Skip to main content

Electrophysiological Methods in the Study of Water Transport Across Cell Membranes

  • Chapter

Abstract

The study of water transport across the plasma membrane of animal cells has clearly lagged behind work on transport of ions and nutrients, although cell volume and hence water transport are essential for normal cell function. New physiological, biophysical and molecular approaches have been applied to the problem of water transport across cell membranes by several groups of investigators in recent years, resulting in significant progress in understanding the pathways and mechanisms of water transport and the nature and mechanisms of cell volume regulation. The purpose of this article is to review the use of electrophysiological approaches in the assessment of water transport across cell membranes.

Keywords

  • Water Transport
  • Apical Cell Membrane
  • Cell Volume Regulation
  • Unstirred Layer
  • Gallbladder Epithelium

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4757-9601-8_13
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-4757-9601-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammann, D., 1986, Ion-selective microelectrodes, Springer-Verlag, Berlin.

    Google Scholar 

  • Austin, J.B., 1932, Temperature distribution in solid bodies during heating or cooling. A correction. Physics 3: 179–184.

    CrossRef  Google Scholar 

  • Ballanyi, K., and Grafe, P., 1988, Cell volume regulation in the nervous system, Renal Physiol. Biochem. 1:114–141.

    Google Scholar 

  • Barry, P.H., and Diamond, J.M., 1984, Effects of unstirred layers on membrane phenomena, Physiol. Rev. 64:763–873.

    Google Scholar 

  • Cotton, C.U., and Reuss, L., 1989, Measurement of the effective thickness of the mucosal unstirred layer in Necturus gallbladder epithelium, J. Gen. Physiol. 93:631–647.

    Google Scholar 

  • Cotton, C.U., Weinstein, A.M., and Reuss, L., 1989, Osmotic water permeability of Necturus gallbladder, J. Gen. Physiol. 93:649–679.

    Google Scholar 

  • Edelman, I.S., and J. Leibman, 1959, Anatomy of body water and electrolytes, Am. J. Med. 27:256–277.

    Google Scholar 

  • Finkelstein, A., 1987, Water movement through lipid bilayers, pores and plasma membranes, John Wiley & Sons, New York.

    Google Scholar 

  • House, C.R., 1974, Water transport in cells and tissues, Edward Arnold Ltd., London.

    Google Scholar 

  • Lechene, C., 1985, Cellular volume and cytoplasmic gel, Biol. Cell 55:177–180.

    Google Scholar 

  • Neher, E., and Lux, H.D., 1973, Rapid changes of potassium concentration at the outer surface of exposed single neurons during membrane current flow, J. Gen. Physiol. 61:385–399.

    Google Scholar 

  • Reuss, L., 1985, Changes in cell volume measured with an electrophysiologic technique, Proc. Natl. Acad. Sci. USA 82:6014–6018.

    Google Scholar 

  • Reuss, L., and Cotton, C.U., 1988, Isosmotic fluid transport across epithelia, Contemn. Nephrol. 4:1–37.

    Google Scholar 

  • Reuss, L., and Finn, A.L., 1975a, Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions, J. Membr. Biol. 25:115–139.

    Google Scholar 

  • Reuss, L., and Finn, A.L., 1975b, Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. II. Ionic permeability of the apical cell membrane, J. Membr. Biol. 25:141–161.

    Google Scholar 

  • Serve, G., Endres, W., and Grafe, P., 1988, Continuous electrophysiological measurements of changes in cell volume of motoneurons in the isolated frog spinal cord, Pflügers Arch. Eur. J. Physiol. 411:410–415.

    Google Scholar 

  • Tripathi, S., and Boulpaep, E.L., 1988, Cell membrane water permeabilities and streaming currents in Ambystoma proximal tuble, Am. J. Physiol. 24:F188–F203.

    Google Scholar 

  • Tsien, R.Y., 1983, Intracellular measurements of ion activities, Ann. Rev. Biophys. Bioeng. 12:91–116.

    Google Scholar 

  • Tsien, R.Y., 1989, Fluorescent probes of cell signaling, Ann. Rev. Neurosci. 12:227–253.

    Google Scholar 

  • Zeuthen, T., 1982, Relations between intracellular ion activities and extracellular osmolarity in Necturus gallbladder epithelium, J. Membr. Biol. 66:109–121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reuss, L., Cotton, C.U. (1991). Electrophysiological Methods in the Study of Water Transport Across Cell Membranes. In: Yudilevich, D.L., Devés, R., Perán, S., Cabantchik, Z.I. (eds) Cell Membrane Transport. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9601-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9601-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9603-2

  • Online ISBN: 978-1-4757-9601-8

  • eBook Packages: Springer Book Archive