Cell Fusion pp 123-144 | Cite as

Control of Membrane Fusion in Polyethylene Glycol-Resistant Cell Mutants

Applications to Fusion Technology
  • David S. Roos
  • Richard L. Davidson
  • Purnell W. Choppin

Abstract

Cell fusion has been studied for more than A. century (Langerhans, 1868) as A. curious morphological phenomenon, occurring in certain developing tissues (Kalderon, 1980) and during the progression of A. variety of tumors and viral infections (Roizman, 1962; Guccion and Enzinger, 1972). Only with the use of cell hybrids in somatic cell genetics, however, did the impetus arise to develop fusion technology as an applied art, placing A. premium on the control of cell fusion (Davidson, 1977). The development of procedures for hybridoma production has made cell fusion A. fundamental tool of the growing biotechnology industry (Köhler and Milstein, 1975), and it is not surprising that improvements in the efficiency of cell hybridization protocols have been A. major goal in recent years (de St. Groth and Scheidegger, 1980).

Keywords

Cell Fusion Fusion Partner Fatty Acyl Chain Fatty Acid Supplement Homogeneous Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blow, A. M. J., Botham, A. J., Fisher, D., Goodall, A. H., Tilcock, C. P. S., and Lucy, J. A., 1978, Water and calcium ions in cell fusion induced by poly(ethylene glycol), FEBS Lett.94:305–310.PubMedCrossRefGoogle Scholar
  2. Davidson, R. L., 1977, Genetics of cultured mammalian cells, as studied by somatic cell hybridization, Natl Cancer Inst. Monog.48:21–30.Google Scholar
  3. Davidson, R. L., and Ephrussi, B., 1970, Factors affecting the defective mating rate of mammalian cells, Exp. Cell Res.61:222–226.PubMedCrossRefGoogle Scholar
  4. Davidson, R. L., O’Malley, K. A., and Wheeler, T. B., 1976, Polyethylene glycol-induced mammalian cell hybridization: Effect of polyethylene glycol molecular weight and concentration. Somatic Cell Genet.2:271–280.PubMedCrossRefGoogle Scholar
  5. de St. Groth, S. F., and Scheidegger, D., 1980, Production of monoclonal antibodies: strategy and tactics,J. Immunol. Methods 35:1–21.CrossRefGoogle Scholar
  6. Guccion, J. G., and Enzinger, F. M., 1972, Malignant giant cell tumors of soft parts, Cancer 29:1518–1529.PubMedCrossRefGoogle Scholar
  7. Hämmerling, G. J., Hämmerling, U., and Kearney, J. F., eds., 1981, Monoclonal Antibodies and T-cell Hybridomas: Perspectives and Technical Advances, Elsevier/North-Holland, Amsterdam.Google Scholar
  8. Holmes, K. V., and Choppin, P. W., 1966, On the role of the response of the cell membrane in determing virus virulence. Contrasting effects of the parainfluenza virus SV5 in two cell types, J. Exp. Med.124:501–520.PubMedCrossRefGoogle Scholar
  9. Holmes, K. V., Doller, E. V., and Behnke, J. N., 1981, Analysis of the functions of Coronavirus glycoproteins by differential inhibition of synthesis with tunicamycin, in: Biochemistry and Biology of Coronaviruses (V. ter Meulen, S. Siddell, and H. Wege, eds.), pp. 133–142, Plenum Press, New York.CrossRefGoogle Scholar
  10. Kalderon, N., 1980, Muscle cell fusion, in: Membrane-Membrane Interactions (N. B. Gilula, ed.), pp. 99–118, Raven Press, New York.Google Scholar
  11. Klebe, M. J., and Mancuso, M. G., 1981, Chemicals which promote cell hybridization, Somatic Cell Genet.7:473–488.PubMedCrossRefGoogle Scholar
  12. Köhler, G., and Milstein, C., 1975, Continuous culture of fused cells secreting antibody of predefined specificity, Nature (Lond.) 256:495–497.CrossRefGoogle Scholar
  13. Kozbor, D., Dexter, D., and Roder, J. C., 1983, A. comparative analysis of the phenotypic characteristics of available fusion partners for the construction of human hybridomas, Hybridoma 2:7–16.PubMedCrossRefGoogle Scholar
  14. Langerhans, T., 1868, Über Riesenzellen mit wandständigen Kernen in Tuberkeln und die fibröse Form des Tuberkels, Virchows Arch. Pathol. Anat. Physiol.42:382–404.CrossRefGoogle Scholar
  15. Levine, M. R., and Cox, R. P., 1978, Use of latex particles for analysis of heterokaryon formation and cell fusion, Somat. Cell Genet.4:507–512.PubMedCrossRefGoogle Scholar
  16. O’Malley, K. A., and Davidson, R. L., 1977, A. new dimension in suspension fusion techniques with polyethylene glycol, Somat. Cell Genet.3:441–448.PubMedCrossRefGoogle Scholar
  17. Pfleger, R. C., Anderson, N. G., and Snyder, F., 1968, Lipid class composition and fatty acid composition of rat liver plasma membranes isolated by zonal centrifugation, Biochemistry 7:2826–2833.PubMedCrossRefGoogle Scholar
  18. Pontecorvo, G., Riddle, P. N., and Hales, A., 1977, Time and mode of fusion of human fibroblasts treated with polyethylene glycol (PEG), Nature (Lond.) 265:257–258.CrossRefGoogle Scholar
  19. Poste, G., 1970, Mixed culture polykaryocytosis—A new form of cellular recognition behavior, Life Sci.9(II):459–463.CrossRefGoogle Scholar
  20. Robinson, J. M., Roos, D. S., Davidson, R. L., and Karnovsky, M. L., 1979, Membrane alterations and other morphological features associated with polyethylene glycol-induced cell fusion, J. Cell Sci.40:63–75.PubMedGoogle Scholar
  21. Roizman, B., 1962, Polykaryocytosis, Cold Spring Harbor Symp. Quant. Biol.27:327–342.PubMedCrossRefGoogle Scholar
  22. Roos, D. S., 1984, Membrane Fusion, Lipid Composition, and Tumorigenicity of Cultured Cells, Ph.D. thesis, The Rockefeller University, New York.Google Scholar
  23. Roos, D. S., and Choppin, P. W., 1984, Tumorigenicity of cell lines with altered lipid composition, Proc. Nat. Acad. Sci. USA.81:7622–7626.PubMedCrossRefGoogle Scholar
  24. Roos, D. S., and Choppin, P. W., 1985a, Biochemical studies on cell fusion. I. Lipid composition of fusion-resistant cells, J. Cell Biol 101:1578–1590.PubMedCrossRefGoogle Scholar
  25. Roos, D. S., and Choppin, P. W., 1985ft, Biochemical studies on cell fusion. II. Control of fusion response by lipid alteration, J. Cell Biol. 101:1591–1598.PubMedCrossRefGoogle Scholar
  26. Roos, D. S., and Davidson, R. L., 1980, Isolation of mouse cell lines resistant to the fusion-inducing effect of polyethylene glycol, Somat. Cell Genet.6:381–390.PubMedCrossRefGoogle Scholar
  27. Roos, D. S., Robinson, J. M., and Davidson, R. L., 1983, Cell fusion and intramembrane particle distribution in polyethylene glycol-resistant cells,J. Cell Biol.97:909–917.PubMedCrossRefGoogle Scholar
  28. Schroeder, F., and Vagelos, P. R., 1976, Effects of phospholipid base analogs on the subcellular membrane ether composition of suspension cultured LM cells, Biochim. Biophys. Acta 441:239–254.PubMedCrossRefGoogle Scholar
  29. Snyder, F., 1973, Thin-layer chromatographic behavior of glycerolipid analogs containing ether, ester, hydroxyl, and ketone groupings,J. Chromatogr.82:7–14.PubMedCrossRefGoogle Scholar
  30. Spector, A. A., Kiser, R. E., Denning, G. M., Koh, S. W. M., and DeBault, L. E., 1979, Modification of the fatty acid composition of cultured human fibroblasts,J. Lipid Res.20:536–547.PubMedGoogle Scholar
  31. Wang, E. W., Roos, D. S., Heggeness, M. H., and Choppin, P. W., 1982, Function of cytoplasmic fibers in syncytia, Cold Spring Harbor Symp. Quant. Biol.46:997–1012.PubMedCrossRefGoogle Scholar
  32. White, J., Kielian, M., and Helenius, A., 1983, Membrane fusion proteins of enveloped animal viruses, Quart. Rev. Biophys.16:151–195.CrossRefGoogle Scholar
  33. Wright, C. E., and Shows, T. B., 1979, Genetics of cell fusion: Human chromosome 10 assignment of A. gene (FUSE) that promotes polykaryocyte formation, Somat. Cell Genet.5:503–517.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • David S. Roos
    • 1
  • Richard L. Davidson
    • 2
  • Purnell W. Choppin
    • 3
  1. 1.Department of BiologyStanford UniversityStanfordUSA
  2. 2.Center for GeneticsUniversity of IllinoisChicagoUSA
  3. 3.Virology LaboratoryRockefeller UniversityNew YorkUSA

Personalised recommendations