molec. Pharmacol. 27:634Google Scholar
  67. Pirkle, J. L., Ashley, D. L. and Goldstein, J. H., 1979, Pulse nuclear magnetic resonance measurements of water exchange across the erythrocyte membrane at low Mn concentration. Biophys. J. 25:389Google Scholar
  68. Prestegard, J. H., Cramer, J. A. and Viscio, D. B., 1979, Nuclear magnetic resonance determinations of permeation coefficients for maleic acid in phospholipid vesicles. Biophys. J. 26:575Google Scholar
  69. Quirk, P. G., Boyd, C. A. R. and King, G. F., 1990, (unpublished results) Rabenstein, D. L., 1978, Resolution enhancement with multiple-pulsed techniques in pulsed Fourier transform nuclear magnetic resonance spectroscopy. Analyt. Chem. 50: 1265AGoogle Scholar
  70. Rabenstein, D. L., 1984, 1H NMR methods for the noninvasive study of metabolism and other processes involving small molecules in intact erythrocytes. J. Biochem. Biophys. Methods 9:277Google Scholar
  71. Rabenstein, D. L. and Isab, A. A., 1982, Determination of the intracellular pH of intact erythrocytes by 1H NMR spectroscopy. Analyt. Biochem. 121: 423Google Scholar
  72. Robinson, G., Chapman, B. E. and Kuchel, P. W., 1984, 31P NMR spin-transfer in the phosphoglyceromutase reaction. Eur. J. Biochem. 143:643Google Scholar
  73. Sanders, J. K. M. and Hunter, B. K., 1988, in Modern NMR spectroscopy: A guide for chemists, pp 61–65, Oxford University Press, OxfordGoogle Scholar
  74. Steward, M. C., Seo, Y., Rawlings, J. M. and Case, R. M., 1990, Water permeability of acinar cell membranes in the isolated perfused rabbit mandibular salivary gland. (in press).Google Scholar
  75. Ting, D.Z., Hagan, P. S., Chan, S. I., Doll, J. D. and Springer, C. S., 1981, Biophvs. J. 34:189Google Scholar
  76. Tofts, P. S. and Wray, S., 1988, A critical assessment of methods of measuring metabolite concentrations by NMR spectroscopy. NMR in Biomed 1: 1Google Scholar
  77. Vandenberg, J. I., King, G. F. and Kuchel, P. W., 1985, The assimilation of tri-and tetrapeptides by human erythrocytes. Biochim. Biophys. Acta 846:127Google Scholar
  78. Vandenberg, J. I., Kuchel, P. W. and King, G. F., 1986, Application of progress curve analysis to in situ enzyme kinetics using 1H NMR spectroscopy. Analyt. Biochem. 155:38Google Scholar
  79. Wang, J-F, Falke, J. J. and Chan, S. I., 1986, A proton NMR study of the mechanism of the erythrocyte glucose transporter. Proc. Natl. Acad. Sci. USA 83:3277Google Scholar
  80. Westerhoff, H. V., 1982, NMR sheds more light on ion transport. Trends Biochem. Sci. 7:232Google Scholar
  81. Yoon, P. S. and Sharp, R. R., 1985, Cat+ and proton transport in chromaffin granule membranes: A proton NMR study. Biochemistry 24: 7269Google Scholar
  82. York, M. J., Kuchel, P. W. and Chapman, B. E., 1984, A proton nuclear magnetic resonance study of y-glutamylcyclotransferase in human erythrocytes. J. Biol. Chem. 259:15085Google Scholar
  83. Young, J. D. and Ellory, J. C., 1977, Red cell amino acid transport. in: Membrane transport in red cells ( Ellory J C and Lew V L eds.) pp 301–325, Academic Press, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • G. F. King
    • 1
  • C. A. R. Boyd
    • 2
  1. 1.Dept of BiochemistryUniv. of SydneySydneyAustralia
  2. 2.Dept of Human AnatomyUniversity of OxfordOxfordEngland

Personalised recommendations