Cell Fusion pp 301-330 | Cite as

The Mechanism of Polyethylene Glycol-Induced Fusion in Model Membranes

  • L. T. Boni
  • S. W. Hui


Polyethylene glycol (PEG) has been used frequently as an ideal cell fusogen (Kao and Michayluk, 1974; Davidson and Gerald, 1977; Galfre et al., 1977; Power et al., 1978; Robinson et al., 1979; Knutton, 1979; Oi et al., 1980; Fazekas de St. Groth and Scheidegger, 1980; Krahling, 1981; Wojcieszyn et al., 1983). PEG is capable of fusing a wide variety of cells, including interspecific and interkingdom cell types. PEG exhibits a very low degree of cytotoxicity; it is only toxic at high concentrations (greater than 50%) and prolonged incubation (minutes for most cell lines). PEG is a water-soluble fusogen unlike nonpolar or amphipathic chemical fusogens, such as fatty acids, retinol, and lysolecithin, that act by entering the bilayer. Thus, it is relatively easy to remove PEG from the cell medium by washing. The use of PEG has several additional advantages over other fusogens: reproducibility in fusion capabilities, high fusion efficiency, inexpensiveness, availability, and ease of handling.


Polyethylene Glycol Cell Fusion Membrane Fusion Model Membrane Erythrocyte Ghost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahkong, Q. F., Fisher, D., Tampion, W., and Lucy, J. A., 1975, Mechanisms of cell fusion, Nature (Lond.) 253:194–195.CrossRefGoogle Scholar
  2. Aldwinckle, T. J., Ahkong, Q. F., Bangham, A D., Fisher, D., and Lucy, J. A., 1982, Effects of poly(ethylene glycol) on liposomes and erythrocytes. Permeability changes and membrane fusion, Biochim. Biophys. Acta 689:548–560.PubMedCrossRefGoogle Scholar
  3. Applegate, H. G., 1960, Freezing-point depressions of Hoagland’s ‘carbowax’ systems, Nature (Lond.) 186:232–233.CrossRefGoogle Scholar
  4. Arnold, K., and Lucy, J. A., 1983, Cell Fusion, Ciba Foundation Symposium 103, Pitman, London.Google Scholar
  5. Arnold, K., Herrmann, A., Pratsch, L., and Gawrisch, K., 1985, The dielectric properties of aqueous solutions of poly(ethylene glycol) and their influence on membrane structure, Biochim. Biophys. Acta 815:515–518.PubMedCrossRefGoogle Scholar
  6. Arnold, K., Pratsch, L., and Grawrisch, K., 1983, Effect of poly(ethylene glycol) on phospholipid hydration and polarity of the external phase, Biochim. Biophys. Acta 728:121–128.PubMedCrossRefGoogle Scholar
  7. Atha, D. H., and Ingham, K. C., 1981, Mechanism of precipitation of proteins by polyethylene glycols, Biol. Chem.256:12108–12117.Google Scholar
  8. Bachi, T., Deas, J. E., and Howe, C., 1977, Virus-erythrocyte membrane interaction in: Cell Surface Reviews, Vol. 2 (G. Poste and G. L. Nicolson, eds.), pp. 83–127, North-Holland, Amsterdam.Google Scholar
  9. Bailey, F. E., and Koleske, J. V., 1967, Configuration and hydrodynamic properties of the polyethylene chain in solution, in: Nonionic Surfactants (M. J. Schick, ed.), pp. 794–822, Marcel Dekker, New York.Google Scholar
  10. Baran, A A., Solomentseva, I. M., Mank, V. V., and Kurilenko, O. D., 1972, Role of the solvation factor in stabilizing disperse systems containing water-soluble polymers, Dokl. Akad. Nauk SSSR 207:363–366.Google Scholar
  11. Blow, A M. J., Botham, G. M., Fisher, D., Goodall, A H., Tilcock, C. P. S., and Lucy, J. A., 1978, Water and calcium ions in cell fusion induced by poly(ethylene glycol), FEBS Lett.94:305–310.PubMedCrossRefGoogle Scholar
  12. Boni, L. T., 1983, Ph.D. thesis, State University of New York at Buffalo.Google Scholar
  13. Boni, L. T., Hah, J. S., Hui, S. W., Mukherjee, P., Ho, J. T., and Jung, C. y, 1984a, Aggregation of fusion of unilamellar vesicles by poly(ethylene glycol), Biochim. Biophys. Acta 775:409–418.PubMedCrossRefGoogle Scholar
  14. Boni, L. T., Stewart, T. P., Alderfer, J. L., and Hui, S. W., 1981b, Lipid-polyethylene glycol interactions II. Formation of defects in bilayers, J. Membrane Biol.62:71–77.CrossRefGoogle Scholar
  15. Boni, L. T., Stewart, T. P., Alderfer, J. L., and Hui, S. W., 1981a, Lipid-polyethylene glycol interactions. I. Induction of fusion between liposomes, J. Membrane Biol.62:65–70.CrossRefGoogle Scholar
  16. Boni, L. T., Stewart, T. P., and Hui, S. W., 1984b, Alterations in phospholipid polymorphism by polyethylene glycol, Membrane Biol.80:91–104.CrossRefGoogle Scholar
  17. Boss, W. F., and Mort, R. L., 1980, Effects of divalent cations and polyethylene glycol on the membrane fluidity of protoplast, Plant Physiol.66:835–837.PubMedCrossRefGoogle Scholar
  18. Cabane, B., 1977, Structure of some polymer-detergent aggregates in water, J. Phys. Chem.81:1639–1645.CrossRefGoogle Scholar
  19. Costello, M. J., and Gulik-Krzywicki, T., 1976, Correlated x-ray diffraction and freeze-fracture studies on membrane model systems. Perturbations induced by freeze-fracture preparative procedures, Biochim. Biophys. Acta 455:412–432.PubMedCrossRefGoogle Scholar
  20. Cowley, A. C., Fuller, N. L., Rand, R. P., and Parsegian, V. A., 1978, Measurement of repulsive forces between charged phospholipid bilayers, Biochemistry 17:3163–3168.PubMedCrossRefGoogle Scholar
  21. d’Avila Nunes, M., 1981, A spin label study of erythrocyte membranes during simulation of freezing, J. Membrane Biol.60:155–162.CrossRefGoogle Scholar
  22. Davidson, R. L., and Gerald, P. S., 1977, Mammalian somatic cell hybridization by polyethylene glycol, in: Methods in Cell Biology (D. Prescott, ed.), p. 325, Academic Press, London.Google Scholar
  23. De Gennes, P. G., 1974, The Physics of Liquid Crystals, Clarendon Press, Oxford.Google Scholar
  24. Eriksson, E., and Albertsson, P. A., 1978, The effect of the lipid composition on the partition of liposomes in aqueous two-phase systems, Biochim. Biophys. Acta 507:425–432.CrossRefGoogle Scholar
  25. Fazekas De St. Groth, S., and Scheidegger, D., 1980, Production of monoclonal antibodies: Strategy and tactics, J. Immunol Methods 35:1–21.CrossRefGoogle Scholar
  26. Fuseler, J. W., Miller, C. L., and Fuller, G. M., 1978, Alteration of cytoskeletal morphologies and growth patterns in human fibroblasts treated with PEG, Cytobiologie 18:345–359.PubMedGoogle Scholar
  27. Galfre, G., Howe, S. C., Milstein, C., Butcher, G. W., and Howard, J. C., 1977, Antibodies to major histocompatibility antigens produced by hybrid cell lines, Nature (Lond.) 266:550–552.CrossRefGoogle Scholar
  28. Glasstone, S., and Lewis, D., 1960, Surface chemistry and colloids, in: Elements of Physical ChemistrY., pp. 559–599, D. Van Nostrand, New York.Google Scholar
  29. Hafeti, Y, and Hanstein, W. G., 1974, Destabilization of membranes with chaotropic ions, Methods Enzymol 31:770–79.CrossRefGoogle Scholar
  30. Hammes, G. G., and Roberts, P. B., 1968, Cooperativity of solvent-macro molecule interactions in aqueous solutions of polyethylene glycol and polyethylene glycol-urea, J. Am. Chem. Soc.90:7119–7122.CrossRefGoogle Scholar
  31. Hammes, G. G., and Schimmel, P. R., 1967, An investigation of water-urea and water-urea-polyethylene glycol interactions, J. Am. Chem. Soc.89:442–446.CrossRefGoogle Scholar
  32. Hartmann, J. X., Galla, J. D., Emma, D. A., Kao, K. N., and Ganborg, O. L., 1976, The fusion of erythrocytes by treatment with proteolytic enzymes and polyethylene glycol, Can. J. Genet. Cytol.18:503–512.PubMedGoogle Scholar
  33. Herrmann, A., Pratsch, L., Arnold, K., and Lassmann, G., Effect of poly(ethylene glycol) on the polarity of aqueous solutions and on the structure of vesicle membranes, 1983, Biochim. Biophys. Acta 733:87–94.Google Scholar
  34. Honda, K., Maeda, Y, Sasakawa, S., Ohno, H., and Tsuchida, E., 1981, The components contained in polyethylene glycol of commercial grade (PEG-6,000) as cell fusogen, Biochem. Biophys. Res. Commun.101:165–171.PubMedCrossRefGoogle Scholar
  35. Horwitz, A. F., Michaelson, D., and Klein, M. P., 1973, Magnetic resonance studies on membrane and model membrane systems. III. Fatty acid motions in aqueous lecithin dispersions, Biochim. Biophys. Acta 298:1–7.PubMedCrossRefGoogle Scholar
  36. Huang, C., and Hui, S. W., 1986, Chemical co-treatments and IMP patching in PEG-induced fusion of turkey and human erythrocytes, Biochim. Biophys. Acta., in press.Google Scholar
  37. Hui, S. W., and Isac, T., Boni, L. T., and Sen, A., 1985, Action of polyethylene glycol on the fusion of human erythrocyte membranes, Membrane Biol.84:137–146.CrossRefGoogle Scholar
  38. Hui, S. W., Stewart, T. P., Boni, L. T., and Yeagle, P. L., 1981, Membrane fusion through point defects in bilayers, Science 212:921–923.PubMedCrossRefGoogle Scholar
  39. Ingham, K. C., 1977, Polyethylene glycol in aqueous solution: solvent perturbation and gel filtration studies, Arch. Biochem. Biophys.184:59–68.PubMedCrossRefGoogle Scholar
  40. Israelachvili, J. N., 1977, Refinement of the fluid-mosaic model of membrane structure, Biochim. Biophys. Acta 469:211–225.CrossRefGoogle Scholar
  41. Jain, M. K., and White, H. B., 1978, Long-range order in biomembranes, Adv. Lipid Res.15:1–60.Google Scholar
  42. Johansson, G., 1970, Partition of salts and their effects on partition of proteins in a dextranpoly(ethylene glycol)-water two-phase system, Biochim. Biophys. Acta 221:387–390.PubMedCrossRefGoogle Scholar
  43. Kao, K. N., and Michayluk, M. R., 1974, A method for high-frequency intergeneric fusion of plant protoplasts, Planta 115:355–367.CrossRefGoogle Scholar
  44. Kleman, M., Williams, C. E., Costello, M. J., and Gulik-Krzywicki, T., 1977, Defect structures in lyotropic smectic phases revealed by freeze-fracture electron microscopy, Philo. Mag.35:33–56.CrossRefGoogle Scholar
  45. Knutton, S., 1979, Studies of membrane fusion. III. Fusion of erythrocytes with polyethylene glycol, J. Cell Sci.36:61–72.PubMedGoogle Scholar
  46. Knutton, S., and Bachi, T., 1980, The role of cell swelling and haemolysis in Sendai virus-induced cell fusion and the diffusion of incorporated viral antigens, J. Cell Sci.42:153–167.PubMedGoogle Scholar
  47. Knutton, S., and Pasternak, C.A., 1979, The mechanism of cell-cell fusion, Trends Biochem. Sci.4:220–223.CrossRefGoogle Scholar
  48. Krahling, H., 1981, Discrimination between two fusogenic properties of aqueous polyethylene glycol solutions, Z. Naturforsch.36:593–596.Google Scholar
  49. Lagerwerff, J. V., Ogata, G., and Eagle, H. E., 1961, Control of osmotic pressure of culture solutions with polyethylene glycol, Science 133:1486–1487.PubMedCrossRefGoogle Scholar
  50. Larrabee, A. L., 1979, Time-dependent changes in the size distribution of di-stearoylphosphatidylcholine vesicles, Am. Chem. Soc.18:3321–3326.Google Scholar
  51. Lee, A. G., 1977, Lipid phase transitions and phase diagrams. I. Lipid phase transitions, Biochim. Biophys. Acta 472:237–281.PubMedCrossRefGoogle Scholar
  52. LeNeveu, D. M., Rand, R. P., Parsegian, V. A., and Gingell, D., 1977, Measurement and modification of forces between lecithin bilayers, Biophys. J.18:209–230.PubMedCrossRefGoogle Scholar
  53. Lucy, J. A., 1970, The fusion of biological membranes, Nature (Lond.) 227:815–817.CrossRefGoogle Scholar
  54. MacDonald, R. I., 1985, Membrane fusion due to dehydration by polyethylene glycol, dextran, or sucrose, Biochem. J.24:4058–4066.CrossRefGoogle Scholar
  55. Maggio, B., Ahkong, Q. F., and Lucy, J. A., 1976, Polyethylene glycol), surface potential and cell fusion, Biochem. J.158:647–650.PubMedGoogle Scholar
  56. Maggio, B., and Lucy, J. A., 1978, Interactions of water-soluble fusogens with phospholipids in monolayers, FEBS Lett.94:301–304.PubMedCrossRefGoogle Scholar
  57. Majumdar, S., Baker, R. F., and Kalfra, V. K., 1980, Fusion of human erythrocytes induced by uranyl acetate and rare earth metals, Biochim. Biophys. Acta 598:411–416.PubMedCrossRefGoogle Scholar
  58. Maroudas, N. G., 1975, Polymer exclusion, cell adhesion and membrane fusion, Nature (Lond.) 254:695.CrossRefGoogle Scholar
  59. Maul, G. G., Steplewski, Z., Weibel, J., and Koprowski, H., 1976, Time sequence and morphological evaluations of cells fused by polyethylene glycol 6000, In Vitro 12:787–796.PubMedCrossRefGoogle Scholar
  60. McCammon, J. R., and Fan, V. S. C., Release of membrane constituents following polyethylene glycol treatment of HEp-2 cells,1979 Biochim. Biophys. Acta 551:67–73.PubMedCrossRefGoogle Scholar
  61. Mclver, D. J. L., 1979, Control of membrane fusion by interfacial water: A model for actions of divalent cation, Physiol. Chem. Phys.11:289–302.Google Scholar
  62. Minetti, M., Aducci, P., and Viti, V., 1979, Interaction of neutral polysaccharides with phosphatidylcholine multilamellar liposomes. Phase transitions studied by the binding of fluorescein-conjugated dextrans, Biochemistry 18:2541–2548.PubMedCrossRefGoogle Scholar
  63. Morgan, C. G., Thomas, E. W., and Yianni, Y P., 1983, The use of fluorescence energy transfer to distinguish between poly(ethylene glycol)-induced aggregation and fusion of phospholipid vesicles, Biochim. Biophys. Acta 728:356–362.PubMedCrossRefGoogle Scholar
  64. Ohno, H., Maeda, Y, and Tsuchida, E., 1981a, 1H-NMR study of the effect of synthetic polymers on the fluidity, transition temperature and fusion of dipalmitoyl phosphatidylcholine small vesicles, Biochim. Biophys. Acta 642:27–36.PubMedCrossRefGoogle Scholar
  65. Ohno, H., Sakai, T., Tsuchida, E., Honda, K., and Sasakawa, S., 1981b, The interaction of human erythrocyte ghost or liposomes with polyethylene glycol detected by fluorescence polarization, Biochem. Biophys. Res. Commun.102:426–431.PubMedCrossRefGoogle Scholar
  66. Oi, V. T., and Herzenberg, L. A., 1980, Immunoglobulin-producing hybrid cell lines, in: Selected Methods in Cellular Immunology (B. B. Mishell and S. M. Shigii, eds.), pp. 351–372, W. H. Freeman, San Francisco.Google Scholar
  67. Papahadjopoulos, D., Portis, A., and Pangborn, W., 1978, Calcium induced lipid phase transitions and membrane fusion, Ann. N Y. Acad. Sci.308:50–66.PubMedCrossRefGoogle Scholar
  68. Papahadjopoulos, D., Poste, G., Schaeffler, B. E., and Vail, W. J., 1974 Membrane fusion and molecular segregation in phospholipid vesicles, Biochim. Biophys. Acta 352:10–28.PubMedCrossRefGoogle Scholar
  69. Pinto da Silva, P., Kazufumi, S., and Parkinson, C., 1980, Fusion of human erythrocytes by Sendi virus: Freeze-fracture aspects, J. Cell Sci.43:419–432.Google Scholar
  70. Poste, G., and Allison, A. C., 1973, Membrane fusion, Biochim. Biophys. Acta 300:421–465.PubMedCrossRefGoogle Scholar
  71. Power, J. B., Evans, P. K., and Cocking, E. C., 1978, Fusion of plant protoplasts, in: Cell Surface Reviews, Vol. 5 (G. Poste and G. L. Nicolson, eds.), pp. 369–385, North-Holland, Amsterdam.Google Scholar
  72. Ranck, J. L., Mateu, L., Sadler, D. M., Tardieu, A., Gulik-Krzywicki, T., and Luzzati, V., 1974, Order-disorder conformational transitions of the hydrocarbon chains of lipids, J. Mol. Biol 85:249–277.PubMedCrossRefGoogle Scholar
  73. Robinson, J. M., Roos, D. S., Davidson, R. L., and Karnovsky, M. J., 1979, Membrane alterations and other morphological features associated with polyethylene glycol-induced cell fusion, J. Cell. Sci.40:63–75.PubMedGoogle Scholar
  74. Roos, D. S., Robinson, J. M., and Davidson, R. L., 1983, Cell fusion and intramembrane particle distribution in polyethlyene glycol-resistant cells, J. Cell Biol.97:909–917.PubMedCrossRefGoogle Scholar
  75. Saez, R., Alonso, A., Villena, A., and Goni, F. M., 1982, Detergent-like properties of polyethyleneglycols in relation to model membranes, FEBS Lett.137:323–326.PubMedCrossRefGoogle Scholar
  76. Schneider, H., Hochli, M., and Hackenbrock, C. R., 1982, Relationship between the density distribution of intramembrane particles and electron transfer in the mitochondrial inner membrane as revealed by cholesterol incorporation, J. Cell Biol.94:387–393.PubMedCrossRefGoogle Scholar
  77. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720–730.PubMedCrossRefGoogle Scholar
  78. Smith, C. L., Ahkong, Q. F., Fisher, D., and Lucy, J. A., 1982, Is purified poly(ethylene glycol) able to induce cell fusion?, Biochim. Biophys. Acta 692:109–114.PubMedCrossRefGoogle Scholar
  79. Stenger, D. A., and Hui, S. W., 1986, Kinetics of ultrastructural changes during electrically-induced cell fusion of erythrocytes, J. Membrane Biol, in press.Google Scholar
  80. Struck, D. K., Hoekstra, D., and Pagano, R. E., 1981, Use of resonance energy transfer to monitor membrane fusion, Am. Chem. Soc.20:4093–4099.Google Scholar
  81. Szoka, F., Magnusson, K. E., Wojcieszyn, J., Hou, Y, Derzko, Z., and Jacobson, IC., 1981, Use of lectins and polyethylene glycol for fusion of glycolipid containing liposomes with eu-karyotic cells, Proc. Natl Acad. Sci. U.S.A.78:1685–1689.PubMedCrossRefGoogle Scholar
  82. Tilcock, C. P. S., and Fisher, D., 1979, Interaction of phospholipid membranes with Polyethylene glycol)s, Biochim. Biophys. Acta 577:53–61.Google Scholar
  83. Tilcock, C. P. S., and Fisher, D., 1982, The interaction of phospholipid membranes with poly(ethylene glycol) vesicle aggregation and lipid exchange, Biochim. Biophys. Acta 688:645–652.PubMedCrossRefGoogle Scholar
  84. Vos, J., Ahkong, Q. F., Botham, G. M., Quirk, S. J., and Lucy, J. A., 1976, Changes in the distribution of intramembranous particles in hen erythrocytes during cell fusion induced by the bivalent-cation ionophore A23187, Biochem. J.158:651–653.PubMedGoogle Scholar
  85. Wojcieszyn, J. W., Schlegel, R. A., Lumley-Sapanski, K., and Jacobson, BL A., 1983, Studies on the mechanism of polytheylene glycol-mediated cell fusion using fluorescent membrane and cytoplasmic probes, J. Cell Biol.96:151–159.PubMedCrossRefGoogle Scholar
  86. Yeagle, P. L., Hutton, W. C., Hunag, C. H., and Martin, R. B., 1975, Headgroup formation and lipid-cholesterol association in phosphatidylcholine vesicles: a 3lP[lH] nuclear Overhauser effect, Proc. Natl. Acad. Sci. U.S.A.72:3477–3481.PubMedCrossRefGoogle Scholar
  87. Zakai, N., Kulka, R. G., and Loyter, A., 1977, Membrane ultrastructural changes during calcium phosphate-induced fusion of human erythrocyte ghosts, Proc. Natl. Acad. Sci. USA.74:2417–2421.PubMedCrossRefGoogle Scholar
  88. Zimmerberg, J., Cohen, F. S., and Finkelstein, A., 1980, Micromolar Ca2+ stimulates fusion of lipid vesicles with planar bilayers containing a calcium-binding protein, Science 210:906–908.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • L. T. Boni
    • 1
  • S. W. Hui
    • 2
  1. 1.Department of Physiology and BiophysicsHarvard Medical SchoolBostonUSA
  2. 2.Department of BiophysicsRoswell Park Memorial InstituteBuffaloUSA

Personalised recommendations