Chemisorption at More Elevated Pressures on Industrial Ammonia Synthesis Catalysts

  • J. W. Geus
  • K. C. Waugh
Part of the Fundamental and Applied Catalysis book series (FACA)

Abstract

This chapter is concerned with the adsorption of hydrogen, nitrogen, and carbon monoxide on promoted iron catalysts in the reduced state at pressures up to about 1 atm. In Chapter 3, Ertl discusses adsorption of hydrogen and nitrogen on iron single crystals with and without added potassium. Schlögl, in Chapter 2, deals with adsorption of nitrogen on industrial ammonia synthesis catalysts. Both Ertl and Schlögl consider only measurements in which the surface coverage is determined by modern surface analytical techniques, such as XPS, UPS, and Auger electron spectroscopy. Since these modern techniques can only be operated at low gas pressures, coverages at higher pressures are not discussed. It is relevant therefore to compare the data described by Ertl and Schlögl with older results measured at higher pressure on reduced iron catalysts. In this older work, the extent of adsorption has been measured both volumetrically and gravimetrically. The properties of hydrogen are particularly interesting. Adsorption of hydrogen on reduced catalysts is generally an activated process, while adsorption on sputter-cleaned single crystals and vapor-deposited iron films is not activated even at low temperatures.

Keywords

Metallic Iron Iron Surface Dissociative Adsorption Iron Catalyst Ammonia Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Barin, and O. Knacke, Thermochemical Properties of Inorganic Substances (Supplement), Springer-Verlag, Berlin, 1977.Google Scholar
  2. 2.
    A. F. H. Wielers, A. J. H. M. Kock, C. E. C. A. Hopp, J. W. Geus, and A. M. van der Kraan, J. Catal. 117, 1 (1989).CrossRefGoogle Scholar
  3. 3.
    A. J. H. M. Kock, K. F. Fortuin, and J. W. Geus, J. Catal. 96, 261 (1985).CrossRefGoogle Scholar
  4. 4.
    J. G. McCarty, P. Y. Hou, D. Sheridan, and H. Wise, in: Coke Formation on Metal Surfaces (L. F. Albright and R. T. K. Baker, eds.), ACS Symposium Series No. 202, American Chemical Society, Washington, D.C. (1982).Google Scholar
  5. 5.
    P. K. de Bokx, A. J. H. M. Kock, E. Boelliaard, W. Kiop, and J. W. Geus, J. Catal. 96, 454 (1985).CrossRefGoogle Scholar
  6. 6.
    M. Boudart, A. Deiboulile, J. A. Dumesic, S. Khammouma, and H. Topsoe, J. Catal. 37, 486, 503, 513 (1975).CrossRefGoogle Scholar
  7. 7.
    M. Boudart, H. Topsoe, and J. A. Dumesic, in: The Physical Basis for Heterogeneous Catalysis (E. Drauglis and R. I. Jaffee, eds.), p. 377, Plenum Press, New York (1975).Google Scholar
  8. 8.
    M. Boudart, J. A. Dumesic, and H. Topsoe, Proc. Natl. Acad. Sci. U.S.A. 74, 806 (1977).CrossRefGoogle Scholar
  9. 9.
    J. J. F. Scholten, Chemisorption of Nitrogen on Iron Catalysts in Connection with Ammonia Synthesis, Thesis, Technical University of Delft, The Netherlands (1959).Google Scholar
  10. 10.
    T. J. Vink, J. M. der Kinderen, O. L. J. Gitzeman, and J. W. Geus, Appl. Surf. Sci. 26, 367 (1986).CrossRefGoogle Scholar
  11. 11.
    J. M. van Zoest, J. M. Fluit, T. J. Vink, and B. A. van Hassel, Surf Sci. 182, 179 (1987).CrossRefGoogle Scholar
  12. 12.
    T. J. Vink, J. M. der Kinderen, O. L. J. Gitzeman, J. W. Geus, and J. M. van Zoest, Appl. Surf. Sci. 26, 357 (1986).CrossRefGoogle Scholar
  13. 13.
    M. W. Roberts and C. S. McKee, Chemistry of the Metal-Gas Interface, p. 474, Clarendon Press, Oxford (1978).Google Scholar
  14. 14.
    G. A. Somorjai, Chemistry in Two Dimensions: Surfaces, p. 264, Cornell University Press, Ithaca and London (1981).Google Scholar
  15. 15.
    J. W. Geus, in: Chemisorption and Reactions on Metallic Films, Volume I (J. R. Anderson ed.), p. 432, Academic Press, London and New York (1971).Google Scholar
  16. 16.
    R. Suhrmann, J. M. Heras, L. Viscido de Heras, and G. Wedier, Ber. Bunsenges. Phys. Chem. 68, 511, 590 (1964).Google Scholar
  17. 17.
    R. Suhrmann, J. M. Heras, L. Viscido de Heras, and G. Wedler, Ber. Bunsenges. Phys. Chem. 72, 854 (1968).Google Scholar
  18. 18.
    T. J. Vink, S. J. M. Sas, O. L. J. Gitzeman, and J. W. Geus, J. Vac. Sci. Technol. A54, 718 (1987).Google Scholar
  19. 19.
    S. Brunauer and P. H. Emmett, J. Am. Chem. Soc. 59, 310 (1937).CrossRefGoogle Scholar
  20. 20.
    S. Brunauer and P. H. Emmett, J. Am. Chem. Soc. 62, 1732 (1940).CrossRefGoogle Scholar
  21. 21.
    J. T. Kummer and P. H. Emmett, Phys. Colloid Chem. 55, 342 (1961).Google Scholar
  22. 22.
    H. H. Podgurski and P. H. Emmett, J. Am. Chem. Soc. 57, 159 (1953).Google Scholar
  23. 23.
    P. Zwietering and R. Westrik, Proc. K. Ned. Akad. Wet. 56, 492 (1953).Google Scholar
  24. 24.
    H. Topsoe, N. Topsoe, H. Bohibro, and J. A. Dumesic, in: Proceedings of the 7th International Congress on Catalysis Tokyo 1980 (T. Seiyama and K. Tanabe, eds.), p. 247, Elsevier, Amsterdam (1981).Google Scholar
  25. 25.
    P. H. Emmett and S. Brunauer, J. Am. Chem. Soc. 56, 35 (1934).CrossRefGoogle Scholar
  26. 26.
    G. Ertl, Catalysis, Science and Technology 4, 273 (1983).Google Scholar
  27. 27.
    M. Bowker, I. B. Parker, and K. C. Waugh, Appl. Catal. 14, 101 (1985).CrossRefGoogle Scholar
  28. 28.
    G. Ertl, S. B. Lee, and M. Weiss, Surf. Sci. 114, 527 (1982).CrossRefGoogle Scholar
  29. 29.
    G. Ertl, M. Weiss, and S. B. Lee, Chem. Phys. Lett. 60, 391 (1979).CrossRefGoogle Scholar
  30. 30.
    G. Ertl, Catal. Rev. Sci. Eng. 21(2), 201 (1980).CrossRefGoogle Scholar
  31. 31.
    F. Bozso, G. Ertl, M. Grunze, and M. Weiss, J. Catal. 49, 18 (1977).CrossRefGoogle Scholar
  32. 32.
    F. Bozso, G. Ertl, M. Grunze, and M. Weiss, Appl. Surf. Sci. 1, 103 (1977).CrossRefGoogle Scholar
  33. 33.
    A. Nielsen, An Investigation on Promoted Iron Catalysts for the Synthesis of Ammonia, 3rd edn., p. 21, Jul. Gjellerups Forlag (1968).Google Scholar
  34. 34.
    M. Grunze, F. Bozso, G. Ertl, and M. Weiss, Appl. Surf. Sci. 1, 241 (1978).CrossRefGoogle Scholar
  35. 35.
    G. Ertl, S. B. Lee, and M. Weiss, Surf. Sei. 114, 515 (1982).CrossRefGoogle Scholar
  36. 36.
    G. Ertl and N. Thiele, Appl. Surf Sei. 3, 99 (1979).CrossRefGoogle Scholar
  37. 37.
    G. Ertl, M. Huber, S. B. Lee, Z. Paal, and M. Weiss, Appl. Surf. Sci. 8, 373 (1981).CrossRefGoogle Scholar
  38. 38.
    A. Nielsen, An Investigation on Promoted Iron Catalysts for the Synthesis of Ammonia, 3rd edn., p. 51, Jul. Gjellerups Forlag (1968).Google Scholar
  39. 39.
    A. Nielsen, An Investigation on Promoted Iron Catalysts for the Synthesis of Ammonia, 3rd edn., p. 115, Jul. Gjellerups Forlag (1968).Google Scholar
  40. 40.
    M. I. Temkin and V. Pyzhev. J. Phys. Chem. (USSR) 13, 851 (1939).Google Scholar
  41. 41.
    N. D. Spencer, R. C. Schoonmaker, and G. A. Somorjai, J. Catal. 74, 129 (1982).CrossRefGoogle Scholar
  42. 42.
    P. Stoltze and J. K. Norskov, Phys. Rev. Lett. 55, 2502 (1985).CrossRefGoogle Scholar
  43. 43.
    P. Stoltze, Phys. Scr. 36, 824 (1987).CrossRefGoogle Scholar
  44. 44.
    P. Stoltze and J. K. Norskov. J. Catal. 110, 1 (1988).CrossRefGoogle Scholar
  45. 45.
    P. A. Redhead, Trans. Faraday Soc. 57, 641 (1961).CrossRefGoogle Scholar
  46. 46.
    P. A. Redhead, Vacuum 12, 203 (1962).CrossRefGoogle Scholar
  47. 47.
    J. J. F. Schölten, P. Zwietering, J. A. Konvalinka, and J. H. de Boer, Trans. Faraday Soc. 55, 2166 (1959).CrossRefGoogle Scholar
  48. 48.
    A. Baiker, H. Baris, and R. Schlögl, J. Catal. 108, 467 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. W. Geus
    • 1
  • K. C. Waugh
    • 2
  1. 1.Department of Inorganic Chemistry, Debije InstituteUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Catalysis Research CentreICI Chemicals and Polymers Ltd.Billingham, ClevelandEngland

Personalised recommendations