Cell Fusion pp 145-166 | Cite as

Fusion-Permissive Protoplasts

A Plant System for Studying Cell Fusion
  • Wendy F. Boss

Abstract

While artificial systems are useful for delineating the fusogenic properties of specific lipids or proteins, they cannot encompass the complexity of A. living cell membrane. To address basic questions such as what renders the plasma membrane fusion permissive and what regulates the fusion permissive state in vivo, A. highly fusion permissive system was needed. Since under nonpathological conditions there are only A. few times in the life of an organism in which cells are capable of undergoing fusion (e.g., fertilization and muscle maturation), few model systems are available. A. new method has been developed for culturing cells of wild carrot (Daucus carotaL.), so that they yield fusogenic or fusion permissive protoplasts (Boss et al, 1984a). The fusion yield (fused protoplasts/fused + nonfused protoplasts) is greater than 50%. Fusion is calcium stimulated, enhanced by the calcium ionophore, A23187, and inhibited by EGTA and calmodulin antagonists (Boss and Grimes, 1985; Grimes and Boss, 1985).

Keywords

Phosphatidic Acid Protoplast Fusion Carrot Cell Plant Protoplast Calmodulin Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akazawa, T., and Mitsui, T., 1985, Biosynthesis, intracellular transport, and secretion of a-amylase in rice seedlings, in: New Approaches to Research on Cereal Carbohydrates (R. D. Hill and L. Munck, eds.), pp. 129–137, Elsevier, Amsterdam.Google Scholar
  2. Bergen, W. G., and Bates, D. B., 1984, Ionophores: Their effect on production efficiency and mode of action,J. Anim. Sci.58(6): 1465–1483.PubMedGoogle Scholar
  3. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, A. novel second messenger in cellular signal transduction, Nature (Lond.) 312:315–321.CrossRefGoogle Scholar
  4. Billah, M. M., and Lapetina, E. G., 1982a, Degradation of phosphatidylinositol-4,5-bisphos-phate is insensitive to Ca2+mobilization in stimulated platelets, Biochem. Biophys. Res. Commun.109:217–222.PubMedCrossRefGoogle Scholar
  5. Billah, M. M., and Lapetina, E. G., 1982, Formation of lysophosphatidylinositol in platelets stimulated with thrombin or ionophore A23187, J. Biochem. Chem. 257(9):5196–5200.Google Scholar
  6. Bloj, B., and Zilversmit, D. B., 1981, Lipid transfer proteins in the study of artificial and natural membranes, Mol. Cell. Biochem.40:163–172.PubMedCrossRefGoogle Scholar
  7. Boss, W. F., 1983, Poly(ethylene-glycol)-induced fusion of plant protoplasts: A. spin-label study, Biochim. Biophys. Acta 730:111–118.CrossRefGoogle Scholar
  8. Boss, W. F., 1986, Glycerol lipid metabolism: The effects of cell wall digestion on fusogenic protoplasts, submitted.Google Scholar
  9. Boss, W. F., and Brightman, A. O., 1984, Protoplast lipid turnover during wall digestion and in response to the fusogen calcium, Plant Physiol. (Suppl.) 75(1):257.CrossRefGoogle Scholar
  10. Boss, W. F., and Grimes, H. D., 1985, Dynamics of calcium-induced fusion of fusogenic carrot protoplates, in: Beltsville Symposia on Agricultural Research. Vol. IX Frontiers of Membrane Research in Agriculture(J. St. John, P. Jackson, and E. Berlin, eds.), pp. 63–68, Row-man Allanheld, Totowa, New Jersey.Google Scholar
  11. Boss, W. F., and Massel, M. O., 1985, Polyphosphoinositides are present in plant tissue culture cells, Biochem. Biophys. Res. Commun.132(3): 1018–1023.PubMedCrossRefGoogle Scholar
  12. Boss, W. F., Grimes, H. D., and Brightman, A. O., 1984a, Calcium-induced fusion of fusogenic wild carrot protoplasts, Protoplasma 120:209–215.CrossRefGoogle Scholar
  13. Boss, W. F., Morré, D. J., and Mollenhauer, H. H., 1984; Monensin-induced swelling of Golgi apparatus cisternae mediated by A. proton gradient, Eur. J. Cell Biol.214:77–82.Google Scholar
  14. Brightman, A. O., Boss, W. F., and Morré, D. J., 1985, An atypical response of some Golgi apparatus of carrot protoplasts to the sodium-selective ionophore monensin, Plant Physiol. (Suppl.) 77(4):388.Google Scholar
  15. Buckhout, T. J., Young, K. A., Low, P. S., and Morré, D. J., 1981, In vitro promotion by auxins by divalent ion release from soybean membranes, Plant Physiol.68(2):512–515.PubMedCrossRefGoogle Scholar
  16. Cohen, F. S., Akabas, M. H., and Finkelstein, A., 1982, Osmotic swelling of phospholipid vesicles causes them to fuse with A. planar phospholipid bilayer membrane, Science 217:458–460.PubMedCrossRefGoogle Scholar
  17. Cruetz, C. E., and Pollard, H. B., 1983, Development of A. cell-free model for compound ex-ocytosis using components of the chromaffin cell, J. Autonomic Nerv. Sys.7:13–18.CrossRefGoogle Scholar
  18. Den, H., 1985, Effect of monensin on myoblast fusion, Biochem. Biophys. Res. Commun.126(1):313–319.PubMedCrossRefGoogle Scholar
  19. Dieter, P., 1984, Calmodulin and calmodulin-mediated processes in plants, Plant Cell Environ.7:371–380.CrossRefGoogle Scholar
  20. Drobak, B. K., and Ferguson, I. B., 1985, Release of calcium from plant hypocotyl microsomes by inositol-1,4,5-trisphosphate, Biochem. Biophys. Res. Commun.130:1241–1246.PubMedCrossRefGoogle Scholar
  21. Dubacq, J.-P., Drapier, D., Tremolieres, A., and Kader, J.-C., 1984, Role of phospholipid transfer protein in the exchange of phospholipids between microsomes and chloro-plasts, Plant Cell Physiol.25.(7): 1197–1204.Google Scholar
  22. Düzgünes, N., Wilschut, J., Fraley, R., and Papahadjopoulos, D., 1981, Studies on the mechanism of membrane fusion: Role of head-group composition in calcium and magnesium-induced fusion of mixed phospholipid vesicles, Biochim. Biophys. Acta 642:182–195.PubMedCrossRefGoogle Scholar
  23. Fain, J. N., and Berridge, M. J., 1979, Relationship between phosphatidylinositol synthesis and recovery of 5-hydroxytryptamine-responsive Ca++flux in blowfly salivary glands Biochem. J.180:655–661.PubMedGoogle Scholar
  24. Feirer, R., Mignon, G., and Litvay, J. D., 1984, Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot, Science 223:1433–1435.PubMedCrossRefGoogle Scholar
  25. Fisher, L. R., and Parker, N. S., 1984, Osmotic control of bilayer fusion, Biophys. J.46:253–258.PubMedCrossRefGoogle Scholar
  26. Fitzsimmons, P. J., and Weyers, J. D. B., 1985, Properties of some enzymes used for protoplast isolation, in: The Physiological Properties of Plant Protoplasts (P. E. Pilet, ed.), pp. 12–23, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  27. Fraley, R., Wilschut, J., Düzgünes, N., Smith, C., and Papahadjopoulas, D., 1980, Studies on the mechanism and membrane fusion: Role of phosphate in promoting calcium ion induced fusion of phospholipid vesicles, Biochemistry 19:6021–6029.PubMedCrossRefGoogle Scholar
  28. Galun, E., 1981, Plant protoplasts as physiological tools, Annu. Rev. Plant Physiol.32:237–266.CrossRefGoogle Scholar
  29. Gomperts, B. D., 1984, Calcium and cellular activation, in: Biological Membranes Vol. 5 (D. Chapman, ed.), pp. 290–320, Academic Press, London.Google Scholar
  30. Grimes, H. D., 1985, The role of calcium fluxes, calmodulin, polyamines in the regulation of calcium-induced plasma membrane fusion in fusogenic protoplasts, Ph.D. thesis at North Carolina State University, Raleigh.Google Scholar
  31. Grimes, H. D., and Boss, W. F., 1985, Intracellular calcium and calmodulin involvement in protoplast fusion, Plant Physiol.79:253–258.PubMedCrossRefGoogle Scholar
  32. Grimes, H. D., Slocum, R. D., and Boss, W. F., 1985, a-Difluoromethylarginine treatment inhibits protoplast fusion in fusogenic wild carrot protoplasts, Biochim. Biophys. Acta 886:130–134.CrossRefGoogle Scholar
  33. Gumber, S. C., Loewus, M. W., and Loewus, F. A., 1984, Further studies on myoinositol-1-phosphatase from the pollen of Lilium longiflorum Thunb, Plant Physiol 76:40–44.PubMedCrossRefGoogle Scholar
  34. Hanson, J. B., 1984, The functions of calcium in plant nutrition, in: Advances in Plant Nutrition, Vol. 1 (P. B. Tinker and A. Lauchli, eds.), pp. 149–208, Praeger, New York.Google Scholar
  35. Hartmann, E., and Hock, K., 1985, Fatty acids in protoplasts, in: The Physiological Properties of Plant Protoplasts (P. E. Pilet, ed.), pp. 190–199, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  36. Helsper, H. P., de Groot, P. F., Jackson, J. F., and Linskens, H. F., 1985, Phosphatidylinositol phosphodiesterase in lily pollen, Plant Physiol (Suppl) 77(4):533.Google Scholar
  37. Hepler, P. K., and Wayne, R. O., 1985, Calcium and plant development, Annu. Rev. Plant Physiol 36:397–439.CrossRefGoogle Scholar
  38. Hetherington, A. M., and Trewavas, A., 1984, Activation of A. pea membrane protein kinase by calcium ions, Planta 161:409–417.CrossRefGoogle Scholar
  39. Hokin, L. E., 1985, Receptors and phosphoinositide-generated second messengers, Annu. Rev. Biochem.54:205–235.PubMedCrossRefGoogle Scholar
  40. Irvine, R. F., Letcher, AI, and Dawson, R. M. C., 1980, Phosphatidylinositol phosphodiesterase in higher plants, Biochem. J.192:279–283.PubMedGoogle Scholar
  41. Jones, L. M., and Michell, R. H., 1974, Breakdown of phosphatidylinositol provoked by muscarinic cholinergic stimulation of rat parotid-gland fragment, Biochem. J.142:583–590.PubMedGoogle Scholar
  42. Jones, R. L., and Carbonell, J., 1984, Regulation of the synthesis of barley aleurone a-amylase by gibberellic acid and calcium ions, Plant Physiol.76:213–218.PubMedCrossRefGoogle Scholar
  43. Kanchanapoom, K., and Boss, W. F., 1986, Osmoregulation of fusogenic protoplast fusion, Biochim. Biophys. Acta 861:429–439.CrossRefGoogle Scholar
  44. Kanchanapoom, K., Grimes, H. D., Brightman, A. O., and Boss, W. F., 1985, A. novel method for monitoring protoplast fusion, Protoplasma 124:65–70.CrossRefGoogle Scholar
  45. Kevers, C., Sticher, L., Penel, C., Greppin, H., and Gaspar, Th., 1982, Calcium-controlled peroxidase secretion by sugarbeet cell suspensions in relation to habituation, Plant Growth Regul 1:61–66.CrossRefGoogle Scholar
  46. Kleinig, H., Hara, S., and Schuchmann, R., 1982, Lipid metabolism in plant tissue culture cells. Acetate incorporation; triacylglycerol accumulation, in: Proceedings of the Fifth International Congress of Plant Tissue and Cell Culture (Plant Tissue Culture, 1982), pp. 257–258, Japanese Association for Plant Tissue Culture, Tokyo.Google Scholar
  47. Kleinig, H., and Kopp, C., 1978, Lipids, lipid turnover, and phospholipase D in plant suspension culture cells (Daucus), Biophys. Acta 773:99–105.Google Scholar
  48. Laychock, S. G., and Putney, J. W., Jr., 1982, Roles of phospholipid metabolism in secretory cells, in: Cellular Regulation of Secretion and Release (P. Michael Conn, ed.), pp. 53–105, Academic Press, New York.Google Scholar
  49. Ledger, P. W., and Tänzer, M. L., 1984, Monensin—A perturbant of cellular physiology, Trends Biochem. Sci.9(7):313–314.CrossRefGoogle Scholar
  50. Lucy, J. A., 1978, Mechanisms of chemically induced cell fusion, in: Membrane Fusion (G. Poste and G. L. Nicolson, eds.), pp. 267–304, Elsevier/North-Holland, New York.Google Scholar
  51. Majerus, P. W., Neufeld, E. J., and Wilson, D. B., 1984, Production of phosphoinositide-derived messengers, Cell 37:701–703.PubMedCrossRefGoogle Scholar
  52. Moore, T. S., Jr., 1977, Phospholipid turnover in soybean tissue cultures, Plant Physiol.60:754–758.PubMedCrossRefGoogle Scholar
  53. Morré, D. J., Morré, J. T., and Varnold, R. L., 1984a, Phosphorylation of membrane-located proteins of soybean in vitro and response to auxin, Plant Physiol 75:265–268.PubMedCrossRefGoogle Scholar
  54. Morré, D. J., Gripshover, B., Monroe, A., and Morré, J. T., 1984b, Phosphatidylinositol turnover in isolated soybean membranes stimulated by the synthetic growth hormone 2,4-dichlorophenoxyacetic acid, J. Biol. Chem. 259:15346–15368.Google Scholar
  55. Nishizuka, Y., 1984, Turnover of inositol phospholipids and signal transduction, Science 225:1365–1370.PubMedCrossRefGoogle Scholar
  56. Papahadjopoulos, D., 1978, Calcium-induced phase changes and fusion in natural and model membranes, in: Membrane Fusion (G. Poste and G. L. Nicolson, eds.), pp. 765–790, Elsevier, New York.Google Scholar
  57. Ranjeva, R., Graziana, A., Ranty, B., Cavalie, G., and Boudet, A. M., 1984, Phosphorylation of proteins in plants: A. step in the integration of extra and intracellular stimuli?, Physiol Veg.22(3):365–376.Google Scholar
  58. Roos, D. S., and Choppin, P. W., 1985a, Biochemical studies on cell fusion. I. Lipid composition of fusion-resistant cells, J. Cell Biol 101(4): 1578–1590.PubMedCrossRefGoogle Scholar
  59. Roos, D. S., and Choppin, P. W., 1985b, Biochemical studies on cell fusion. II. Control of fusion response by lipid alterations, J. Cell Biol 101(4):1591–1598.PubMedCrossRefGoogle Scholar
  60. Sandra, A., and Ionasescu, V. V., 1980, Alterations in lipid turnover in developing muscle, Biochem. Biophys. Res. Commun.93(3):898–905.PubMedCrossRefGoogle Scholar
  61. Sexton, J. C., and Moore, T. S., Jr., 1981, Phosphatidylinositol synthesis by A. Mn2+-dependent exchange enzyme in castor bean endosperm, Plant Physiol.68:18–22.PubMedCrossRefGoogle Scholar
  62. Simmonds, D. H., Setterfield, G., and Brown, D. L., 1983, Reorganization of microtubules in protoplasts of Vicia Hajastana, Grossh. During the first 48 hours of culturing, in: Sixth International Protoplast Symposium, Basel, Switzerland, pp. 212–213.Google Scholar
  63. Streb, H., Irvine, R. F., Berridge, M. J., and Schultz, T., 1983, Release of Ca2+from A. nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-triphos-phate, Nature (Lond.) 306:67–68.CrossRefGoogle Scholar
  64. Sze, H., 1985, H+-translocating ATPases: Advances using membrane vesicles, Annu. Rev. Plant Physiol.36:175–208.CrossRefGoogle Scholar
  65. Taylor, A. R. D., and Hall, J. L., 1978, Fine structure and cytochemical properties of tobacco leaf protoplasts and comparison with the source tissue, Protoplasma 96:113–126.CrossRefGoogle Scholar
  66. Wakelam, M. J. O., 1983, Inositol phospholipid metabolism and myoblast fusion, Biochem. J.214:77–82.PubMedGoogle Scholar
  67. Wakelam, M. J. O., and Pette, D., 1984, Myoblast fusion and inositol phospholipid breakdown: Causal relationship or coincidence?, in: Cell Fusion(Ciba Foundation Symposium 103), pp. 100–108, Pitman, London.Google Scholar
  68. Webb, M. S., and Williams, J. P., 1984, Changes in the lipid and fatty acid composition of Vicia fabamesophyll protoplasts induced by isolation, Plant Cell Physiol.25(8): 1541–1550.Google Scholar
  69. Wetherell, D. F., 1969, Phytochrome in cultured wild carrot tissue, I. Synthesis, Plant Physiol.44:1734–1737.PubMedCrossRefGoogle Scholar
  70. Wetherell, D. F., and Dougall, D. K., 1976, Sources of nitrogen supporting growth and em-bryogenesis in cultured wild carrot tissue, Physiol Plant.37:97–103.CrossRefGoogle Scholar
  71. Wilkinson, M. J., and Northcote, D. H., 1980, Plasma membrane ultrastructure during protoplast plasmolysis, isolation and wall regeneration: A. freeze fracture study, J. Cell Sci.42:401–410.PubMedGoogle Scholar
  72. Zimmerberg, J., and Whitaker, M., 1985, Irreversible swelling of secretory granules during ex-ocytosis caused by calcium, Nature (Lond.) 315:581–584.CrossRefGoogle Scholar
  73. Zimmermann, U., and Vienken, J., 1982, Electric field-induced cell-to-cell fusion, J. Membrane Biol.67:165–182.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Wendy F. Boss
    • 1
  1. 1.Botany DepartmentNorth Carolina State UniversityRaleighUSA

Personalised recommendations