A Surface Science and Catalytic Study of the Effects of Aluminum Oxide and Potassium on the Ammonia Synthesis Over Iron Single-Crystal Surfaces

  • D. R. Strongin
  • G. A. Somorjai
Part of the Fundamental and Applied Catalysis book series (FACA)


The status of present-day ammonia synthesis is the product of research spanning almost a century. Much of the effort has been directed toward elucidating the mechanism of the promoter effects of potassium and aluminum oxide on the rate of ammonia synthesis. Out of this work has evolved a multitude of techniques, concepts, and ideas which have profoundly affected catalytic chemistry. Many reviews have been written on this subject,(1–3) but it becomes evident from them that an understanding at the molecular level of the promoters is still lacking. A principal reason for this deficiency is that the bulk of this early work could only use indirect methods to study the catalyst. For example, a large amount of kinetic data relating the gas phase ammonia concentration to the surface concentration of promoters has been obtained.(4,5) This type of information is important for optimizing the concentration of promoters but it fails to reveal the effects at the atomic level of the promoters within the working catalyst. With the advent of combined surface-science/high-pressure systems, high-pressure reaction data (>1 atmosphere) can now be correlated to the structure of the catalyst surface at the atomic level, which is determined in the ultrahigh vacuum environment (<10−8 torr). The combination of surface science and high-pressure catalysis provides powerful tools in the study of the reactivity and structure of surfaces. This chapter will be devoted to describing how surface science work, combined with high-pressure data, has elucidated the structure sensitivity and the role of potassium and aluminum oxide in ammonia synthesis. The structure sensitivity of ammonia synthesis will be presented first, since it serves as necessary background when explaining potassium and aluminum oxide promotion in ammonia synthesis.


Adsorption Energy Auger Electron Spectroscopy Iron Surface Surface Science Ammonia Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Nielsen, An Investigation on Promoted Iron Catalysts for the Synthesis of Ammonia, 3rd edn., Jul. Gjellerups Forlag, Copenhagen (1968).Google Scholar
  2. 2.
    A. Ozaki, Catalysis, Science and Technology, Vol. 1, Chapter 3, Springer-Verlag, Berlin (1981).Google Scholar
  3. 3.
    W. G. Frankenburg, Catalysis, p. 171, Reinhold, New York (1955).Google Scholar
  4. 4.
    M. Temkin and V. Pyzhev, Acta Phys. Chim. URSS 12, 327 (1940).Google Scholar
  5. 5.
    A. Ozaki, H. S. Taylor, and M. Boudart, Proc. R. Soc. London 47, 258 (1960).Google Scholar
  6. 6.
    S. A. Topham, Catalysis, Science and Technology, Vol. 7, Springer-Verlag, Berlin (1985).Google Scholar
  7. 7.
    G. Ertl, J. Vac. Sci. Technol. A1(2), 1247 (1983).Google Scholar
  8. 8.
    S. Brunauer and P. H. Emmett, J. Am. Chem. Soc. 62 1732 (1940).CrossRefGoogle Scholar
  9. 9.
    R. Krabetz and C. Peters, J. Am. Chem. Soc. 77, 333 (1965).Google Scholar
  10. 10.
    P. H. Emmett and S. Brunauer, J. Am. Chem. Soc. 59, 310 (1937).CrossRefGoogle Scholar
  11. 11.
    H. H. Madden and W. Goodman, Surf. Sci. 150, 39 (1985).CrossRefGoogle Scholar
  12. 12.
    S. Khammouma, PhD thesis, Stanford University (1972).Google Scholar
  13. 13.
    D. R. Strongin, S. R. Bare, and G. A. Somorjai, J. Catal. 103, 289 (1987).CrossRefGoogle Scholar
  14. 14.
    D. W. Blakely, C. I. Kozak, B. A. Sexton, and G. A. Somorjai, J. Vac. Sci. Technol. 13, 1091 (1976).CrossRefGoogle Scholar
  15. 15.
    G. A. Somorjai, Chemistry in Two Dimensions: Surfaces, Cornell University Press, Ithaca (1981).Google Scholar
  16. 16.
    N. D. Spencer, R. C. Schoonmaker, and G. A. Somorjai, J. Catal. 74, 129 (1982).CrossRefGoogle Scholar
  17. 17.
    D. R. Strongin, J. Carrazza, S. R. Bare, and G. A. Somorjai, J. Catal. 103, 213 (1987).CrossRefGoogle Scholar
  18. 18.
    R. Smoluchoswki, Phys. Rev. 60, 661 (1941).CrossRefGoogle Scholar
  19. 19.
    J. Hoelzl and F. K. Schulte, Solid Surface Physics, Springer-Verlag, Berlin (1979).CrossRefGoogle Scholar
  20. 20.
    J. McAllister and R. S. Hansen, J. Chem. Phys. 59, 414 (1973).CrossRefGoogle Scholar
  21. 21.
    G. Ertl, S. B. Lee, and M. Weiss, Surf Sci. 114, 527 (1982).CrossRefGoogle Scholar
  22. 22.
    A. Nielsen, Catal. Rev. 4, 1 (1970).CrossRefGoogle Scholar
  23. 23.
    L. Falicov and G. A. Somorjai, Proc. Natl. Acad. Sci. USA 82, 2207 (1985).CrossRefGoogle Scholar
  24. 24.
    J. A. Dumesic, H. Topsøe, and M. Boudart, J. Catal. 37, 513 (1975).CrossRefGoogle Scholar
  25. 25.
    M. Asscher, J. Carrazza, M. M. Khan, K. B. Lewis, and G. A. Somorjai, J. Catal. 98, 227 (1986).CrossRefGoogle Scholar
  26. 26.
    G. Broden and H. P. Bonzel, Surf. Sci. 84, 106 (1979).CrossRefGoogle Scholar
  27. 27.
    S. B. Lee, M. Weiss, and G. Ertl, Surf Sci. 108, 357 (1981).CrossRefGoogle Scholar
  28. 28.
    R. L. Gerlach and T. N. Rhodin, Surf. Sci. 19, 403 (1970).CrossRefGoogle Scholar
  29. 29.
    P. H. Redhead, Vacuum 12, 203 (1962).CrossRefGoogle Scholar
  30. 30.
    G. Pirug, G. Broden, and H. P. Bonzel, Surf. Sci. 94, 323 (1980).CrossRefGoogle Scholar
  31. 31.
    F. Bozso, G. Ertl, M. Grunze, and M. Weiss, J. Catal. 49, 18 (1977).CrossRefGoogle Scholar
  32. 32.
    F. Bozso, G. Ertl, and M. Weiss, J. Catal. 50, 519 (1977).CrossRefGoogle Scholar
  33. 33.
    Z. Paal, G. Ertl, and S. B. Lee, Appl. Surf Sci. 8, 231 (1981).CrossRefGoogle Scholar
  34. 34.
    G. Ertl, S. B. Lee, and M. Weiss, Surf Sei. 114, 527 (1982).CrossRefGoogle Scholar
  35. 35.
    D. R. Strongin and G. A. Somorjai, J. Catal. 109, 51 (1988).CrossRefGoogle Scholar
  36. 36.
    T. E. Madey and C. Benndorf, Surf. Sei. 152/153, 587 (1985).CrossRefGoogle Scholar
  37. 37.
    C. Benndorf and T. E. Madey, Chem. Phys. Lett. 101, L277 (1983).CrossRefGoogle Scholar
  38. 38.
    J. G. van Ommen, W. J. Bolink, J. Prasad, and P. Mars, J. Catal. 38, 120 (1975).CrossRefGoogle Scholar
  39. 39.
    S. R. Bare, D. R. Strongin, and G. A. Somorjai, J. Phys. Chem. 90, 4726 (1986).CrossRefGoogle Scholar
  40. 40.
    D. R. Strongin and G. A. Somorjai, Catal. Lett. 1, 98 (1988).CrossRefGoogle Scholar
  41. 41.
    K. Altenburg, H. Bosch, J. G. Ommen, and P. J. Gellings, J. Catal. 66, 326 (1980).CrossRefGoogle Scholar
  42. 42.
    R. Brill, J. Polym. Sci. 12, 353 (1962).Google Scholar
  43. 43.
    G. Ertl, M. Weiss, and S. B. Lee, Chem. Phys. Lett. 60, 391 (1979).CrossRefGoogle Scholar
  44. 44.
    W. D. Mross, Catal. Rev. Sci. Eng. 25(4), 591 (1983).CrossRefGoogle Scholar
  45. 45.
    J. A. Dumesic, H. Topsoe, and M. Boudait, J. Catal. 37, 513 (1975).CrossRefGoogle Scholar
  46. 46.
    T. Rayment, R. Schlogl, J. M. Thomas, and G. Ertl, Nature 315, 311 (1985).CrossRefGoogle Scholar
  47. 47.
    S. H. Overbury, P. A. Bertrand, and G. A. Somorjai, Chem. Rev. 75(5), 547 (1975).CrossRefGoogle Scholar
  48. 48.
    D. Beruta, L. Baro, and A. Passerone, in Oxides and Oxide Films (A. K. Vijh, ed.), Vol. 6. Dekker, New York (1981).Google Scholar
  49. 49.
    M. Langell and G. A. Somorjai, J. Vac. Sci. Technol. 21, 858 (1982).CrossRefGoogle Scholar
  50. 50.
    G. Ertl and K. Wandelt, Surf Sci. 50, 479 (1975).CrossRefGoogle Scholar
  51. 51.
    I. Sushumna and E. Ruckenstein, J. Catal. 94, 239 (1985).CrossRefGoogle Scholar
  52. 52.
    E. Paparazzo, J. L. Dormann, and D. Fiorani, Phys. Rev. B 28, 1154 (1983).CrossRefGoogle Scholar
  53. 53.
    E. Paparazzo, Appl. Surf. Sci. 25, 1 (1986).CrossRefGoogle Scholar
  54. 54.
    W. S. Borghard and M. Boudart, J. Catal. 80, 194 (1983).CrossRefGoogle Scholar
  55. 55.
    H. Ludwiczek, A. Preisinger, A. Fischer, R. Hosemann, A. Schonfeld, and W. Vogel, J. Catal. 51, 326 (1978).CrossRefGoogle Scholar
  56. 56.
    G. Fagherazzi, F. Galante, F. Garbassi, and N. Pernicone, J. Catal. 26, 344 (1972).CrossRefGoogle Scholar
  57. 57.
    Z. Paal, G. Ertl, and S. B. Lee, Appl. Surf. Sci. 8, 231 (1981).CrossRefGoogle Scholar
  58. 58.
    D. R. Strongin and G. A. Somorjai, J. Catal. 109 51 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • D. R. Strongin
    • 1
    • 2
  • G. A. Somorjai
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Center for Advanced MaterialsLawrence Berkeley LaboratoryBerkeleyUSA

Personalised recommendations