Skip to main content

Voltage-Dependent Ionic Channels: “Whole-Cell” Recording by Patch-Clamp Techniques

  • Chapter
  • 93 Accesses

Abstract

Ionic channels are integral membrane proteins that mediate the passive flux of ions across the cell membrane. This family of proteins is broadly distributed, from procaryotes to mammals, and participates in a number of cell functions including electrical signalling, secretion, motility, and growth and proliferation. Most known ionic channels are gatable, i.e. they can change their three-dimensional structure and adopt an open or a closed state. Ions only diffuse through open channels and thus channel activation results in the generation of transmembrane ionic currents. What induces ionic channels to change their conformation is either the binding of a ligand (as for example in the acetylcholine receptor) or a change in the membrane potential. Channels activated by the second mechanism are the “voltage-dependent” channels which have charged domains in their molecule that sense the variations in the transmembrane electric field.

Keywords

  • Carotid Body
  • Calcium Current
  • Potassium Current
  • Sodium Current
  • Tail Current

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4757-9601-8_12
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-4757-9601-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman, W.J., and Senft, J.P., 1966, Voltage clamp studies of the effect of internal caesium ions on sodium and potassium currents in the squid giant axon, J. Gen. Physiol. 50:279–293.

    Google Scholar 

  • Armstrong, C.M., and Chow, R.H., 1987, Supercharging: a method for improving patch-clamp performance, Biophys. J. 52:133–136.

    Google Scholar 

  • Bezanilla, F., and Armstrong, C.M., 1972, Negative conductance caused by entry of sodium and caesium into the potassium channels of squid axons, J. Gen. Physiol. 60:588–608.

    Google Scholar 

  • Bezanilla, F., and Armstrong, C.M., 1977, Inactivation of the sodium channels. I. Sodium current experiments, J. Gen. Physiol. 70:549–566.

    Google Scholar 

  • Carbone, E., and Lux, H.D., 1984, A low voltage-activated

    Google Scholar 

  • calcium conductance in embryonic chick sensory neurons, Biophys. J. 46:413–418.

    Google Scholar 

  • Castellano, A., López-Barneo, J., and Armstrong, C.M., 1989, Potassium currents in dissociated cells of the rat pineal gland, Pflügers Arch. 413: 644–650.

    CAS  Google Scholar 

  • Castellano, A., and López-Barneo, J., 1990, Sodium and calcium currents in dispersed mammalian septal neurons, J. Gen. Physiol. in press.

    Google Scholar 

  • Cole, K.S., 1968, “Membranes, Ions, and Impulses,” University of California Press, Berkeley.

    Google Scholar 

  • Cota, G., 1986, Calcium channel currents in Pars Intermedia cells of the rat pituitary gland, J. Gen. Physiol. 88:83–105.

    Google Scholar 

  • Cota, G., and Armstrong, C.M., 1988, Potassium channel “inactivation” induced by soft-glass patch pipettes, Biophvs. J. 53:107–110.

    Google Scholar 

  • Eyzaguirre, C., and Zapata, P., 1968, A discussion of possible transmitter or generator substances in carotid body chemoreceptors, in: “Arterial Chemoreceptors,” R.W. Torrance, ed., Blackwell Scientific Publications Inc., Oxford.

    Google Scholar 

  • Fedulova, S.A., Kostyuk, P.G., and Veselovsky, N.S., 1985, Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurons, J. Physiol. 359:431–446.

    Google Scholar 

  • Fenwick. E.M., Marty, A., and Neher, E., 1982, Sodium and calcium channels in bovine chromaffin cells, J.Phvsiol. 331: 599–635.

    Google Scholar 

  • Fernandez, J., Fox, A.P., and Krasne, S., 1984, Membrane patches and whole-cell membranes: a comparison of electrical properties in rat clonal pituitary (GH3) cells, J. Physiol. 356:565–585.

    Google Scholar 

  • Forscher, P., and Oxford, G.S., 1985, Modulation of calcium channels by norepinephrine in internally dialyzed avian sensory neurons, J. Gen. Physiol. 85:743–763.

    Google Scholar 

  • Furman, R.E., and Tanaka, J. C., 1988, Patch electrode glass composition affects ion channel currents, Biophys. J. 53:287–292.

    Google Scholar 

  • Hagiwara, S., Fukuda, J., and Eaton, D.C., 1974, Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp, J. Gen. Physiol. 63: 564–578.

    Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391: 85–100.

    CAS  Google Scholar 

  • Hille, B., 1984, “Ionic Channels of Excitable Membranes,” Sinauer Associates Inc., Sunderland.

    Google Scholar 

  • Hodgkin, A.L., and Huxley, A.F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117:500–544.

    Google Scholar 

  • Kohlhardt, M., Bauer, M., Krause, H., and Fleckenstein, A., 1972, Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibres by the use of specific inhibitors, Pflügers Arch. 335: 309–322.

    CAS  Google Scholar 

  • López-Barneo, J., López-López, J.R., J. Urena, and C. Gonzalez, 1988, Chemotransduction in the carotid body: K current modulated by pO2 in type I chemoreceptor cells, Science 241: 580–582.

    Google Scholar 

  • López-López, J.R., Gonzalez, C., Urena, J. and López-Barneo, J., 1989, Low pO2 selectively inhibits K channel activity in chemoreceptor cells of the mammalian carotid body, J. Gen. Physiol. 93:1001–1015.

    Google Scholar 

  • Matteson, D.R., and Armstrong, C.M., 1984, Na and Ca channels in a transformed line of anterior pituitary cells, J. Gen. Physiol. 83:371–394.

    Google Scholar 

  • Matteson, D.R., and Armstrong, C.M., 1986, Properties of two types of calcium channels in clonal pituitary cells, J. Gen. Physiol. 87:161–182.

    Google Scholar 

  • Moolenaar, W.H., and Spector, I., 1978, Ionic currents in cultured mouse neuroblastoma cells under voltage clamp, J. Physiol. 278:265–286.

    Google Scholar 

  • Narahashi, T., Moore, J.W., ans Scott, W.R., 1964

    Google Scholar 

  • Tetrodotoxin blockade of sodium conductance on lobster giant axons, J. Gen. Physiol. 47:965–974.

    Google Scholar 

  • Nowycky, M.C., Fox, A.P. and Tsien, R.W., 1985, Three types of neuronal calcium channels with different calcium agonist sensitivity, Nature 316: 440–443.

    CAS  Google Scholar 

  • Peatman, J.B., 1977, “Microcomputer-based design,” McGraw Hill, New York.

    Google Scholar 

  • Rodriguez-Benot, A., Bolanos, P., and López-Barneo, J., 1989, Corriente de calcio en células glómicas y su dependencia de metabolitos intracelulares, Actas I Congreso Iberoamericano de Biofísica p. 156.

    Google Scholar 

  • Rudy, B., 1988, Diversity and ubiquity of K channels, Neuroscience 25: 729–749.

    CAS  Google Scholar 

  • Sah, P., Gibb, A.J., and P. W. Gage, 1988, The sodium current underlying action potentials in guinea pig hippocampal neurons, J. Gen. Physiol. 91:373–393.

    Google Scholar 

  • Sakmann, B., and Neher, E., 1983, “Single-Channel Recording,” Plenum Press, New York.

    Google Scholar 

  • Sargent, M., and Shoemaker, R.L., 1984, “The IBM personal computer from the inside-out,” Addison Wesley, New York.

    Google Scholar 

  • Sigworth, F.J., 1983, Electronic design of the patch-clamp, in: “Single-Channel Recording,” B. Sakmann and E. Neher, eds., Plenum Press, New York.

    Google Scholar 

  • Swandulla, D. and Armstrong, C.M., 1988, Fast-deactivating calcium channels in chick sensory neurons, J. Gen. Physiol. 92:197–218.

    Google Scholar 

  • Tabares, L., Urena, J., and López-Barneo, J., 1989, Properties of calcium and potassium currents of clonal adrenocortical cells, J. Gen. Physiol. 93: 495–519.

    Google Scholar 

  • Urena, J., Mateos, J.C., and López-Barneo, J., 1989a, Low-cost system for automated acquisition, display and analysis of transmembrane ionic currents, Med.& Biol. Eng. & Comput. 27: 94–98.

    Google Scholar 

  • Urena, J., López-López, J.R., Gonzalez, C., and Lopez-Barneo, J., 1989b, Ionic currents in dispersed chemoreceptor cells of the mammalian carotid body, J. Gen. Physiol. 93:979–999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

López-Barneo, J. (1991). Voltage-Dependent Ionic Channels: “Whole-Cell” Recording by Patch-Clamp Techniques. In: Yudilevich, D.L., Devés, R., Perán, S., Cabantchik, Z.I. (eds) Cell Membrane Transport. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9601-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9601-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9603-2

  • Online ISBN: 978-1-4757-9601-8

  • eBook Packages: Springer Book Archive