Methodological Guide for Studying Epithelial Transport with Isolated Membrane Vesicles

  • J. Biber
  • H. Murer


Conceptually, studies with isolated plasma membranes can be placed between traditional physiological approaches and traditional biochemical approaches. In the former, the living cell is regarded as the minimum entity in which processes underlying the function of cells can be investigated; in the latter, cellular components usually have to be purified to homogeneity before studies on the properties of the component can be initiated. Thus studies on isolated membranes can focus either on questions related to cellular physiology, on questions related to the molecular properties of membrane components, or on both.


Membrane Vesicle Brush Border Membrane Kidney Cortex Brush Border Membrane Vesicle Membrane Biol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barett, P.Q. and Aronson, P.S., 1982, Glucose and alanine inhibition of phosphate transport in renal microvillous membrane vesicles. Am. J. Physiol. 242: F126 - F131.Google Scholar
  2. Beck, J.C. and Sacktor, B., 1975, Energetics of the Na-dependent transport of D-glucose in renal brush border membrane vesicles. J. Biol. Chem. 250: 8674–8680.PubMedGoogle Scholar
  3. Biber, J., Malmström, K., Scalera, V. and Murer, H., 1983a, Phosphorylation of rat kidney proximal tubular brush border membranes. Role of cAMP dependent protein phosphorylation in the regulation of phosphate transport. Pflügers Arch. 398: 221–226.PubMedCrossRefGoogle Scholar
  4. Biber, J., Rechkemmer, G., Bodmer, M., Schroeder, P.,Haase, W. and Murer, H.,1983b, Isolation of basolateral membranes from columnar cells of the proximal colon of the guinea pig. Biochim. Biophys. Acta 735: 1–11.Google Scholar
  5. Biber, J.,Stange, G., Stieger, B. and Murer, H., 1983c, Transport of L-cystine by rat renal brush border membrane vesicels. Pflügers Arch. 396: 335–341.CrossRefGoogle Scholar
  6. Biber, J.,Stieger, B.,Haase, W. and Murer, H., 1981, A high yield preparation for rat kidney brush border membranes. Different behaviour of lysosomal markers. Biochim. Biophys. Acta 647: 169–176.Google Scholar
  7. Binder, J. and Murer, H., 1986, Potassium/proton exchange in brush border membranes of rat ileum. J. Membrane Biol. 91: 77–84.CrossRefGoogle Scholar
  8. Booth, A.G. and Kenny, A.J., 1974, A rapid method for the preparation of microvilli from rabbit kidney. Biochem. J. 142: 575–581.PubMedGoogle Scholar
  9. Boumendil-Podevin, E.F. and Podevin, R.A., 1983, Isolation of basolateral and brush border membranes from the rabbit kidney cortex. Vesicle integrity and membrane sideness of the basolateral fraction. Biochim. Biophys. Acta 735: 86–94.PubMedCrossRefGoogle Scholar
  10. Brown, C.D.A., Bodmer, M., Biber, J. and Murer, H., 1984, Sodium dependent phosphate transport by apical membrane vesicles from a cultured renal epithelial cell line. Biochim. Biophys. Acta 796: 471–478.Google Scholar
  11. Brunette, M.G., Chan, M., Maag, V. and Beliveau, R., 1984, Phosphate uptake by superficial and deep nephron brush border membranes. Effect of dietary phosphate and parathyroid hormone. Pflügers Arch. 400: 356–362.PubMedCrossRefGoogle Scholar
  12. Burckhardt, G., 1984, Sodium-dependent dicarboxylate transport in rat renal basolateral membrane vesicles. Pflügers Arch. 401: 254–261.PubMedCrossRefGoogle Scholar
  13. Cassano, G., Stieger, B. and Murer, H., 1984, Na/H- and C1/OH-exchange in rat jejunal and rat proximal tubular brush border membrane vesicles: Studies with acridine orange. Pflügers Arch. 400: 309–317.PubMedCrossRefGoogle Scholar
  14. Del Castillo, J.R. and Robinson, J.W.L., 1982, The simultaneous preparation of basolateral and brush-border membrane vesicles from guinea-pig intestinal epithelium, and the determination of the orientation of the basolateral vesicles. Biochim. Biophys.Acta 688: 45–56.CrossRefGoogle Scholar
  15. Dudeja, P.K., Foster, E.S. and Brasitus, T.A., 1989, Na/Hantiporter of rat colonic basolateral membrane vesicles. Am. J. Physiol. 257: G624 - G632.PubMedGoogle Scholar
  16. Eddy, A.A., 1989, Use of carbocyanine dyes to assay membrane potential of mouse ascites tumor cells. Methods in Enzymology 172: 95–101.PubMedCrossRefGoogle Scholar
  17. Eidelman, O. and Cabantchik, Z.I., 1989, Continous monitoring of transport by fluorescence on cells and vesicles. Biochim. Biophys. Acta 988: 319–334.CrossRefGoogle Scholar
  18. Eveloff, J. and Kinne, R., 1983, Sodium-chloride transport in the medullary thick ascending limb of Henle’s loop: Evidence for a sodium-chloride cotransport system in plasma membrane vesicles. J. Membrane Biol. 72: 173–181.CrossRefGoogle Scholar
  19. Evers, C., Haase, H. Murer, H. and Kinne, R., 1978, Properties of brush border vesicles isolated from rat kidney cortex by calcium precipitation. Membr. Biochem. 1: 203–219.Google Scholar
  20. Fong, P., Nicholas, P., Widdicombe, J.H. and Verkamn, A.S., 1988, Chloride transport in apical membrane vesicles from bovine tracheal epithelium: Characterization using a fluorescent indicator. J. Membrane Biol. 104: 233–239.CrossRefGoogle Scholar
  21. Freedman, J.C. and Novak, T.S., 1989, Optical measurement of membrane potential in cells, organelles, and vesicles. Methods in Enzymology 172: 102–121.PubMedCrossRefGoogle Scholar
  22. Gmaj, P., Murer, H. and Kinne, R., 1979, Calcium ion transport across plasma membranes isolated from rat kidney cortex. Biochem. J. 178: 549–557.PubMedGoogle Scholar
  23. Gorr, S.-U., Stieger, B., Fransen, J.A., Kedinger, M., Marxer, A. and Hauri, H.-P., 1988, A novel marker glycoprotein for the microvillus membrane of surface colonocytes of rat large intestine and its presence in small-intestinal crypt cells. J. Cell Biol. 106: 1937–1946.PubMedCrossRefGoogle Scholar
  24. Guggino, S.E., Martin, G.J. and Aronson, P.S., 1983, Specificity and modes of the anion exchanger in dog renal microvillous membranes. Am. J. Physiol. 244: F612 - F621.PubMedGoogle Scholar
  25. Gunther, R.D. and Wright, E.M., 1983, Na, Li, and Cl transport by brush border membranes from rabbit jejunum. J. Membrane Biol. 74: 85–94.CrossRefGoogle Scholar
  26. Haase, W., Schaefer, A., Murer, H. and Kinne, R., 1978, Studies on the orientation of brush-border membrane vesicles. Biochem J. 172: 57–62.PubMedGoogle Scholar
  27. Hagenbuch, B. and Murer, H., 1986, Phosphate transport across the basolateral membrane from rat kidney cortex: Sodium dependence? Pflügers Arch. 407: 149–155.CrossRefGoogle Scholar
  28. Hannig, K., 1982, New aspects in preparative and analytical continous free-flow cell electrophoresis. Electrophoresis 3: 235–243.CrossRefGoogle Scholar
  29. Hauser, H., Howell, K., Dawson, R.M.L. and Bowyer, D.E., 1980, Rabbit small intestinal brush border membrane preparation and lipid composition. Biochim. Biophys. Acta 602: 567–577.PubMedCrossRefGoogle Scholar
  30. Heidrich, H.G., Kinne, R., Kinne-Saffran, E. and Hannig, K., 1972, The polarity of the proximal tubule cell in the rat kidney. Different surface charges for the brush border microvilli and plasma membranes from basal infoldings. J. Cell Biol. 54: 232–245.PubMedCrossRefGoogle Scholar
  31. Hopfer, U., Nelson, K., Perrotto, J. and Isselbacher, K.J., 1973, Glucose transport in isolated brush border membrane from rat small intestine. J. Biol. Chem. 248: 25–32.PubMedGoogle Scholar
  32. Hopfer, U., 1989, Tracer studies with isolated membrane vesicles. Methods in Enzymology 172: 313–330.PubMedCrossRefGoogle Scholar
  33. Kessler, M., Acuto, O., Storelli, C., Murer, H., Müller, M. and Semenza, G., 1978, A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties of D-glucose and choline transport systems. Biochim. Biophys. Acta 506: 136–154.PubMedCrossRefGoogle Scholar
  34. Kinne-Saffran, E. and Kinne, R.K.H., 1989, Membrane isolation: Strategy, Technique, Markers. Methods in Enzymology 172: 3–17.CrossRefGoogle Scholar
  35. Knickelbein, R., Aronson, P.S., Schron, C.M., Seifter, J. and Dobbins, J.W., 1985, Sodium and chloride transport across rabbit ileal brush border: II. Evidence for Cl/HCO3 exchange and mechanism of coupling. Am. J. Physiol. 249: G236 - G245.PubMedGoogle Scholar
  36. Lücke, H., Stange, G. and Murer, H., 1981, Sulfate-sodium cotransport by brush-border membrane vesicles isolated from rat ileum. Gastroenterology 80: 22–30.PubMedGoogle Scholar
  37. Malmström, K., Stange, G. and Murer, H., 1987, Identification of proximal tubular transport functions in the established kidney cell line, OK. Biochim. Biophys. Acta 902: 269–277.CrossRefGoogle Scholar
  38. Meier, P.J., 1988, Transport polarity of hepatocytes. Seminars in Liver Disease 8: 293–307.PubMedCrossRefGoogle Scholar
  39. Mircheff, A.K., 1983, Empirical strategy for analytical fractionation of epithelial cells. Am.J. Physiol. 244: G347 - G356.PubMedGoogle Scholar
  40. Mircheff, A.K.,van Os, C.H. and Wright, E.M., 1980, Pathways for alanine transport in intestinal basal lateral membrane vesicles. J. Membrane Biol. 52: 83–92.CrossRefGoogle Scholar
  41. Mircheff, A.K., 1989, Isolation of plasma membranes from polar cells and tissues: Apical/basolateral separation, purity, function. Methods in Enzymology 172: 18–33.PubMedCrossRefGoogle Scholar
  42. Moran, A., Handler, J.S. and Turner, R.J., 1982, Na-dependent hexose transport in vesicles from cultured renal epithelial cell line. Am. J. Physiol. 243: C293 - C298.PubMedGoogle Scholar
  43. Murer, H. and Gmaj, P., 1986, Transport studies in plasma membrane vesicles isolated from renal cortex. Kidney Int. 30: 171–186.PubMedCrossRefGoogle Scholar
  44. Murer, H., Biber, J.,Gmaj, P. and Stieger, B., 1984, Cellular mechanisms in epithelial transport: Advantages and disadvantages of studies with vesicles. Molecular Physiology 6: 55–82.Google Scholar
  45. Rafizadeh, C., Manganel, M., Roch-Ramel, F. and Schaeli, C., 1986, Transport of organic cations in brush border membrane vesicles from rabbit kidney cortex. Pflügers Arch. 407: 404–408.PubMedCrossRefGoogle Scholar
  46. Reenstra, W.W., Warnock, D.G., Yee, V.J. and Forte, J.G., 1981, Proton gradients in renal cortex brush border membrane vesicles. J. Biol. Chem. 256: 11663–11666.PubMedGoogle Scholar
  47. Sabolic, I. and Burckhardt, G., 1984, Effect of the preparation method on Na/H exchange and ion permeabilities in rat renal brush border membranes. Biochim. Biophys. Acta 772: 140–148.PubMedCrossRefGoogle Scholar
  48. Sachs, G., Jackson, R.J. and Rabon, E.C., 1980, Use of plasma membrane vesicles. Am. J. Physiol. 238: G151 - G164.PubMedGoogle Scholar
  49. Sacktor, B., Rosenbloom, I.L., Liang, C.T. and Cheng, L., 1981, Sodium gradient-and sodium plus potassium gradient-dependent L-glutamate uptake in renal basolateral membrane vesicles. J. Membrane Biol. 60: 63–71.CrossRefGoogle Scholar
  50. Scalera, V., Huang, Y.-K., Hildmann, B. and Murer, H., 1981, A simple isolation method for basal-lateral plasma membranes from rat kidney cortex. Membrane Biochem. 4: 49–61.CrossRefGoogle Scholar
  51. Scalera, V., Storelli, C., Storelli-Joss, C., Haase, W. and Murer, H., 1980, A simple and fast method for the isolation of basolateral plasma membranes from rat small-intestinal epithelial cells. Biochem. J. 186: 177–181.PubMedGoogle Scholar
  52. Schell, R.E., Stevens, B.R. and Wright, E.M., 1983, Kinetics of sodium-dependent solute transport by rabbit renal and jejunal brush border vesicles using a fluorescent dye. J. Physiol. (London) 335: 307–318.Google Scholar
  53. Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B.K., Cerda, J.J. and Crane, R.K., 1973, Purification of the human intestinal brush border membrane. Biochim. Biophys. Acta 323: 98–112.PubMedCrossRefGoogle Scholar
  54. Shimada, H., Moewes, B. and Burckhardt, G., 1987, Indirect coupling to Na+ of p-aminohippuric acid uptake into rat renal basolateral membrane vesicles. Am. J. Physiol. 253: F795 - F801.PubMedGoogle Scholar
  55. Shlatz, L.J., Schwartz, I.L., Kinne-Saffran, E. and Kinne, R., 1975, Distribution of parathyroid hormone-stimulated adenylate cyclase in plasma membranes of cells of the kidney cortex. J. Membrane Biol. 24: 131–144.CrossRefGoogle Scholar
  56. Stieger, B., Marxer, A. and Hauri, H.-P., 1986, Isolation of brush border membranes from rat and rabbit colonocytes. J. Membrane Biol. 91: 19–31.CrossRefGoogle Scholar
  57. Stieger, B. and Murer, H., 1983, Heterogeneity of brush-border membrane vesicles from rat small intestine prepared by a precipitation method using Mg/EGTA. Eur. J. Biochem. 135: 95–101.PubMedCrossRefGoogle Scholar
  58. Stieger, B., Burckhardt, G. and Murer, H., 1983, The application of a potential-sensitive cyanine dye to rat small intestinal vesicles. Biochim. Biophys. Acta 732: 324–326.PubMedCrossRefGoogle Scholar
  59. Thierry, J., Poujeol, Ph. and Ripoche, P., 1981, Interactions between Na-dependent uptake of Dglucose,phosphate and L-alanine in rat renal brush border membrane vesicles. Biochim. Biophys. Acta 647: 203–210.CrossRefGoogle Scholar
  60. Turner, R.J., 1983, Quantitative studies of cotransport systems: models and vesicles. J. Membrane Biol. 76: 1–15.CrossRefGoogle Scholar
  61. Turner, R.J. and Moran, A., 1982, Further studies of proximal tubular brush border membrane. D-glucose transport heterogeneity. J. Membrane Biol. 70: 37–45.CrossRefGoogle Scholar
  62. Van Heeswijk, M.P., Geertsen, J.A. and van Os, C.H., 1984, Kinetic properties of the ATP-dependent Ca-pump and the Na/Ca-exchange system in basolateral membranes from rat kidney cortex. J. Membrane Biol. 79: 19–31CrossRefGoogle Scholar
  63. Vinay, P., Gougoux, A. and Lemieux, G., 1981, Isolation of a pure suspension of rat proximal tubules. Am. J. Physiol. 241: F403 - F411.PubMedGoogle Scholar
  64. Walter, H., 1975, Tightness and orientation of vesicles from guinea pig kidney estimated from reactions of adenosine triphosphatse dependent on sodium and potassium ions. Eur. J. Biochem. 58: 595–601.PubMedCrossRefGoogle Scholar
  65. Warnock, D.G., Reenstra, W.W. and Yee, V.J., 1982, Na/H antiporter of brush border vesicles: Studies with acridine orange uptake. Am. J. Physiol. 242: F733 - F739.PubMedGoogle Scholar
  66. Wright, E.M.,Harms, V., Mircheff, A.K. and van Os, C., 1981, Transport properties of intestinal basolateral membranes. Ann. N.Y. Acad. Sci. 372: 626–636.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. Biber
    • 1
  • H. Murer
    • 1
  1. 1.Institute of PhysiologyUniversity of ZürichZürichSwitzerland

Personalised recommendations