Skip to main content

Microinjection of Culture Cells via Fusion with Loaded Erythrocytes

  • Chapter
Cell Fusion

Abstract

Because of its relative simplicity, the non-nucleated mammalian erythrocyte has often served as a paradigm for study of more complex eukaryotic cells. About 10 years ago, studies of the erythrocyte membrane and investigations employing erythrocytes as models for understanding cell fusion converged, resulting in the technique referred to as erythrocyte-mediated microinjection. The seminal studies of Seeman (1967) indicated that mac-romolecules could enter and be trapped inside erythrocytes whose membrane integrity was reversibly interrupted by a hypotonic shock treatment. Loyter and colleagues (Peretz et al., 1974) then described conditions under which erythrocytes could be fused with one another by Sendai virus without losing their membrane integrity, so that intracellular mac-romolecules were retained. Under these same sorts of conditions hemoglobin could be transferred from erythrocytes to nucleated eukaryotic cells to which they were fused (Zakai et al., 1974; Furusawa et al., 1974). Finally, these findings on loading of erythrocytes with exogenous mac-romolecules and fusion of such carriers to recipient cells were combined to afford an efficient method for introducing macromolecules into eu-karyotic cells (Schlegel and Rechsteiner, 1975; Loyter et al., 1975; Nishimura et al., 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antman, K. H., and Livingston, D. M., 1980, Intracellular neutralization of SV40 tumor antigens following microinjection of specific antibody, Cell 19:627–635.

    Article  PubMed  CAS  Google Scholar 

  • Backer, J. M., Bourret, L., and Dice, J. F., 1983, Regulation of catabolism of microinjected ribonuclease A requires the amino-terminal 20 amino acids, Proc. Natl Acad. Sci. U.S.A. 80:2166–2170.

    Article  PubMed  CAS  Google Scholar 

  • Baker, R. F., 1967, Ultrastructure of the red blood cell, Fed. Proc. 26:1785–1801.

    PubMed  CAS  Google Scholar 

  • Bennett, F., Busch, H., Lischwe, M. A., and Yeoman, L. C., 1983, Antibodies to a nucleolar protein are localized in the nucleolus after red cell-mediated microinjection, J. Cell Biol. 97:1556–1572.

    Article  Google Scholar 

  • Bjerrum, P. J., 1979, Hemoglobin-depleted human erythrocyte ghosts: Characterization of morphology and transport functions, J. Membrane Biol. 48:43–46.

    Article  CAS  Google Scholar 

  • Bodeman, H., and Passow, H., 1972, Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis, J. Membrane Biol. 8:1–26.

    Article  Google Scholar 

  • Boogaard, C., and Dixon, G. H., 1983a, Red cell ghost-mediated microinjection of RNA into HeLa cells. I. A comparison of two techniques for the entrapment and microinjection of tRNA and mRNA, Exp. Cell Res. 143:175–190.

    Article  PubMed  CAS  Google Scholar 

  • Boogaard, C., and Dixon, G. H., 1983b, Red cell ghost-mediated microinjection of RNA into HeLa cells: II. Cellular translation of protamine mRNA; post-translational modifications and nuclear binding of newly-synthesized protamine, Exp. Cell Res. 43:191–205.

    Article  Google Scholar 

  • Brown, D. B., Hanks, S. K., Murphy, E. C., and Rao, P. N., 1985, Early initiation of DNA synthesis in Gl phase HeLa cells following fusion with red cell ghosts loaded with S-phase extracts, Exp. Cell Res. 156:251–259.

    Article  PubMed  CAS  Google Scholar 

  • Capecchi, M. R., Von der Haar, R. A., Capecchi, N. E., and Sveda, M. M., 1977, The isolation of a suppressable nonsense mutant in mammalian cells, Cell 12:371–381.

    Article  PubMed  CAS  Google Scholar 

  • Celis, J. E., 1984, Microinjection of somatic cells with micropipets: Comparison with other transfer techniques, Biochem. J. 223:281–291.

    PubMed  CAS  Google Scholar 

  • Celis, J. E., Kaltoft, K., and Bravo, R., 1980, Microinjection of somatic cells, in: Introduction of Macromolecules into Viable Mammalian Cells (R. Baserga, C. Croce, and G. Rovera, eds.), pp. 99–123, Alan Liss, New York.

    Google Scholar 

  • Danon, D., 1961, Osmotic hemolysis by gradual decrease in the ionic strength of the surrounding medium, J. Cell Comp. Physiol. 57:111–117.

    Article  PubMed  CAS  Google Scholar 

  • Davies, H. G., Marsden, N. V. B., Ostling, S. G., and Zade-Oppen, A. M. M., 1968, The effect of some neutral macromolecules on the pattern of hypotonic hemolysis, Acta Physio. Scand. 74:577–593.

    Article  CAS  Google Scholar 

  • Dice, J. F., 1982, Altered degradation of proteins microinjected into senescent human fibroblasts, J. Biol. Chem. 257:14624–14627.

    PubMed  CAS  Google Scholar 

  • Fowler, V., and Branton, D., 1981, Lateral mobility of human erythrocyte integral membrane proteins, Nature (Lond.) 268:23–26.

    Article  Google Scholar 

  • Frye, L. D., and Edidin, M., 1970, Rapid mixing of cell surface antigens after formation of mouse-human heterokaryons, J. Cell Sci. 7:319–335.

    PubMed  CAS  Google Scholar 

  • Furusawa, M., 1980, Cellular microinjection by cell fusion: Technique and applications in biology and medicine, Int. Rev. Cytol. 62:29–67.

    Article  PubMed  CAS  Google Scholar 

  • Furusawa, M., Nishimura, T., Yamaizumi, M., and Okada, Y., 1974, Injection of foreign substances into animal cells by fusion, Nature (Lond.) 249:449–450.

    Article  CAS  Google Scholar 

  • Furusawa, M., Yamaizumi, M., Nishimura, T., Uchida, T., and Okada, Y., 1976, Use of erythrocyte ghosts for injection of substances into animal cells by cell fusion, Methods Cell Biol. 14:73–80.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey, W., Doe, B., and Wofsy, L., 1983, Immunospecific vesicle targeting facilitates microinjection into lymphocytes, Proc. Natl. Acad. Sci. U.S.A. 80:2267–2271.

    Article  PubMed  CAS  Google Scholar 

  • Heedman, P. A., 1958, Hemolysis of individual red blood cells, Exp. Cell Res. 14:9–22.

    Article  PubMed  CAS  Google Scholar 

  • Hendil, K. B., 1980, Intracellular degradation of hemoglobin transferred into fibroblasts by fusion with red blood cells, J. Cell. Physiol. 105:449–460.

    Article  PubMed  CAS  Google Scholar 

  • Heumann, R., Schwab, M., and Theonen, H., 1981, A second messenger required for nerve growth factor biological activity?, Nature (Lond.) 292:838–840.

    Article  CAS  Google Scholar 

  • Honda, K., Maeda, Y., Sasakawa, J., Ohno, H., and Tsuchida, E., 1981, Activities of cell fusion and lysis of the hybrid type of chemical fusogens. I. Structure and function of the promoter of cell fusion, Biochem. Biophys. Res. Commun. 100:442–448.

    Article  PubMed  CAS  Google Scholar 

  • Huhn, D., Pauli, G. D., and Grassmann, D., 1970, Die Erythrocytenmembran: Feinstruktur der gefrierfeatzten Membran nach Einwirkung von hyptonen Lösungen und Saponin, Klin. Wochenschr. 48:939–943.

    Article  PubMed  CAS  Google Scholar 

  • Hui, S. W., Isac, T., Boni, L. T., and Sen, A., 1985, Action of polyethylene glycol on the fusion of human erythrocyte membranes, J. Membrane Biol. 84:137–146.

    Article  CAS  Google Scholar 

  • Iino, T., Furusawa, I., and Obinata, M., 1983, Transformation of L cells with virus thymidine kinase genes introduced by red cell-mediated microinjection, Exp. Cell Res. 148:475–480.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R. M., Taylor, G., and Meyer, D. B., 1980, Shape and volume changes in erythrocyte ghosts and spectrin-actin networks, J. Cell Biol. 86:371–376.

    Article  PubMed  CAS  Google Scholar 

  • Jonak, G. J., and Mora, M., 1980, Rapid identification of microinjected mammalian cells by fusion with loaded chicken erythrocytes, in: Introduction of Macromolecules into Viable Mammalian Cells (R. Baserga, C. Croce, and G. Rovera, eds.), pp. 157–167, Alan Liss, New York.

    Google Scholar 

  • Kaltoft, K., and Celis, J. E., 1978, Ghost mediated transfer of human hypoxanthineguanine phosphoribosyl transferase into deficient Chinese hamster ovary cells by means of polyethylene glycol-induced fusion, Exp. Cell Res. 115:423–428.

    Article  PubMed  CAS  Google Scholar 

  • Kaltoft, K., Zeuthen, J., Engberg, F., Piper, P. W., and Celis, J. E., 1976, Transfer of tRNAs to somatic cells mediated by Sendai virus-induced fusion, Proc. Natl Acad. Sci. U.S.A. 73:2793–2797.

    Article  PubMed  CAS  Google Scholar 

  • Kriegler, M. P., and Livingston, D. M., 1977, Chemically facilitated microinjection of protein into intact monolayers of tissue culture cells, Somat. Cell Genet. 3:603–610.

    Article  PubMed  CAS  Google Scholar 

  • Kriegler, M. P., Griffen, J. D., and Livingston, D. M., 1978, Phenotypic complementation of the SV40 tsA mutant defect in viral DNA synthesis following microinjection of SV40 T antigen, Cell 14:983–994.

    Article  PubMed  CAS  Google Scholar 

  • Kruse, C. A., Spector, E. B., Cederbaum, S. D., Wisnieski, B. J., and Popjack, G., 1981, Microinjection of arginase into enzyme deficient cells with the isolated glycoproteins of Sendai virus as fusogen, Biochem. Biophys. Acta 645:339–345.

    Article  PubMed  CAS  Google Scholar 

  • Kruse, C. A., Wisnieski, B. J., and Popjack, G., 1984, Characterization of a glycoprotein fusogen isolated from Sendai virus, Biochem. Biophys. Acta 797:40–50.

    Article  PubMed  CAS  Google Scholar 

  • Kulka, R. G., and Loyter, A., 1979, The use of fusion methods for the microinjection of animal cells, Curr. Topics Membrane Trans. 12:365–430.

    Article  CAS  Google Scholar 

  • Lange, Y., Hadesman, R. A., Steck, T. L., 1982a, Role of the reticulum in stability of the isolated human erythrocyte membrane, J. Cell Biol. 92:714–721.

    Article  PubMed  CAS  Google Scholar 

  • Lange, Y., Gough, A., and Steck, T. L., 1982b, Role of the bilayer in the shape of the isolated erythrocyte membrane, J. Membrane Biol. 69:113–123.

    Article  CAS  Google Scholar 

  • Lieber, M. R., 1981, Characterization of the hemolytic holes in human erythrocyte membranes, Ph.D. dissertation, University of Chicago.

    Google Scholar 

  • Lieber, M. R., and Steck, T. L., 1982a, A description of the holes in human erythrocyte membrane ghosts, J. Biol. Chem. 257:11651–11659.

    PubMed  CAS  Google Scholar 

  • Lieber, M. R., and Steck, T. L., 1982b, Dynamics of the holes in human erythrocyte membrane ghosts, J. Biol. Chem. 257:11660–11666.

    PubMed  CAS  Google Scholar 

  • Loyter, A., Zakai, N., and Kulka, R. G., 1975, “Ultramicroinjection” of macromolecules or small particles into animal cells, J. Cell Biol. 66:292–304.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, T., and Ohnishi, S., 1980, Activation of influenza virus by acidic media causes hemolysis and fusion of erythrocytes, FEBS Lett. 122:283–287.

    Article  PubMed  CAS  Google Scholar 

  • McElligott, M. A., and Dice, J. F., 1983, Erythrocyte-mediated microinjection: A technique to study protein degradation in muscle cells, Biochem. J. 216:559–566.

    PubMed  CAS  Google Scholar 

  • McElligott, M. A., and Dice, J. F., 1984, Microinjection of cultured cells using red-cell-mediated fusion and osmotic lysis of pinosomes: A review of methods and applications, Biosci. Rep. 4:451–466.

    Article  PubMed  CAS  Google Scholar 

  • Mekada, E., Yamaizumi, M., and Okada, Y., 1978a, An attempt to separate mononuclear cells fused with human red blood cell-ghosts from a cell mixture treated with HVJ (Sendai virus) using a fluorescence activated cell sorter (FACS II), J. Histochem. Cytochem. 26:62–67.

    Article  PubMed  CAS  Google Scholar 

  • Mekada, E., Yamaizumi, M., Uchida, T., and Okada, Y., 1978, Quantitative introduction of a given macromolecule into cells by fusion with erythrocyte ghosts using a fluorescence activated cell sorter, J. Histochem. Cytochem. 26:1067–1073.

    Article  PubMed  CAS  Google Scholar 

  • Mercer, W. E., 1980, Intracellular factor(s) involved in the control of mammalian cell proliferation, Ph.D. dissertation, Pennsylvania State University.

    Google Scholar 

  • Mercer, W. E., and Baserga, R., 1982, Techniques for decreasing the toxicity of polyethylene glycol, in: Techniques in Somatic Cell Genetics (J. W. Shay, ed.), pp. 23–34, Plenum Press, New York.

    Chapter  Google Scholar 

  • Mercer, W. E., Terefinko, D. J., and Schlegel, R. A., 1979, Red cell-mediated microinjection of macromolecules into monolayer cultures of mammalian cells, Cell Biol Int. Rep. 3:265–271.

    Article  PubMed  CAS  Google Scholar 

  • Neff, N. J., Bourret, L., Maio, P., and Dice, J. F., 1981, Degradation of proteins microinjected into IMR-90 human diploid fibroblasts, J. Cell Biol. 91:184–194.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, T., Furusawa, M., Yamaizumi, M., and Okada, Y., 1976, Method for intracellular injection by cell fusion using erythrocyte ghosts, Cell Struct. Funct. 1:197–200.

    Article  Google Scholar 

  • Ohara, J., and Watanabe, T., 1982, Microinjection of macromolecules into normal murine lymphocytes by cell fusion technique, J. Immunol. 128:1090–1096.

    PubMed  CAS  Google Scholar 

  • Peretz, H., Toister, Z., Laster, Y., and Loyter, A., 1974, Fusion of intact human erythrocytes and erythrocyte ghosts, J. Cell Biol. 63:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Petrie, H. T., and McDonel, J. L., and Schlegel, R. A., 1982, Intracellular antibody to Clostridium perfringens enterotoxin fails to counteract toxin-induced damage, Cell Biol. Int. Rep. 6:705–711.

    Article  PubMed  CAS  Google Scholar 

  • Rechsteiner, M., 1975, Uptake of proteins by red blood cells, Exp. Cell Res. 93:487–492.

    Article  PubMed  CAS  Google Scholar 

  • Rechsteiner, M. C., 1982, Transfer of macromolecules using erythrocyte ghosts, in: Techniques in Somatic Cell Genetics (J. W. Shay, ed.), pp. 385–398, Plenum Press, New York.

    Chapter  Google Scholar 

  • Rechsteiner, M., and Kuehl, L., 1979, Microinjection of the nonhistone chromosomal protein HMG1 into bovine fibroblasts and HeLa cells, Cell 16:901–908.

    Article  PubMed  CAS  Google Scholar 

  • Rechsteiner, M. C., and Schlegel, R. A., 1986, Erythrocyte-mediated transfer: Applications, in: Microinjection and Organelle Transplantation Techniques: Methods and Applications (J. E. Celis, A. Graessman, and A Loyter, eds.), pp. 89–116, Academic Press, New York.

    Google Scholar 

  • Rechsteiner, M., Wu, L. H., and Miller, A. O. A., 1984, RBC-mediated microinjection of chromatin components into cultured mammalian cells, in: Red Blood Cells as Carriers for Drugs (J. R. DeLoach and U. Sprandel, eds.), pp. 142–149, Karger, Basel.

    Google Scholar 

  • Sambrook, J., Rogers, L., White, J., and Gething, M. J., 1985, Lines of murine cells that constituitively express influenza virus hemagglutinin, EMBO J. 4:91–103.

    PubMed  CAS  Google Scholar 

  • Schlegel, R. A., 1984, Red cell-mediated microinjection of antibodies, in: Red Blood Cells as Carriers for Drugs (J. R. DeLoach and U. Sprandel, eds.), pp. 134–141, Karger, Basel.

    Google Scholar 

  • Schlegel, R. A., and McEvoy, L., 1986, Red cell-mediated microinjection of proteins and nucleic acids, Methods Enzymol. (in press).

    Google Scholar 

  • Schlegel, R. A., and Mercer, W. E., 1980, Red cell-mediated microinjection of quiescent fibroblasts, in: Introduction of Macromolecules into Viable Mammalian Cells (R. Baserga, C. Croce, and G. Rovera, eds.), pp. 145–155, Alan Liss, New York.

    Google Scholar 

  • Schlegel, R. A., and Rechsteiner M. C., 1975, Microinjection of thymidine kinase and bovine serum albumin into mammalian cells by fusion with red blood cells, Cell 5:371–379.

    Article  PubMed  CAS  Google Scholar 

  • Schlegel, R. A., and Rechsteiner, M. C., 1978, Red cell-mediated microinjection of macromolecules into mammalian cells. Methods Cell Biol. 20:341–354.

    Article  PubMed  CAS  Google Scholar 

  • Schlegel, R. A., and Rechsteiner, M. C., 1986, Erythrocyte-mediated transfer: Methods, in: Microinjection and Organelle Transplantation Techniques: Methods and Applications (J. E. Celis, A Graessman, and A. Loyter, eds.), pp. 67–87, Academic Press, New York.

    Google Scholar 

  • Schlegel, R. A., and Lumley-Sapanski, K., and Williamson, P., 1985a, Insertion of lipid domains into plasma membranes by fusion with erythrocytes, Biochem. Biophys. Acta 846:234–241.

    Article  PubMed  CAS  Google Scholar 

  • Schlegel, R. A., Miller, L. S., and Rose, K. M., 1985b, Reduction in RNA synthesis following red cell-mediated microinjection of antibodies to RNA polymerase I, Cell Biol. Intl. Rep. 9:341–350.

    Article  CAS  Google Scholar 

  • Schneiderman, S., Farber, J. L., and Baserga, R., 1979, Techniques for decreasing the toxicity of polyethylene glycol, Somat. Cell Genet. 5:263–269.

    Article  PubMed  CAS  Google Scholar 

  • Seeman, P., 1967, Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin, J. Cell Biol 32:55–70.

    Article  PubMed  CAS  Google Scholar 

  • Seeman, P., 1973, Macromolecules may inhibit diffusion of hemoglobin from lysing erythrocytes by exclusion of solvent, Can. J. Physiol Pharmacol. 51:226–229.

    Article  PubMed  CAS  Google Scholar 

  • Seeman, P., 1974, Ultrastructure of membrane lesions in immune lysis, osmotic lysis, and drug-induced lysis, Fed. Proc. 33(10):2116–2134.

    PubMed  CAS  Google Scholar 

  • Seeman, P., Cheng, D., and Iles, G. H., 1973, Structure of membrane holes in osmotic and saponin hemolysis, J. Cell Biol. 56:519–527.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. L., Ahkong, Q. F., Fisher, D., Lucy, J. A., 1982, Is purified polyethylene glycol able to induce cell fusion?, Biochem. Biophys. Acta 692:109–114.

    Article  PubMed  CAS  Google Scholar 

  • Straus, S. E., and Raskas, H. J., 1980, Transfection of KB cells by polyethylene glycol-induced fusion with erythrocyte ghosts containing adenovirus type 2 DNA, J. Gen. Virol. 48:241–245.

    Article  PubMed  CAS  Google Scholar 

  • Wasserman, M., Zakai, N., Loyter, A., and Kulka, R. G., 1976, A quantitative study of ul-tramicroinjection of macromolecules into animal cells, Cell 7:551–556.

    Article  PubMed  CAS  Google Scholar 

  • White, J., Helenius, A., and Kartenbeck, J., 1982, Membrane fusion activity of influenza, EMBO J. 1:217–222.

    PubMed  CAS  Google Scholar 

  • Wiberg, F. C., Sunnerhagen, P., Kaltoft, K., Zeuthen, J., and Bjursell, G., 1983, Replication and expression in mammalian cells of transfected DNA: Description of an improved erythrocyte ghost fusion technique, Nucl. Acids Res. 11:7287–7302.

    Article  PubMed  CAS  Google Scholar 

  • Wojcieszyn, J. W., Schlegel, R. A., Lumley-Sapanski, K., and Jacobson, K A., 1983, Studies of the mechanism of polyethylene glycol-mediated cell fusion using fluorescent membrane and cytoplasmic probes, J. Cell Biol. 96:151–159.

    Article  PubMed  CAS  Google Scholar 

  • Wu, L., Kuehl, L., and Rechsteiner, M., 1981, Comparative studies on microinjected high mobility group chromosomal proteins, HMG1 and HMG2, J. Cell Biol 91:488–496.

    Article  PubMed  CAS  Google Scholar 

  • Yamaizumi, M., Furusawa, M., Uchida, T., Nishimura, T., and Okada, Y., 1978a, Characterization of the ghost fusion method: A method for introducing exogenous substances into cultured cells, Cell Struct. Fund. 3:293–304.

    Article  CAS  Google Scholar 

  • Yamaizumi, M., Uchida, T., Okada, Y., and Furusawa, M., 1978b, Neutralization of Diptheria toxin in living cells by microinjection of antifragment A contained within resealed erythrocyte ghosts, Cell 13:227–232.

    Article  PubMed  CAS  Google Scholar 

  • Yamaizumi, M., Mekada, E., Uchida, T., and Okada, Y., 1978c, One molecule of Diptheria toxin fragment A introduced into a cell can kill the cell, Cell 15:245–250.

    Article  PubMed  CAS  Google Scholar 

  • Yamaizumi, M., Uchida, T., Okada, Y., Furusawa, M., and Mitsui, H., 1978d, Rapid transfer of non-histone chromosomal proteins to the nucleus of living cells, Nature (Lond.) 273:783–784.

    Article  Google Scholar 

  • Yamaizumi, M., Uchida, T., Mekada, E., and Okada, Y., 1979, Antibodies introduced into living cells by red cell ghosts are functionally stable in the cytoplasm of the cells, Cell 18:1009–1014.

    Article  PubMed  CAS  Google Scholar 

  • Yee, J. P., and Mel, H. C., 1978, Cell-membrane and rheological mechanisms: Dynamic osmotic hemolysis of human erythrocytes and repair of ghosts, as studied by resistive pulse spectroscopy, Biorheology 15:321–339.

    PubMed  CAS  Google Scholar 

  • Zade-Oppen, A M. M., Ostling, S. G., and Marsden, N. V. B., 1979, On how macromolecules reduce hemoglobin loss in hypotonic hemolysis, Upsula J. Med. Sci. 84:155–161.

    Article  CAS  Google Scholar 

  • Zakai, N., Loyter, A., and Kulka, R., 1974, Fusion of erythrocytes and other cells with retention of erythrocyte cytoplasm: Nuclear activation in chicken erythrocyte-melanoma heterokaryons, J. Cell Biol. 61:241–248.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schlegel, R.A., Lieber, M.R. (1987). Microinjection of Culture Cells via Fusion with Loaded Erythrocytes. In: Sowers, A.E. (eds) Cell Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9598-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9598-1_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9600-1

  • Online ISBN: 978-1-4757-9598-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics