Skip to main content

The Use of Ion-Selective Microelectrodes to Study Cellular Transport Processes

  • Chapter
  • 94 Accesses

Abstract

Ionic gradients and fluxes are involved in a number of cellular functions including nerve and muscle excitation and transepithelial absorption and secretion. It is of critical importance in these cases to obtain accurate measurements of intracellular ionic activities both at rest and during cell activation. Since the miniaturization of ion-selective glass membranes between 1950 and 1970, ion-selective microelectrodes (ISMs) have been extensively used for this purpose. The method allows not only measurement of steady-state values but also the monitoring of transient intracellular ionic activities. With certain provisos, the estimation of net transmembrane fluxes of ions is also possible. Improvement in the procedures for constructing ISMs and the introduction of liquid membranes (Walker, 1971) have allowed the technique to be used not only in large cells, typically of invertebrates, but also in smaller cells such as smooth muscle fibers, vertebrate neurons or tubular epithelia of the kidney.

Keywords

  • Liquid Membrane
  • Frog Skin
  • Neutral Carrier
  • Intracellular Measurement
  • Microelectrode Amplifier

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4757-9601-8_11
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-4757-9601-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez-Leefmans, F.J., Camino, S.M., Giraldez, F. and Nogueron, I., 1988. Intracellular chloride regulation in amphibian dorsal root ganglion neurones studied with ion-selective micro-electrodes. J Physiol.(London) 406: 225–246.

    CAS  Google Scholar 

  • Ammann, D., 1986. Ion-selective microelectrodes. Principles, design and application. Springer-Verlag, Berlin.

    Google Scholar 

  • Armstrong, W.McD. and Garcia-Diaz, J.F., 1980. Ion-selective microelectrodes: theory and technique. Federation Proc.: 39: 2851–2859.

    CAS  Google Scholar 

  • Armstrong, W.McD. and Garcia-Diaz, J.F., 1981. Criteria for the use of microelectrodes to measure membrane potentials in epithelial cells. In Epithelial Ion and Water Transport ( A.D.C. Macknight and J.P. Leader, eds.), pp. 43–53. Raven Press, New York.

    Google Scholar 

  • Bockris, J.0’M. and Reddy, A.K.N., 1973. Modern Electrochemistry. Vol. 1. Plenum/Rosetta Edition. Plenum Press. New York.

    Google Scholar 

  • Bolton,T.B. and Vaughan-Jones, R.D., 1977. Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle. J. Physiol.(London) 270: 801–833.

    Google Scholar 

  • Brown, K.T. and Flaming, D.G., 1977. New microelectrodes techniques for intracellular work in small cells. Neuroscience 2: 813–827.

    CrossRef  Google Scholar 

  • Coles, J.A. and Tsacopoulos, M., 1977. A method of making fine double-barrelled potassium-sensitive micro-electrodes for intracellular recording. J. Physiol.(London) 270: 12P - 14 P.

    CAS  Google Scholar 

  • Coles, J.A. and Tsacopoulos, M., 1979. Potassium activity in photoreceptors, glial cells and extracellular space in the drone retina: changes during photostimulation. J. Physiol (London) 290: 525–549.

    CAS  Google Scholar 

  • Conway, B.E., 1952. Electrochemical data. Elsevier, Amsterdam.

    Google Scholar 

  • Edelman, A., Curet, S., Samarzija, I. and Frömter, E., 1978. Determination of intracellular K activity in rat kidney proximal tubular cells. Pflügers Arch. 378: 37–45.

    PubMed  CrossRef  CAS  Google Scholar 

  • Eisenman, G., 1967. Glass Electrodes For Hydrogen and Other Cations. Principles and Practice. M. Dekker, Inc.. New York.

    Google Scholar 

  • Eisenman, G., 1968. Similarities and differences between liquid and solid ion exchangers and their usefulness as ion specific electrodes. Anal. Chem. 40: 310–320.

    CrossRef  CAS  Google Scholar 

  • Eisner, D.A., Lederer, W.J. and Vaughan-Jones, R.D., 1981. The dependence of Na pumping and tension on intracellular sodium activity in voltage-clamped sheep Purkinje fibres. J. Physiol.(London) 317: 163–187.

    CAS  Google Scholar 

  • Garcia-Diaz, J.F., Baxendale, L.M., Klemperer, G. and Essig, A., 1985. Cell K activity in frog skin in the presence and absence of cell current. J. Membrane Biol. 85: 143–158.

    CrossRef  CAS  Google Scholar 

  • Garcia-Diaz, J.F. and Essig, A., 1985. Capacitative transients in voltage-clamped epithelia. Biophys. J. 48: 519–523.

    PubMed  CrossRef  CAS  Google Scholar 

  • Garcia-Diaz, J.F., Klemperer, G., Baxendale, L.M. and Essig, A., 1986. Cell sodium activity and sodium pump function in frog skin. J. Membrane Biol. 92: 37–46.

    CrossRef  CAS  Google Scholar 

  • Garcia-Diaz, J.F., Stump, S. and Armstrong, W.McD., 1984. Electronic device for microelectrode recordings in epithelial cells. Am. J. Physiol. 246: C339 - C346.

    PubMed  CAS  Google Scholar 

  • Giraldez, F., 1984. Active sodium transport and fluid secretion in the gall-bladder epithelium of Necturus. J. Physiol.(London) 348: 431–455.

    CAS  Google Scholar 

  • Giraldez, F. and Sepulveda, F.V., 1986. Chloride activity in Necturus enterocytes. J. Physiol.(London) 380: 26 P.

    Google Scholar 

  • Gorman, A.L.F., Levy, S., Nasi, E. and Tillotson, D., 1984. Intracellular calcium measured with calcium-sensitive micro-electrodes and arsenazo III in voltage-clamped Aplysía neurones. J. Physiol.(London) 353: 127–142.

    CAS  Google Scholar 

  • Guibault, G.C., Durst, R.A., Frant, M.S., Freiser, H., Hansen, E.H., Light, T.S., Pungor, E., Rechnitz, G., Rice, N.M., Rohm, T.J., Simon, W. and Thomas, J.D.R., 1976. Recommendations for nomenclature of ion-selective electrodes. Pure Appl. Chem. 48: 127–132.

    CrossRef  Google Scholar 

  • Halliwell, J.V. and Whitaker,M.J., 1987. Using microelectrodes. In Microelectrodes Techniques: The Plymouth Workshop Handbook ( N.B. Standen, P.T.A. Gray and M.J. Whitaker, eds.), pp. 1–12. The Company of Biologists Ltd., Cambridge.

    Google Scholar 

  • Horowitz, P. and Hill, W., 1989. The Art of Electronics. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hu, Z., Buhrer, T., Muller, M., Rusterholtz, B., Rouilly, M. and Simon, W., 1989. Intracellular magnesium ion selective microelectrode based on a neutral carrier. Anal Chem. 61: 574–576.

    PubMed  CrossRef  CAS  Google Scholar 

  • IUPAC, 1979. Commission on analytical nomenclature (prepared for publication by G.C. Guibault). Recommendations for publishing manuscripts on ion-selective electrodes. Ion-selective Electrode Rev, 1: 139.

    Google Scholar 

  • Koryta, J. and Stulik, K., 1983. Ion-Selective Electrodes. Second Edition. Cambridge University Press. Cambridge.

    CrossRef  Google Scholar 

  • Lanter, F., Steiner, R.A., Ammann, D. and Simon, W. 1982. Critical evaluation of the applicability of neutral carrier based Cat+ selective microelectrodes. Anal. Chim. Acta 135: 51–59.

    CrossRef  CAS  Google Scholar 

  • Lev, A.A. and Armstrong, W.McD., 1975. Ionic activities in cells. Curr Top. Membranes and Transp. 6: 59–123.

    CrossRef  CAS  Google Scholar 

  • Levy, S. and Fein, A., 1985. Relationship between light sensitivity and intracellular free Ca concentration in Límulus ventral photoreceptors: a quantitative study using Ca-selective microelectrodes. J. Gen. Physiol. 85: 805–841.

    PubMed  CrossRef  CAS  Google Scholar 

  • Morris, M.E. and Krnjevic, K. (editors), 1987. Ion-Selective Microelectrodes and Excitable Tissues. Can. J. Physiol. Pharmacol, 65: 867–1100.

    Google Scholar 

  • Moody, G.J. and Thomas, J.D.R., 1971. Selective ion-sensitive electrodes. Merrow Pub.Co.Ltd., Watford, England.

    Google Scholar 

  • Munoz, J.L., Deyhimi, F. and Coles, J.A., 1983. Silanization of glass in the making of ion-sensitive microelectrodes. J. Neurosci. Meth. 8: 231–247.

    CrossRef  CAS  Google Scholar 

  • Nelson, D.J., Ehrenfel, J. and Lindemann, B., 1978. Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3M KC1. J. Membrane Biol. 40 (Special Issue): 91–119.

    CrossRef  CAS  Google Scholar 

  • O’Doherty, J., Garcia-Diaz, J.F. and Armstrong, W.McD., 1979. Sodium-selective liquid ion-exchanger microelectrodes for intracellular measurements. Science 203: 1349–1351.

    PubMed  CrossRef  Google Scholar 

  • Ogden,D.C., 1987. Microelectrode electronics. In Microelectrodes Techniques: The Plymouth Workshop Handbook ( N.B. Standen, P.T.A. Gray and M.J. Whitaker, eds.), pp. 199–227. The Company of Biologists Ltd., Cambridge.

    Google Scholar 

  • Parsons, R., 1959. Handbook of Electrochemical Constants. Butterworths Scientific Publications. London.

    Google Scholar 

  • Persson, B.-E. and Spring, K.R., 1982. Gallbladder epithelial cell hydraulic water permeability and volume regulation. J.Gen.Physiol. 79: 481–505.

    PubMed  CrossRef  CAS  Google Scholar 

  • Purves, R.D., 1981. Microelectrode methods for intracellular recording and ionophoresis. Academic Press, London.

    Google Scholar 

  • Reuss,L., 1985. Changes in cell volume measured with an electrophysiologic technique. Proc. Natl. Acad. Sci. 82: 6014–6018.

    CrossRef  Google Scholar 

  • Robinson, R.A. and Stokes, R.H., 1959. Electrolyte Solutions. Second Edition (revised). Butterworths Scientific Publications. London.

    Google Scholar 

  • Roos, A. and Boron, W.F., 1981. Intracellular pH. Physiol. Rev. 61: 296–434.

    PubMed  CAS  Google Scholar 

  • Schefer, U., Ammann, D., Pretsch, E., Oesch, U. and Simon, W., 1986. Neutral carrier based Ca-selective electrode with detection limit in the sub-nanomolar range. Anal.Chem. 58: 2282–2285.

    CrossRef  CAS  Google Scholar 

  • Thomas, M.V., 1982. Techniques in calcium research. Academic Press, London.

    Google Scholar 

  • Thomas, R.C., 1972. Intracellular sodium activity and the sodium pump in snail neurones. J. Physiol.(London) 220: 55–71.

    CAS  Google Scholar 

  • Thomas, R.C., 1978. Ion-sensitive intracellular microelectrodes. How to make and use them. Academic Press, London.

    Google Scholar 

  • Tripathi, S., Morgunov, N. and Boulpaep, E.L., 1985. Submicron tip breakage and silanization control improve ion-selective microelectrodes. Am. J. Physiol. 249: C514–0521.

    PubMed  CAS  Google Scholar 

  • Tsien, R.Y., 1980. Liquid sensors for ion-selective microelectrodes. TINS 3.:219–221.

    Google Scholar 

  • Tsien, R.Y., 1983. Intracellular measurements of ion activities. Ann. Rev, Biophys. Bioeng. 12: 91–116.

    CrossRef  CAS  Google Scholar 

  • Tsien, R.Y. and Rink, T.J., 1980. Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium. Biochim. Biophys. Acta 599: 623–638.

    PubMed  CrossRef  CAS  Google Scholar 

  • Tsien, R.Y. and Rink, T.J., 1981. Ca-selective electrodes: A novel PVC-gelled neutral carrier mixture compared with other currently available sensors. J.Neurosci.Meth. 4: 73–86.

    CrossRef  CAS  Google Scholar 

  • Vaughan-Jones, R.D., 1979. Non-passive chloride distribution in mammalian heart muscle: microelectrode measurement of the intracellular chloride activity. J. Physiol.(London) 295: 83–109.

    CAS  Google Scholar 

  • Vaughan-Jones, R.D. and Aickin, C.C., 1987. Ion-selective microelectrodes, In Microelectrode Techniques: The Plymouth Workshop Handbook. (N.B, Standen, P.T.A. Gray and M.J. Whitaker, eds.), pp. 137–167. The Company of Biologists Ltd., Cambridge.

    Google Scholar 

  • Walker, J.L.,Jr., 1971. Ion specific liquid ion exchanger microelectrodes. Anal.Chem. 43: 89A - 93A.

    Google Scholar 

  • Zeuthen, T., 1980. How to make and use double-barrelled ion-selective microelectrodes. Curr Top. Membranes and Transp. 13: 31–47.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

García-Díaz, J.F., Giráldez, F. (1991). The Use of Ion-Selective Microelectrodes to Study Cellular Transport Processes. In: Yudilevich, D.L., Devés, R., Perán, S., Cabantchik, Z.I. (eds) Cell Membrane Transport. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9601-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9601-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9603-2

  • Online ISBN: 978-1-4757-9601-8

  • eBook Packages: Springer Book Archive