Kinetics of Ammonia Synthesis and Influence on Converter Design

  • Giorgio Gramatica
  • Nicola Pernicone
Part of the Fundamental and Applied Catalysis book series (FACA)

Abstract

Ammonia synthesis is one of the most important processes operated by the chemical industry. Modern ammonia synthesis plants can produce up to 1800 tons of ammonia per day. Clearly, the design of the large reactors requires powerful and reliable calculation methods and the availability of a sound kinetic equation is an essential requirement. It is not only necessary for reactor design, but is also required to express catalyst performances generated from either laboratory or pilot plant experiments.

Keywords

Pressure Drop Void Fraction Catalyst Particle Ammonia Synthesis Potential Energy Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Bokhoven, C. Van Heerden, R. Westrik, and P. Zwietering, in: Catalysis (P. H. Emmett, ed.), Vol. 3, p. 318, Reinhold, New York (1955).Google Scholar
  2. 2.
    M. Temkin and V. Pyzhev, Acta Physicochim. USSR 12, 327 (1940).Google Scholar
  3. 3.
    Ref. 1, p. 321.Google Scholar
  4. 4.
    M. Temkin, J. Phys. Chem. USSR 24, 1312 (1950).Google Scholar
  5. 5.
    A. Nielsen, J. Kjaer, and B. Hansen, J. Catal. 3, 68 (1964).CrossRefGoogle Scholar
  6. 6.
    U. Guacci, F. Traina, G. Buzzi Ferraris, and R. Barisone, Ind. Eng. Chem., Prod. Des. Dev. 16, 166 (1977).CrossRefGoogle Scholar
  7. 7.
    M. I. Temkin, N. M. Morozov, and E. N. Shapatina, Kinet. Catal. (Engl. Transi.) 4, 565 (1963).Google Scholar
  8. 8.
    G. W. Bridger and C. B. Snowdon, in: Catalyst Handbook, p. 141, Wolfe Scientific Books, London (1970).Google Scholar
  9. 9.
    I. A. Smirnof, N. M. Morozov, and M. I. Temkin, Dokl. Akad. Nauk SSSR 153, 386 (1963).Google Scholar
  10. 10.
    S. Brunauer, K. S. Love, and R. G. Keenan, J. Am. Chem. Soc. 64, 751 (1942).CrossRefGoogle Scholar
  11. 11.
    A. Ozaki, H. S. Taylor, and M. Boudart, Proc. R. Soc. London, Scr. A 258, 47 (1960).CrossRefGoogle Scholar
  12. 12.
    A. Nielsen, J. Kjaer, and B. Hansen, J. Catal. 3, 68 (1964).CrossRefGoogle Scholar
  13. 13.
    R. Brill, J. Catal. 16, 16 (1970).CrossRefGoogle Scholar
  14. 14.
    G. Buzzi Ferraris, G. Donati, F. Rejna, and S. Carrà, Chem. Eng. Sci. 29, 1621 (1974).CrossRefGoogle Scholar
  15. 15.
    M. Bowker, I. B. Parker, and K. C. Waugh, Appl. Catal. 14, 101 (1985).CrossRefGoogle Scholar
  16. 16.
    G. Ertl, in: Catalysis Science and Technology (J. R. Anderson and M. Boudart, eds.), Vol. 4, p. 273, Springer-Verlag, Berlin (1983).Google Scholar
  17. 17.
    P. Stoltze and J. K. Norskov, Phys. Rev. Lett. 55, 2502 (1985).CrossRefGoogle Scholar
  18. 18.
    G. Ertl, Critical Reviews in Solid State and Materials Science, p. 349, CRC Press, Boca Raton (1982).Google Scholar
  19. 19.
    Nitrogen 31(9), 22 (1964).Google Scholar
  20. 20.
    U. Zardi, Ammonia Casale A.S., U.S. Patent No. 4,372,920 (1983).Google Scholar
  21. 21.
    G. Gramatica, Tecnimont S.p.A., U.S. Patent No. 4,205,044 (1980).Google Scholar
  22. 22.
    O. J. Quartulli and G. A. Wagner, Hydrocarbon Process. 12, 115 (1978).Google Scholar
  23. 23.
    S. Ergun, Chem. Eng. Prog. 48(2), 89 (1952).Google Scholar
  24. 24.
    C. E. Schwartz and J. M. Smith, Ind. Eng. Chem. 45(6), 1209 (1953).CrossRefGoogle Scholar
  25. 25.
    O. Levenspiel and K. B. Bischoff, Advances in Chemical Engineering, Vol. 4, Academic Press, New York (1963).Google Scholar
  26. 26.
    P. N. Dwivedi and S. N. Upadhyay, Ind. Eng. Chem., Process Des. Dev. 16(2), 157 (1977).CrossRefGoogle Scholar
  27. 27.
    D. C. Dyson and J. M. Simon, Ind. Eng. Chem., Fundam. 7(4), 605 (1968).CrossRefGoogle Scholar
  28. 28.
    C. P. P. Singh and D. N. Saraf, Ind. Eng. Chem., Process Des. Dev. 18(3), 364 (1979).CrossRefGoogle Scholar
  29. 29.
    A. Cappelli and A. Collina, Inst. Chem. Eng., Symp. Ser. 35(5), 10 (1972).Google Scholar
  30. 30.
    D. F. Fairbanks and C. R. Wilke, Ind. Eng. Chem. 42(3), 471 (1950).CrossRefGoogle Scholar
  31. 31.
    A. Nielsen, An Investigation on Promoted Iron Catalysts for the Synthesis of Ammonia, 3rd ed., Jul. Gjellerups Forlag, Copenhagen (1968).Google Scholar
  32. 32.
    J. A. Beattie, Proc. Natl. Acad. Sci. U.S.A. 16, 14 (1930).CrossRefGoogle Scholar
  33. 33.
    L. J. Gillespie and J. A. Beattie, Phys. Rev. 36, 743 (1930).CrossRefGoogle Scholar
  34. 34.
    L. D. Gaines, Ind. Eng. Chem., Process Des. Dev. 16(3), 381 (1977).CrossRefGoogle Scholar
  35. 35.
    B. Mansson and B. Andersen, Ind. Eng. Chem., Process Des. Dev. 25, 59 (1986).CrossRefGoogle Scholar
  36. 36.
    H. W. Cooper, Hydr. Proc, Pet. Ref. 46(2), 159 (1967).Google Scholar
  37. 37.
    R. H. Newton, Ind. Eng. Chem. 27, 302 (1935).CrossRefGoogle Scholar
  38. 38.
    Ya. S. Kazarnovskii, Zh. Fiz. Khim. 19, 392 (1945).Google Scholar
  39. 39.
    O. A. Hougen, K. M. Watson, and R. R. Ragatz, Chemical Process Principles, Part II, Wiley, New York (1947).Google Scholar
  40. 40.
    F. Horn, Z. Elektrochem. 65, 295 (1961).Google Scholar
  41. 41.
    S. Strelzoff, Technology and Manufacture of Ammonia, Wiley, New York (1981).Google Scholar
  42. 42.
    U. Zardi, Hydr. Proc. 8, 129 (1982).Google Scholar
  43. 43.
    Nitrogen 140(6), 30 (1982).Google Scholar
  44. 44.
    A. V. Slack and G. R. James, Ammonia, Vol. III, Marcel Dekker, New York (1977).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Giorgio Gramatica
    • 1
  • Nicola Pernicone
    • 2
  1. 1.Agrimont S.p.A.Enimont GroupMilanoItaly
  2. 2.Ausimont Catalizzatori S.z.l.Montedison GroupNovaraItaly

Personalised recommendations