Cell Fusion pp 269-284 | Cite as

Protein Modulation of Liposome Fusion

  • Keelung Hong
  • Nejat Düzgüneş
  • Paul R. Meers
  • Demetrios Papahadjopoulos


Membranes provide the barrier of cellular individuality or intracellular compartmentation. Individuality or compartmentation is unlikely to be traversed except in A. well-regulated biological process, membrane fusion. To understand the fundamental mechanism of membrane fusion, simple membrane systems have been studied extensively (reviewed by Papahadjopoulos et al, 1979; Nir et al, 1983; Düzgünes, 1985). Information obtained from model membranes has been useful not only for defining the role of fusion triggers or modulators, but also for determining the fusion susceptibility of individual components of membranes. However, fusion requirements for these simple systems are often far from those known to be required for biological fusion. For example, fusion between isolated secretory vesicles occurs at much lower Ca2+concentrations than those required for fusion of liposomes made from the extracted lipids of the secretory vesicles (Gratzl et al, 1980; Ekerdt et al, 1981). A. simple explanation for this discrepancy in Ca2+threshold is that other factors are involved in the sensitivity for Ca2+in the fusion event. Among these factors, protein is considered A. likely candidate. Therefore, protein-facilitated fusion of liposomes is an important step toward the reconstitution of natural membrane fusion.


Membrane Fusion Fusion Rate Acrosome Reaction Phospholipid Vesicle Dipicolinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, P. F., and Knight, D. E., 1984, Calcium control of exocytosis in bovine adrenal medullary cells, Trends Neurosci. 7:120–126.CrossRefGoogle Scholar
  2. Barondes, S. H., 1981, Lectins: Their multiple endogenous cellular functions, Annu. Rev. Biochem. 50:207–231.PubMedCrossRefGoogle Scholar
  3. Blumenthal, R., Henkart, M., and Steer, C. J., 1983, Clathrin-induced pH-dependent fusion of phosphatidylcholine vesicles, J. Biol. Chem. 258:3409–3415.PubMedGoogle Scholar
  4. Creutz, C. E., 1981, cis-Unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin, J. Cell Biol. 91:247–256.PubMedCrossRefGoogle Scholar
  5. Creutz, C. E., Pazoles, C. J., and Pollard, H. B., 1978, Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of isolated chromaffin granules,J. Biol Chem. 253:2858–2866.PubMedGoogle Scholar
  6. Creutz, C. E., Pazoles, C. J., and Pollard, H. B., 1979, Self-association of synexin in the presence of calcium: Correlation with synexin-induced membrane fusion and examination of the structure of synexin aggregates. J Biol. Chem. 254:553–558.PubMedGoogle Scholar
  7. Creutz, C. E., Dowling, L. G., Sando, J. J., Villar-Palasi, C., Whipple, J. H., and Zaks, W. J., 1983, Characterization of the chromobindins: Soluble proteins that bind to the chromaffin granule membrane in the presence of Ca ,J. Biol Chem. 258:14664–14674.PubMedGoogle Scholar
  8. Cullis, P. R., and deKruijff, B., 1978, The polymorphic phase behavior of phosphatidyl-ethanolamines of natural and synthetic origin. A. P-NMR study, Biochim. Biophys. Acta 513:31–42.PubMedCrossRefGoogle Scholar
  9. Dan, J. C., 1967, Acrosome reaction and lysins, in: Fertilization, Vol. 1 (C. B. Metz and A. Monroy, eds.), pp. 237–293, Academic Press, New York.Google Scholar
  10. Dunn, L. A., and Holz, R. W., 1983, Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells,J. Biol Chem. 258:4989–4993.PubMedGoogle Scholar
  11. Düzgünes, N., 1985, Membrane fusion, in: Subcellular Biochemistry, Vol. 11, (D. B. Roodyn, ed.), pp. 195–286, Plenum Press, New York.Google Scholar
  12. Düzgünes, N., Wilschut, J., Fraley, R., and Papahadjopoulos, D., 1981, Studies on the mechanism of membrane fusion: Role of head-group composition in calcium- and magnesium-induced fusion of mixed phospholipid vesicles, Biochim. Biophys. Acta 642:182–195.PubMedCrossRefGoogle Scholar
  13. Düzgünes, N., Hoekstra, D., Hong, K., and Papahadjopoulos, D., 1984, Lectins facilitate calcium-induced fusion of phospholipid vesicles containing glycosphingolipids, FEBS Lett. 173:80–84.PubMedCrossRefGoogle Scholar
  14. Düzgünes, N., Wilschut, J., and Papahadjopoulos, D., 1985, Control of membrane fusion by divalent cations, phospholipid head-groups and proteins, in: Physical Methods on Biological Membranes and Their Model Systems (F. Conti, W. E. Blumberg, J. de Gier, and F. Pocchiari, eds.), pp. 193–218, Plenum Press, New York.CrossRefGoogle Scholar
  15. Ekerdt, R., Dahl, G., and Gratzl, M., 1981, Membrane fusion of secretory vesicles and liposomes. Two different types of fusion, Biochim. Biophys. Acta 646:10–22.PubMedCrossRefGoogle Scholar
  16. Ellens, H., Bentz, J. and Szoka, F. C., 1985, H+- and Ca 2+-induced fusion and destabilization of liposomes, Biochemistry 24:3099–3106.PubMedCrossRefGoogle Scholar
  17. Ernst, J. D., Meers, P., Düzgünes, N., Hong, K., Scannell, K., Papahadjopoulos, D., and Goldstein, I. M., 1985, A. synexin-like protein in the cytosol of polymorphonuclear leukocytes mediates calcium-dependent granule aggregation, Clin. Res.33:401a.Google Scholar
  18. Fridberger, A., Sundelin, J., Vacquier, V. D., and Peterson, P. A., 1985, Amino acid sequence of an egg-lysin protein from abalone spermatozoa that solubilizes the vitelline layer, J. Biol. Chem. 260:9092–9099,PubMedGoogle Scholar
  19. Glabe, C. G., 1985a, Interaction of the sperm adhesive protein, bindin, with phospholipid vesicles, I. Specific association of bindin with gel-phase phospholipid vesicles, J. Cell Biol. 100:794–799.PubMedCrossRefGoogle Scholar
  20. Glabe, C. G., 1985b, Interaction of the sperm adhesive protein, bindin, with phospholipid vesicles, II. Bindin induces the fusion of mixed-phase vesicles that contain phosphatidylcholine and phosphatidylserine in vitro, J. Cell Biol. 100:800–806.PubMedCrossRefGoogle Scholar
  21. Glabe, C. G., and Lennarz, W. J., 1979, Species-specific sperm adhesion in sea urchins: A. quantitative investigation of bindin-mediated egg agglutination,J. Cell Biol. 83:595–604.PubMedCrossRefGoogle Scholar
  22. Glabe, C. G., and Vacquier, V. D., 1977, Species specific agglutination of eggs by bindin isolated from sea urchin sperm, Nature (Lond.) 267:836–837.CrossRefGoogle Scholar
  23. Glabe, C. G., Grabel, L. B., Vacquier, V. D., and Rosen, S. D., 1982, Carbohydrate specificity of sea urchin sperm bindin: A. cell surface lectin mediating sperm-egg adhesion,J. Cell Biol. 94:123–128.PubMedCrossRefGoogle Scholar
  24. Gratzl, M., Schudt, C., Ekerdt, R., and Dahl, G., 1980, Fusion of isolated biological membranes: A. tool to investigate basic processes of exocytosis and cell-cell fusion, in: Membrane Structure and Function, Vol. 3 (E. E. Bittar, ed.), pp. 59–92, Wiley, New York.Google Scholar
  25. Hoekstra, D., and Düzgünes, N., 1986, Ricinus communis agglutinin-mediated agglutination and fusion of glycolipid-containing phospholipid vesicles, Effect of carbohydrate headgroup size, calcium ions, and spermine, Biochemistry 25:1321–1330.PubMedCrossRefGoogle Scholar
  26. Hoekstra, D., Düzgünes, N., and Wilschut, J., 1985, Agglutination and fusion of globoside GL-4 containing phospholipid vesicles mediated by lectins and calcium ions, Biochemistry 24:565–572.PubMedCrossRefGoogle Scholar
  27. Hong, K., and Vacquier, V. D., 1986, Fusion of liposomes induced by A. cationic protein from the acrosome granule of abalone spermatozoa, Biochemistry, 25:543–549.PubMedCrossRefGoogle Scholar
  28. Hong, K., Düzgünes, N., and Papahadjopoulos, D., 1981, Role of synexin in membrane fusion, J. Biol. Chem. 256:3641–3644.PubMedGoogle Scholar
  29. Hong, K., Düzgünes, N., and Papahadjopoulos, D., 1982a, Modulation of membrane fusion by calcium-binding proteins, Biophys. J. 37:297–305.PubMedCrossRefGoogle Scholar
  30. Hong, K., Düzgünes, N., Ekerdt, R., and Papahadjopoulos, D., 1982b, Synexin facilitates fusion of specific phospholipid vesicles at divalent cation concentrations found in-tracellularly, Proc. Natl. Acad. Sci. USA. 79:4942–4944.CrossRefGoogle Scholar
  31. Hong, K., Ekerdt, R., Bentz, J., Nir, S., and Papahadjopoulos, D., 1983, Kinetics of synexin-facilitated membrane fusion, Biophys. J., 41:31a.Google Scholar
  32. Hong, K., Yoshimura, T., and Papahadjopoulos, D., 1985, Interaction of clathrin with liposomes: pH-dependent fusion of phospholipid membranes induced by clathrin, FEBS Lett 191:17–23.PubMedCrossRefGoogle Scholar
  33. Irvine, R. F., 1982, How is the level of free arachidonic acid controlled in mammalian cells?, Biochem.J. 204:3–16.PubMedGoogle Scholar
  34. Jendrasiak, G. L., and Hasty, J. H., 1974, The hydration of phospholipids, Biochim. Biophys. Acta 337:79–91.PubMedCrossRefGoogle Scholar
  35. Lewis, C. A., Talbot, C. F., and Vacquier, V. D., 1982, A. protein from abalone sperm dissolves the egg vitelline layer by A. nonenzymatic mechanism, Dev. Biol. 92:227–239.PubMedCrossRefGoogle Scholar
  36. Meers, P., Ernst, J., Hong, K., Düzgünes, N., Goldstein, I. M., and Papahadjopoulos, D., 1986, Synexin-like proteins from the cytosol of human neutrophils mediate aggregation and apparent fusion of specific granules and liposomes, Biophys. J. 49:134a.Google Scholar
  37. Morris, S. J., Hughes, J. M. X., and Whittaker, V. P., 1982, Purification and mode of action of synexin: A. protein enhancing calcium-induced membrane aggregation,J. Neurochem. 39:529–536.PubMedCrossRefGoogle Scholar
  38. Nir, S., Bentz, J., and Wilschut, J., 1980, Mass action kinetics of phosphatidylserine vesicle fusion as monitored by coalescence of internal vesicle volumes, Biochemistry 19:6030–6036.PubMedCrossRefGoogle Scholar
  39. Nir, S., Bentz, J., Wilschut, J., and Düzgünes, 1983, Aggregation and fusion of phospholipid vesicles, Prog. Surface. Sci. 13:1–124.CrossRefGoogle Scholar
  40. Papahadjopoulos, D., Poste, G., and Vail, W. J., 1979, Studies on membrane fusion with natural and model membranes, Methods Membrane Biol. 10:1–121.CrossRefGoogle Scholar
  41. Pollard, H. B., and Scott, J. H., 1982, Synhibin: A. new calcium-dependent membrane-binding protein that inhibits synexin-induced chromaffin granule aggregation and fusion, FEBS Lett. 150:201–206.PubMedCrossRefGoogle Scholar
  42. Reiss-Husson, F., 1967, Structure des phases liquide-cristallines de différents phospho-lipides, monoglycérides, sphingolipides, anhydres ou en présence d’eau, J. Molec. Biol. 25:363–382.PubMedCrossRefGoogle Scholar
  43. Rosenberg, J., Düzgünes, N., and Kayalar, C., 1983, Comparison of two liposome fusion assays monitoring the intermixing of aqueous contents and of membrane components, Biochim. Biophys. Acta 735:173–180.PubMedCrossRefGoogle Scholar
  44. Struck, D. K., Hoekstra, D., and Pagano, R. E., 1981, Use of resonance energy transfer to monitor membrane fusion, Biochemistry 20:4093–4099.PubMedCrossRefGoogle Scholar
  45. Südhof, T. C., Walker, J. H., and Obrocki, J., 1982, Calelectrin self-aggregates and promotes membrane aggregation in the presence of calcium, EMBO J. 1:1167–1170.PubMedGoogle Scholar
  46. Südhof, T. C., Ebbecke, M., Walker, J. H., Fritsche, U., and Boustead, C., 1984, Isolation of mammalian calelectrins; A. new class of ubiquitous Ca 2+-regulated proteins, Biochemistry 23:1103–1109.PubMedCrossRefGoogle Scholar
  47. Sundler, R., and Papahadjopoulos, D., 1981, Control of membrane fusion by phospholipid head-groups I. Phosphatidate/phosphatidylinositol specificity, Biochim. Biophys. Acta 649:743–750.PubMedCrossRefGoogle Scholar
  48. Sundler, R., and Wijkander, J., 1983, Protein-mediated intermembrane contact specifically enhances Ca 2+-induced fusion of phosphatidate-containing membranes, Biochim. Biophys. Acta. 730:391–394.PubMedCrossRefGoogle Scholar
  49. Vacquier, V. D., and Moy, G. W., 1977, Isolation of bindin: The protein responsible for adhesion of sperm to sea urchin eggs, Proc. Natl. Acad. Sci. USA. 74:2456–2460.PubMedCrossRefGoogle Scholar
  50. Wilschut, J., and Papahadjopoulos, D., 1979, Ca2+-induced fusion of phospholipid vesicles monitored by mixing of aqueous contents, Nature (Lond.) 281:690–692.CrossRefGoogle Scholar
  51. Wilschut, J., Düzgünes, N., Fraley, R., and Papahadjopoulos, D., 1980, Studies on the mechanism of membrane fusion: Kinetics of calcium ion induced fusion of phosphatidylserine vesicles followed by A. new assay for mixing of aqueous vesicle contents, Biochemistry 19:6011–6021.PubMedCrossRefGoogle Scholar
  52. Wilschut, J., Düzgünes, N., and Papahadjopoulos, D., 1981, Calcium/magnesium specificity in membrane fusion: Kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature, Biochemistry 20:3126–3133.PubMedCrossRefGoogle Scholar
  53. Wilson, S. P., and Kirshner, N., 1983, Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells, J. Biol. Chem. 258:4994–5000.PubMedGoogle Scholar
  54. Wolf, D. E., Kinsey, W. H., Lennarz, W. J., and Edidin, M., 1981, Changes in the organization of the sea urchin plasma membrane upon fertilization: Indications from the lateral diffusion rates of lipid-soluble fluorescent dyes, Dev. Biol. 81:133–138.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Keelung Hong
    • 1
  • Nejat Düzgüneş
    • 2
  • Paul R. Meers
    • 1
  • Demetrios Papahadjopoulos
    • 3
  1. 1.Cancer Research Institute, School of MedicineUniversity of California at San FranciscoSan FranciscoUSA
  2. 2.Cancer Research Institute, School of Medicine, and Department of Pharmaceutical Chemistry, School of PharmacyUniversity of California at San FranciscoSan FranciscoUSA
  3. 3.Cancer Research Institute and Department of Pharmacology, School of MedicineUniversity of California at San FranciscoSan FranciscoUSA

Personalised recommendations