A Practical Introduction to the Use of Intracellular Fluorescent Indicators

  • M. Valdeolmillos
  • D. A. Eisner


The concentrations of intracellular ions such as Cat-’, Na+ and H+ are important in the regulation of cell function. Much effort has therefore been expended in measuring them. However, until the last few years, most direct methods for measurement of these concentrations were only suitable for large cells. The situation has changed completely with the introduction of fluorescent indicators. Here we describe the properties of some of these indicators.


Cardiac Myocytes Emission Filter Dichroic Mirror Neutral Density Filter Fluorescent Indicator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almers, W. and Neher, E. (1985). The calcium signal from Fura-2 loaded mast cells depends strongly on the method of dye loading. FEBS Letters 192, 13–18PubMedCrossRefGoogle Scholar
  2. Arslan, P.,De Virgilio, R. Y., Tsien, R. Y., and Pozzan, T.(1984). Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new membrane-permeant chelator of heavy metals reveals that these ascite tumor cells have normal cytosolic free Ca2+. J. Biol. Chem. 260,2719–2727.Google Scholar
  3. Albert, P. R., and Tashjian, A. H. (1984).Thyrotropin-releasing hormone-induced spike and plateau in cytosolic free Ca2+ concentration in pituitary cells. Relation to prolactin release. J. Biol. Chem. 259, 5827–5832.Google Scholar
  4. Borle, A. B., and Snowdowne, K. W. (1986). Methods for the measurement of intracellular ionized calcium in mammalian cells: comparison of four classes of calcium indicators. In Calcium and cell function ed Cheung, W.Y. vol 7, pp 159–200. Orlando: Academic Press.Google Scholar
  5. Becker, P. L., and Fay.,F. (1987). Photobleaching of fura-2 and its effects on determination of calcium concentrations. Am. J. Physiol. 253, C613–C61ß.Google Scholar
  6. du Bell, W. H., Philips, Ch. P., and Houser, S. R. (1988). A technique for measuring cytosolic free Ca2+ with Indo-1 in feline myocytes. in “Biology of isolated adult cardiac myocytes” eds Clark, W.A., Decker, R.S. & Borg, T.K. Elsevier Science Publishing Co.Google Scholar
  7. Chaillet, J.R. & Boron, W.F. (1985). Intracellular calibration of a pH-sensitive dye in isolated, perfused salamander proximal tubules. J. gen. Physiol. 86, 765–794.Google Scholar
  8. Chance, B., Cohen, P., Jobsis, F. & Schoener, B. (1962). Intracellular oxidation-reduction states in vivo. Science (Wash D.C.) 137, 499–508.CrossRefGoogle Scholar
  9. Cobbold, P. H. and Rink, T. J. (1987). Fluorescence and bioluminescence measurements of cytoplasmic free calcium. Biochem. J. 248, 313–328.Google Scholar
  10. Davis, M. H., Altschuld, R. A., Jung, D. W., and Brierley, G. P., (1987). Estimation of intramitochondrial pCa nd pH by fura-2 and 2,7 biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) fluorescence. Biochem. Biophys. Res. Comm. 149, 40–45.Google Scholar
  11. Deber, C. M., Tom-Kun, J., Mack, E., and Grinstein, S. (1985). Bromo A23187: a fluorescent calciun ionophore for the use with fluorescent probes. Anal. Biochem. 146, 349–352.Google Scholar
  12. De feo, T. T., Briggs, G. M. and Morgan, K. G. (1987). CaZ+ signals obtained with multiple indicators in mammalian vascular muscle cells. Am. J.Physiol. 253, H1456–H1461.Google Scholar
  13. Donoso, P. Eisner, D.A. & O’Neill, S.C. (1989a). Measurement of intracellular [Na+] in isolated rat cardiac myocytes using the fluorescent indicator SBFI. J. Physiol. 418, 48 P.Google Scholar
  14. Donoso, P., Eisner, D.A., O’Neill, S.C. & Valdeolmillos, M. (1989b). the fluorescent probe Indo-1 can indicate [CaZ+]i and caffeine concentration simultaneously. J. Physiol. 416, 42P.Google Scholar
  15. Eisner, D. A., Kenning, N. A., O’Neill, S. C., Pocok, G., Richards, C. D., and Valdeolmillos, M., (1989a). A novel method for absolute calibration of intracellular pH indicators. Pflugers Arch. 413, 145–157.Google Scholar
  16. Eisner, D. A., Nichols, C. G., O’Neill, S. C., Smith, G. L., and Valdeolmillos, M., (1989b). The effects of metabolic inhibition on intracellular calcium and pH in isolated rat ventricular myocytes. J. Physiol. 411, 393–418.PubMedGoogle Scholar
  17. Eng, J., Lynch, R. M., and Balaban, R. S. (1989). Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes. Biophys. J. 55, 621–630.Google Scholar
  18. Garcia-Sancho, J. (1984). Inhibition of glycolysis in the human erytrocyte by formaldehyde and Ca-chelator esters, J. Physiol. 357, 99.Google Scholar
  19. Grynkiewicz, G., Ponie, M., and Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450.Google Scholar
  20. Gunter, T. H., Restrepo, D., and Gunter, K. K. (1988). Conversion of esterified fura-2 and indo-1 to CaZ+ sensitive forms by mitochondria. Am. J. Physiol. 255, C304–C310.Google Scholar
  21. Hesketh, T.R., Smith, G.A., Moore, J.P., Taylor, M.V. & Metcalfe, J.C. (1983). Free cytoplasmic calcium concentration and the m i t o g e n i c stimulation of lymphocytes. J. biol. Chem. 258, 4876–4882.Google Scholar
  22. Illsley, N.P. & Verkman, A.S. (1987). Membrane chloride transport censured using a chloride-sensitive fluorescent probe. Biochemistry 26, 1215–1219Google Scholar
  23. Johnson, P. C., Ware, J. A., Cliveden, P. B., Smith, H., Dvorak, A. H., and Salzman, E. W. (1985). Measurement of ionized calcium in blood platelets with the photoprotein aequorin. Comparison with quin-2. J. Biol. Chem. 260, 2069–2076.Google Scholar
  24. Knight, D. E., and Kesteven, N. T. (1983). Evoked transient, intracellular free CaZ+ changes and secretion in isolated bovine adrenal medullary cells. Proc. R. Soc. London Ser. B 218, 177–199.Google Scholar
  25. Konishi, M., Olson, A., Hollingworth, S., and Baylor, S. M. (1988). Myoplasmic binding of fura-2 investigated by steady-state fluorescence and absorbance measurements. Biophys. J. 54, 1089–1104.Google Scholar
  26. Kurtz, I. & Balaban, R.S. (1985). Fluorescence emission spectroscopy of 1,4-dihydroxyphthalonitrile. A method for determining intracellular pH ni cultured cells. Biophys. J. 48, 499–508.Google Scholar
  27. Lakowicz, J. R. (1983). “Principles of fluorescence spectroscopy” Plenum Press N.Y.Google Scholar
  28. Li, Q., Altschuld, R.A. & Stokes, B.T. (1987). Quantitation of intracellular free calcium in single adult cardiomyocytes by Fura-2 fluorescence microscopy: calibration of fura-2 ratios. Biochem. Biophys. res. Comm. 147, 120–126.Google Scholar
  29. Macintyre, E.A., Tatham, P.E.R., Abdul-Gaffar, R. & Linch, D.C. (1988). The effects of pertussis toxin on human T lymphocytes. Immunology 64, 427432.Google Scholar
  30. Minta, A., Kao, J.P. & Tsien, R.Y. (1989). Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores..J biol. Chem. 264, 8171–8178.Google Scholar
  31. Minta, A. & Tsien, R.Y. (1989). Fluorescent indicators for cytosolic sodium J. biol. Chem. 264, 19449–19457Google Scholar
  32. Moore, E.D.W., Tsien, R.Y., Minta, A. & Fay, F.S. (1988). Measurement of intracellular sodium with SBFP. A newly developed sodium sensitive fluorescent dye. FASEB J. 2, A754.Google Scholar
  33. Oakes, S. G., Martin, W. J., Lisek,. A., and Powis, G. (1988). Incomplete hydrolysis of the calcium indicator precursor Fura-2 pentaacetoxymethyl ester (Fura-2 AM) by cells. Anal. Biochem. 169, 159–166.Google Scholar
  34. Owen, Ch. S. (1988). Quantitation of lymphocyte intracellular free calcium signals using indo-1. Cell Calcium 9, 141–149.Google Scholar
  35. Popov, E. G., Gavrilov, I. Yu., Pozin, E. Ya., and Gabbasov, Z. A. (1988). Multiwavelength method for measuring concentration of free cytosolic calcium using the fluorescent probe indo-1. Arch. Biochem. Biophys. 261, 91–96.Google Scholar
  36. Rink, T. J., and Pozzan, T. (1985). Using Quin-2 in cell suspensions. Cell Calcium 6, 133–144.CrossRefGoogle Scholar
  37. Rink, T. J., Tsien, R. Y., and Pozzan, T. (1982). Cytoplasmic pH and Mgt+ ni lymphocytes. J. Cell. Biol. 92, 189–196.Google Scholar
  38. Szatkowski, M. S., and Thomas, R. C. (1986). New method for calculating pH, from accurately measured changes in pH; induced by a weak acid and base. Pflugers Arch. 407, 59–63.Google Scholar
  39. Thomas, J.A., Buchsbaum, R.N., Zimniak, A. & Racker, E. (1979). Intracellular pH measurements in Ehrlich ascites tumour cells utilizing spectroscopic probes generated in situ. Biochemistry 18, 2210–2218.Google Scholar
  40. Timmerman, M. P., and Ashley, C. C. (1986). Fura-2 difussion and its use sa an indicator of transient free calcium changes in single striated muscle cells. FEBS Lett. 209, 1–8.Google Scholar
  41. Tsien, R. Y. (1988). Fluorescence measurement and photochemical manipulation of cytosolic free calcium. Trends Neuros. 11, 419–424.Google Scholar
  42. Tsien, R.Y. & Minta, A. (1987). J. cell. Biol. 105 89aGoogle Scholar
  43. Tsien, R. Y., Pozzan, T., and Rink, T. J. (1982). Calcium homeostasis in intact lymphocytes: cytoplsmic free calcium monitored with a new intracellularly trapped fluorescent indicator. J. Cell Biol. 94,325–334.Google Scholar
  44. Tsien, R. Y., Rink, T. J., and Poenie, M. (1985). Measurement of cytosolyc free calcium Cat+ in individual small cells using fluorescence microscopy with dual excitation wavelengths. Cell Calcium 6, 145–157.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • M. Valdeolmillos
    • 1
  • D. A. Eisner
    • 2
  1. 1.Departamento de Fisiologia, Facultad MedicinaUniversidad de AlicanteSpain
  2. 2.Department of PhysiologyUniversity College LondonLondonGreat Britain

Personalised recommendations