Skip to main content

Biomedical Nuclear Magnetic Resonance Spectroscopy and Transport

  • Chapter
Book cover Cell Membrane Transport
  • 103 Accesses

Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy, can be used for transport studies either directly, by elucidating metabolic pathways, transport into and out of organs and organelles, or indirectly via determination of ATP concentration, intracellular pH, viscosity, flux rates and thermodynamic information. Previously the tool of the chemist, NMR has now found many applications in biology and medicine. This advance has been made possible largely due to technological advances, allowing wider bores and stronger magnetic fields to be achieved. In this chapter I will firstly outline briefly the theory behind NMR so that its advantages and limitations can be appreciated. I will then detail, with examples, the information available from NMR Spectroscopy. This will be followed by discussion of the more biologically useful NMR nuclei. My emphasis throughout will be on in vivo applications and how NMR may be useful for transport studies. This chapter is not a comprehensive review of NMR spectroscopy nor is it written for the expert. I have erred towards being didactic and have not given references to back up every statement made, for which I apologise to all concerned. I hope it shines some light on the technique and that it may even persuade the reader to have a go!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alger, J.R. & Shulman, R.G., 1984a. NMR studies of enzymatic rates in vitro and in vivo by magnetization transfer. Q. Rev. Biophys. 17, 83–124.

    Google Scholar 

  • Alger, J.R. & Shulman, R.G., 1984b. Metabolic applications of highresolution 13C nuclear magnetic resonance spectroscopy. Brit. Med. Bull. 40, 160–164.

    Google Scholar 

  • Allen, D.G., Morris, P.G., Orchard, C.H. & Pirolo, J.S., 1985. A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis. J. Physiol. 361, 185–204.

    Google Scholar 

  • Balaban, R.S. & Knepper, M.A., 1983. Nitrogen-14 nuclear magnetic resonance spectroscopy of mammalian tissues. Am. J. Physiol. 245, C439–444.

    Google Scholar 

  • Barany, M., Ans, C. & Chang, Y.C., 1985. Natural abundance 13C NMR of brain. Mag. Res. Med. 2, 289–295.

    Google Scholar 

  • Behar, K.L., Rothman, D.L., Shulman, R.G., Petroff, O.A.C. & Prichard, J.W., 1984. Detection of cerebral lactate in vivo during hypoxemia by 1H NMR at relatively low field strengths (1.9T). Proc. Natn. Acad. Sci. USA. 81, 2517–2519.

    Google Scholar 

  • Berling, C. & Hall, C.D., 1989. An NMR assessment of the rheological properties of blood and its constituents:A review. NMR Biomed. 1, 1–6.

    Google Scholar 

  • Brown, J.C.C., Mills, G.A., Sadler, P.J & Walker, V., 1989. 114 NMR studies of urine from premature and sick babies. Mag. Res. Med. 11, 193–201.

    Google Scholar 

  • Civan, M.M., Degani, H., Margalit, Y. & Shporer, M. 1983. Observations of 23-Na in frog skin by NMR. Am.J. Physiol 245,C213–C219.

    Google Scholar 

  • Dawson, M.J., Gadian, D.G. & Wilkie, D.R., 1978. Muscular fatigue inves- tigated by phosphorus nuclear magnetic resonance. Nature 274, 861–866.

    CAS  Google Scholar 

  • Dawson, M.J. & Wilkie, D. R., 1984. Muscle and brain metabolism studied by 31-P nuclear magnetic resonance In:Recent Adv. Physiol. 10, 247–276.

    Google Scholar 

  • Dawson, M.J. & Wray, S., 1985. The effects of pregnancy and parturition on phosphorous metabolites in rat uterus studied by 31P nuclear magnetic resonance. J. Physiol. 368, 19–31.

    Google Scholar 

  • Delpy, D.T., Cope, M.C., Cady, E. Hamilton, P. Reynolds, E.O.R., Wray, S. & Wyatt, J., 1987. Cerebral monitoring in neonates by NMR and NIR spectroscopy. Scand J. Clin. Chem. 47, Suppl. 188, 9–17.

    CAS  Google Scholar 

  • Deutsch, C. J. & Taylor, J.S., 1987. Intracellular pH as measured by 19F NMR. Annals. New York Acad. Sci. 508, 33–47.

    Google Scholar 

  • Diamand, R. J., Bradbury, E. M. & Cox, K.L., 1989. Determination of triaclyglycerol lipase activity using carbon-13-labelled triacylglycerols and nuclear magnetic resonance spectroscopy: Evidence that hepatic lipase hydrolyses medium-chain triacylglycerols. Mag. Res. Med. 9, 273–277.

    Google Scholar 

  • Endre, Z.H., Allis, J.L. & Radda, G.K., 1989. Toxicity of dysprosium shift reagents in the isolated perfused rat kidney. Mag. Res. Med. 11, 267–274.

    Google Scholar 

  • Evers, A.S., Berkowitz, B.A. & d’Avignon, D.A., 1987. Correlation between the anaesthetic effect of halothane and saturable binding in brain. Nature 328, 157–170.

    CAS  Google Scholar 

  • Gadian, D.G. 1982. Nuclear Magnetic Resonance and its Applications to living Systems. Clarendon Press, Oxford.

    Google Scholar 

  • Gadian, D.G., Radda, G.K., Brown, T.R., Chance, E.M., Dawson, M.J. & Wilkie, D.R., 1981. The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer nuclear magnetic resonance. Biochem. J. 194, 215–228.

    Google Scholar 

  • Gadian, D.G., Radda, G.K., Dawson, M.J. & Wilkie, D.R. 1982. pH measurements of cardiac and skeletal muscle using 31-P NMR. p 61–77 In: Intracellular pH:Its Measurement, Regulation and Utilization in Cellular Function, edited by R. Nuccitelli and D.W. Deamer. Liss, New York.

    Google Scholar 

  • Grunder, W., Krumbiegel, P., Buchali, K. & Blesin, H.J., 1989. Nitrogen -15 NMR studies of rat liver in vitro and in vivo. Phys. Med. Biol 34, 457–463.

    Google Scholar 

  • Gupta, R.K. & Gupta, P. 1982. Direct observation of resolved resonances from intra-and extracellular sodium-23 ions in NMR studies of intact cells and tissues using dysprosium (111) tripolyphosphate as paramagnetic shift reagent. J. Magn. Res. 47, 344–350.

    Google Scholar 

  • Heerschap, A., Luyten, P.R., Vander Heyden, J.I., Oosterwaac, L.J.M.P. & Denhollander, J.A., 1989. Broadband proton decoupled natural abundance 13C NMR spectroscopy of humans at 1.5T. NMR Biomed. 2, 124–132.

    CAS  Google Scholar 

  • Hull, W.E., Kunz, W., Port, R.E. & Seiler, N., 1988. Chain-fluorinated polyamines as tumour markers. III. Determination of geminal difluoropolyamines and their precursor 2–2-difluoroputrescine in normal tissues and experimental tumours by in vitro and in vivo 19F NMR spectroscopy. NMR Biomed 1, 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Kanamori, K. & Roberts, J.D., 1983. 15N NMR studies of biological systems. Acc. Chem. Res. 16, 35–41.

    Google Scholar 

  • Knubovets, T.L., Revazov, A.V., Sibeldina, L.A. & Eichhoff, V., 1989. 23Na NMR measurement of the maximal rate of active sodium efflux from human red blood cells. Mag. Res. Med. 9, 261–272.

    Google Scholar 

  • Kwee, I.L. & Nakada, T., 1989. In vivo pharmacokinetics of aldose reductase inhibitors: 3-fluoro-3 deoxy-D-glucose NMR studies in rat brain. NMR Biomed. 2, 44–46.

    Google Scholar 

  • Mason, J. 1981. Nitrogen nuclear magnetic resonance spectroscopy in inorganic, organometallic, and bioinorganic chemistry. Chem. Rev. 8, 205–227.

    Google Scholar 

  • Ogino, T., den Hollander, J.A., Shulmann, R.G. 1983 39K, 23Na, 31P NMR studies of ion transport in Saccharomyces cerevisiae. Proc. Natn. Acad.Sci. USA, 80, 5185–5189.

    Google Scholar 

  • Ogino, T., Shulman, G.I., Avison, M.S., Gullans, S.R., Den Hollander, J.A. & Shulman, R.G., 1988. Proc. Natl. Adac. Sci. USA. 82, 1099

    Google Scholar 

  • Potts, J.R., Kirk, K. & Kuchel, P.W., 1989. Characterization of the transport of the nonelectrolyte dimethyl methylphosphonate across the red cell membrane. NMR Biomed. 1, 198–204.

    CAS  Google Scholar 

  • Reynolds, E.O.R., Wyatt, J.S., Azzopardi, D., Delpy, D.T., Cady, E.B., Cope, M. & Wray, S., 1988. New non-invasive methods for assessing brain oxygenation and haemodynamics. Brit Med, Bull. 44, 1052–1075.

    Google Scholar 

  • Ross, B.D., Higgins, R.J., Boggan, J.E., Willis, J.A., Knittel, B. & Unger, S.W., 1988. Carbohydrate metabolism of the rat C6 glioma. An in vivo 13C and in vitro 111 magnetic resonance spectroscopy study. NMR Biomed. 1, 20–26

    Article  PubMed  CAS  Google Scholar 

  • Rotevatn, S., Murphy, E., Levy, L.A., Raju, B., Liberman, M. & London, R.E. 1989. Cytosolic free magnesium concentration in cultured chick heart cells. Am. J. Physiol. 257, C141–C146.

    Google Scholar 

  • Rudin, M. & Sauter, A., 1989. Non-invasive determination of cerebral blood flow changes by 19-F NMR spectroscopy. NMR Biomed 2, 98–103.

    CAS  Google Scholar 

  • Shulman, R.G., 1987. Contributions of 13C and 1H NMR to Physiological control. Annals New York Acad. Sci 508, 10–15.

    Google Scholar 

  • Smith, G.A., Hesketh, R.T., Metcalfe, J.C., Feeney, J. & Morris, P.G., 1983. Intracellular calcium measurements by 19F NMR of fluorine-labelled chelators. Proc. Natn. Acad. Sci 80, 7178–7182.

    Google Scholar 

  • Stadler, H. & Fuldner, H.H., 1981. 31-P NMR analysis of ATP in synaptic vesicles and its relationship to “in vivo” conditions. Biomed. Res. 2, 673–676.

    Google Scholar 

  • Stevens, A.N., Morris, P.G., Iles, R.A., Sheldon, P.W. & Griffiths, J.R., 1984. 5- fluorouracil metabolism monitored by 19F NMR. Br. J. Cancer 50, 113–117.

    Google Scholar 

  • Tofts, P.J. & Wray, S. 1985. Changes in brain phosphorus metabolites during the postnatal development of the rat. J. Physiol. 359, 417–429.

    Google Scholar 

  • Tofts, P.S. & Wray, S., 1988. A critical assessment of methods of measuring metabolite concentrations by NMR spectroscopy. Mag. Res. Med. 6, 84–86

    Google Scholar 

  • Vogel, H.S., 1987. NMR studies of phosphite uptake and storage in plant cells and algae in “Physiological NMR Spectroscopy” ed. S.M. Cohen Annals New York Acad. Sci. 508, 164–175.

    Google Scholar 

  • Wilkie, D.R. & Wray, S. 1987. 14-nitrogen nuclear magnetic (NMR) spectroscopy of isolated living Xenopus muscle. J. Physiol. 390, 227P.

    Google Scholar 

  • Williams, S.R., Gadian, D.G., Proctor, E., Sprague, D.B. & Talbot, D.F. 1985. Proton NMR studies of muscle metabolites in vivo. J. Mag. Res. 63, 406–411.

    Google Scholar 

  • Wray, S., 1988a. Regulation of intracellular pH in rat uterine smooth muscle, studied by 31-phosphorus NMR spectroscopy. Biochem. Biophys. Acta. 972, 299–301.

    Google Scholar 

  • Wray, S., 1988b. Smooth muscle intracellular pH: Measurement, regulation and function. Am. J. Physiol. 254, C213–C225.

    Google Scholar 

  • Wray, S., 1990. The effects of metabolic inhibition on uterine metabolism and intracellular pH in the rat. J. Physiol. 423, 411–423.

    Google Scholar 

  • Wray, S. & Tofts, P. 1986. Direct in vivo measurement of metabolite concentrations using 31P nuclear magnetic resonance spectroscopy. Biochem. Biophys. Acta. 886, 399–405.

    Google Scholar 

  • Wray, S. & Wilkie, D.R. 1987. Some novel uses for 14-nitrogen NMR spectroscopy. Soc. Mag. Res. Biol. Med. 6th Annual Meeting 2, 597.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wray, S. (1991). Biomedical Nuclear Magnetic Resonance Spectroscopy and Transport. In: Yudilevich, D.L., Devés, R., Perán, S., Cabantchik, Z.I. (eds) Cell Membrane Transport. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9601-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9601-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9603-2

  • Online ISBN: 978-1-4757-9601-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics